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Abstract

We consider the problem of estimating the latent state of a spatiotemporally evolv-
ing continuous function using very few sensor measurements. We show that
layering a dynamical systems prior over temporal evolution of weights of a kernel
model is a valid approach to spatiotemporal modeling, and that it does not require
the design of complex nonstationary kernels. Furthermore, we show that such a
differentially constrained predictive model can be utilized to determine sensing
locations that guarantee that the hidden state of the phenomena can be recovered
with very few measurements. We provide sufficient conditions on the number and
spatial location of samples required to guarantee state recovery, and provide a lower
bound on the minimum number of samples required to robustly infer the hidden
states. Our approach outperforms existing methods in numerical experiments.

1 Introduction

Modeling of large-scale stochastic phenomena with both spatial and temporal (spatiotemporal)
evolution is a fundamental problem in the applied sciences and social networks. The spatial and
temporal evolution in such domains is constrained by stochastic partial differential equations, whose
structure and parameters may be time-varying and unknown. While modeling spatiotemporal
phenomena has traditionally been the province of the field of geostatistics, it has in recent years
gained more attention in the machine learning community [2]. The data-driven models developed
through machine learning techniques provide a way to capture complex spatiotemporal phenomena
that are not easily modeled by first-principles alone, such as stochastic partial differential equations.

In the machine learning community, kernel methods represent a class of extremely well-studied and
powerful methods for inference in spatial domains; in these techniques, correlations between the input
variables are encoded through a covariance kernel, and the model is formed through a linear weighted
combination of the kernels [14]. In recent years, kernel methods have been applied to spatiotemporal
modeling with varying degrees of success [2, 14]. Many recent techniques in spatiotemporal modeling
have focused on nonstationary covariance kernel design and associated hyperparameter learning
algorithms [4, 7, 12]. The main benefit of careful design of covariance kernels over approaches that
simply include time as an additional input variable is that they can account for intricate spatiotemporal
couplings. However, there are two key challenges with these approaches: the first is ensuring
the scalability of the model to large scale phenomena, which manifests due to the fact that the
hyperparameter optimization problem is not convex in general, leading to methods that are difficult
to implement, susceptible to local minima, and that can become computationally intractable for
large datasets. In addition to the challenge of modeling spatiotemporally varying processes, we
are interested in addressing the second very important, and widely unaddressed challenge: given a
predictive model of the spatiotemporal phenomena, how can the current latent state of the phenomena
be estimated using as few sensor measurements as possible? This is called the monitoring problem.
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Monitoring a spatiotemporal phenomenon is concerned with estimating its current state, predicting
its future evolution, and inferring the initial conditions utilizing limited sensor measurements. The
key challenges here manifest due to the fact that it is typically infeasible or expensive to deploy
sensors at a large scale across vast spatial domains. To minimize the number of sensors deployed, a
predictive data-driven model of the spatiotemporal evolution could be learned from historic datasets
or through remote sensing (e.g. satellite, radar) datasets. Then, to monitor the phenomenon, the
key problem would boil down to reliably and quickly estimating the evolving latent state of the
phenomena utilizing measurements from very few sampling locations.

In this paper, we present an alternative perspective on solving the spatiotemporal monitoring problem
that brings together kernel-based modeling, systems theory, and Bayesian filtering. Our main
contributions are two-fold: first, we demonstrate that spatiotemporal functional evolution can be
modeled using stationary kernels with a linear dynamical systems layer on their mixing weights. In
other words, the model proposed here posits differential constraints, embodied as a linear dynamical
system, on the spatiotemporal evolution of a kernel based models, such as Gaussian Processes.
This approach does not necessarily require the design of complex spatiotemporal kernels, and can
accommodate positive-definite kernels on any domain on which it’s possible to define them, which
includes non-Euclidean domains such as Riemannian manifolds, strings, graphs and images [6].
Second, we show that the model can be utilized to determine sensing locations that guarantee that the
hidden states of functional evolution can be estimated using a Bayesian state-estimator with very few
measurements. We provide sufficient conditions on the number and location of sensor measurements
required and prove non-conservative lower bounds on the minimum number of sampling locations.
The validity of the presented model and sensing techniques is corroborated using synthetic and large
real datasets.

1.1 Related Work

There is a large body of literature on spatiotemporal modeling in geostatistics where specific process-
dependent kernels can be used [17, 2]. From the machine learning perspective, a naive approach is to
utilize both spatial and temporal variables as inputs to a Mercer kernel [10]. However, this technique
leads to an ever-growing kernel dictionary. Furthermore, constraining the dictionary size or utilizing
a moving window will occlude learning of long-term patterns. Periodic or nonstationary covariance
functions and nonlinear transformations have been proposed to address this issue [7, 14]. Work
focusing on nonseparable and nonstationary covariance kernels seeks to design kernels optimized
for environment-specific dynamics, and to tune their hyperparameters in local regions of the input
space. Seminal work in [5] proposes a process convolution approach for space-time modeling. This
model captures nonstationary structure by allowing the convolution kernel to vary across the input
space. This approach can be extended to a class of nonstationary covariance functions, thereby
allowing the use of a Gaussian process (GP) framework, as shown in [9]. However, since this
model’s hyperparameters are inferred using MCMC integration, its application has been limited to
smaller datasets. To overcome this limitation, [12] proposes to use the mean estimates of a second
isotropic GP (defined over latent length scales) to parameterize the nonstationary covariances. Finally,
[4] considers nonistropic variation across different dimension of input space for the second GP as
opposed to isotropic variation by [12]. Issues with this line of approach include the nonconvexity of
the hyperparameter optimization problem and the fact that selection of an appropriate nonstationary
covariance function for the task at hand is a nontrivial design decision (as noted in [16]).

Apart from directly modeling the covariance function using additional latent GPs, there exist several
other approaches for specifying nonstationary GP models. One approach maps the nonstationary
spatial process into a latent space, in which the problem becomes approximately stationary [15].
Along similar lines, [11] extends the input space by adding latent variables, which allows the model
to capture nonstationarity in original space. Both these approaches require MCMC sampling for
inference, and as such are subject to the limitations mentioned in the preceding paragraph.

A geostatistics approach that finds dynamical transition models on the linear combination of weights
of a parameterized model [2, 8] is advantageous when the spatial and temporal dynamics are
hierarchically separated, leading to a convex learning problem. As a result, complex nonstationary
kernels are often not necessary (although they can be accommodated). The approach presented in this
paper aligns closely with this vein of work. A system theoretic study of this viewpoint enables the
fundamental contributions of the paper, which are 1) allowing for inference on more general domains
with a larger class of basis functions than those typically considered in the geostatistics community,
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Figure 1: Two types of Hilbert space evolutions.
Left: discrete switches in RKHSH; Right: smooth
evolution inH.
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Figure 2: Shaded observation matrices for dictio-
nary of atoms.

and 2) quantifying the minimum number of measurements required to estimate the state of functional
evolution.

It should be noted that the contribution of the paper concerning sensor placement is to provide
sufficient conditions for monitoring rather than optimization of the placement locations, hence a
comparison with these approaches is not considered in the experiments.

2 Kernel Observers

This section outlines our modeling framework and presents theoretical results associated with the
number of sampling locations required for monitoring functional evolution.

2.1 Problem Formulation

We focus on predictive inference of a time-varying stochastic process, whose mean f evolves
temporally as fτ+1 ∼ F(fτ , ητ ), where F is a distribution varying with time τ and exogenous inputs
η. Our approach builds on the fact that in several cases, temporal evolution can be hierarchically
separated from spatial functional evolution. A classical and quite general example of this is the
abstract evolution equation (AEO), which can be defined as the evolution of a function u embedded
in a Banach space B: u̇(t) = Lu(t), subject to u(0) = u0, and L : B → B determines spatiotemporal
transitions of u ∈ B [1]. This model of spatiotemporal evolution is very general (AEOs, for example,
model many PDEs), but working in Banach spaces can be computationally taxing. A simple way
to make the approach computationally realizable is to place restrictions on B: in particular, we
restrict the sequence fτ to lie in a reproducing kernel Hilbert space (RKHS), the theory of which
provides powerful tools for generating flexible classes of functions with relative ease [14]. In a
kernel-based model, k : Ω× Ω→ R is a positive-definite Mercer kernel on a domain Ω that models
the covariance between any two points in the input space, and implies the existence of a smooth
map ψ : Ω→ H, whereH is an RKHS with the property k(x, y) = 〈ψ(x), ψ(y)〉H. The key insight
behind the proposed model is that spatiotemporal evolution in the input domain corresponds to
temporal evolution of the mixing weights of a kernel model alone in the functional domain. Therefore,
fτ can be modeled by tracing the evolution of its mean embedded in a RKHS using switched ordinary
differential equations (ODE) when the evolution is continuous, or switched difference equations when
it is discrete (Figure 1). The advantage of this approach is that it allows us to utilize powerful ideas
from systems theory for deriving necessary and sufficient conditions for spatiotemporal monitoring. In
this paper, we restrict our attention to the class of functional evolutions F defined by linear Markovian
transitions in an RKHS. While extension to the nonlinear case is possible (and non-trivial), it is not
pursued in this paper to help ease the exposition of the key ideas. The class of linear transitions in
RKHS is rich enough to model many real-world datasets, as suggested by our experiments.

Let yτ ∈ RN be the measurements of the function available from N sensors at time τ , A : H → H
be a linear transition operator in the RKHSH, and K : H → RN be a linear measurement operator.
The model for the functional evolution and measurement studied in this paper is:

fτ+1 = Afτ + ητ , yτ = Kfτ + ζτ , (1)

where ητ is a zero-mean stochastic process in H, and ζτ is a Wiener process in RN . Classical
treatments of kernel methods emphasize that for most kernels, the feature map ψ is unknown,
and possibly infinite-dimensional; this forces practioners to work in the dual space of H, whose
dimensionality is the number of samples in the dataset being modeled. This conventional wisdom
precludes the use of kernel methods for most tasks involving modern datasets, which may have
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millions and sometimes billions of samples [13]. An alternative is to work with a feature map
ψ̂(x) := [ ψ̂1(x) ··· ψ̂M (x) ] to an approximate feature space Ĥ, with the property that for every
element f ∈ H, ∃f̂ ∈ Ĥ and an ε > 0 s.t. ‖f − f̂‖ < ε for an appropriate function norm. A few such
approximations are listed below.

Dictionary of atoms Let Ω be compact. Given points C = {c1, . . . , cM}, ci ∈ Ω, we have a
dictionary of atoms FC = {ψ(c1), · · · , ψ(cM )}, ψ(ci) ∈ H, the span of which is a strict subspace
Ĥ of the RKHSH generated by the kernel. Here,

ψ̂i(x) := 〈ψ(x), ψ(ci)〉H = k(x, ci) (2)

Low-rank approximations Let Ω be compact, let C = {c1, . . . , cM}, ci ∈ Ω, and letK ∈ RM×M ,
Kij := k(ci, cj) be the Gram matrix computed from C. This matrix can be diagonalized to compute
approximations (λ̂i, φ̂i(x)) of the eigenvalues and eigenfunctions (λi, φi(x)) of the kernel [18].

These spectral quantities can then be used to compute ψ̂i(x) :=
√
λ̂iφ̂i(x).

Random Fourier features Let Ω ⊂ Rn be compact, and let k(x, y) = e−‖x−y‖
2/2σ2

be the
Gaussian RBF kernel. Then random Fourier features approximate the kernel feature map as ψ̂ω :

Ω→ Ĥ, where ω is a sample from the Fourier transform of k(x, y), with the property that k(x, y) =

Eω[〈ψ̂ω(x), ψ̂ω(y)〉Ĥ] [13]. In this case, if V ∈ RM/2×n is a random matrix representing the sample
ω, then ψ̂i(x) := [ 1√

M
sin([V x]i),

1√
M

cos([V x]i) ]. Similar approximations exist for other radially
symmetric and dot product kernels.

In the approximate space case, we replace the transition operator A : H → H in (1) by Â : Ĥ → Ĥ.
This approximate regime, which trades off the flexibility of a truly nonparametric approach for
computational realizability, still allows for the representation of rich phenomena, as will be seen in
the sequel. The finite-dimensional evolution equations approximating (1) in dual form are

wτ+1 = Âwτ + ητ , yτ = Kwτ + ζτ , (3)

where we have matrices Â ∈ RM×M , K ∈ RN×M , the vectors wτ ∈ RM , and where we have
slightly abused notation to let ητ and ζτ denote their Ĥ counterparts. Here K is the matrix whose
rows are of the form K(i) = Ψ̂(xi) = [ ψ̂1(xi) ψ̂2(xi) ··· ψ̂M (xi) ]. In systems-theoretic language,
each row of K corresponds to a measurement at a particular location, and the matrix itself acts as

a measurement operator. We define the generalized observability matrix [20] as OΥ =

[
KÂτ1
···

KÂτL

]
where Υ = {τ1, . . . , τL} are the set of instances τi when we apply the operator K. A linear system
is said to be observable if OΥ has full column rank (i.e. RankOΥ = M ) for Υ = {0, 1, . . . ,M − 1}
[20]. Observability guarantees two critical facts: firstly, it guarantees that the state w0 can be
recovered exactly from a finite series of measurements {yτ1 , yτ2 , . . . , yτL}; in particular, defining
yΥ =

[
yTτ1 , y

T
τ2 , · · · , yτTL

]T
, we have that yΥ = OΥw0. Secondly, it guarantees that a feedback based

observer can be designed such that the estimate of wτ , denoted by ŵτ , converges exponentially fast
to wτ in the limit of samples. Note that all our theoretical results assume Â is available: while we
perform system identification in the experiments (Section 3.3), it is not the focus of the paper.

We are now in a position to formally state the spatiotemporal modeling and inference problem
considered: given a spatiotemporally evolving system modeled using (3), choose a set of N sensing
locations such that even with N � M , the functional evolution of the spatiotemporal model can
be estimated (which corresponds to monitoring) and can be predicted robustly (which corresponds
to Bayesian filtering). Our approach to solve this problem relies on the design of the measurement
operator K so that the pair (K, Â) is observable: any Bayesian state estimator (e.g. a Kalman filter)
utilizing this pair is denoted as a kernel observer 1. We will leverage the spectral decomposition of
Â for this task (see §?? in supplementary for details on spectral decomposition).

2.2 Main Results
In this section, we prove results concerning the observability of spatiotemporally varying functions
modeled by the functional evolution and measurement equations (3) formulated in Section 2.1. In

1In the case where no measurements are taken, for the sake of consistency, we denote the state estimator as
an autonomous kernel observer, despite this being something of an oxymoron.
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particular, observability of the system states implies that we can recover the current state of the
spatiotemporally varying function using a small number of sampling locations N , which allows us to
1) track the function, and 2) predict its evolution forward in time. We work with the approximation
Ĥ ≈ H: given M basis functions, this implies that the dual space of Ĥ is RM . Proposition 1 shows
that if Â has a full-rank Jordan decomposition, the observation matrix K meeting a condition called
shadedness (Definition 1) is sufficient for the system to be observable. Proposition 2 provides a
lower bound on the number of sampling locations required for observability which holds for any Â.
Proposition 3 constructively shows the existence of an abstract measurement map K̃ achieving this
lower bound. Finally, since the measurement map does not have the structure of a kernel matrix,
a slightly weaker sufficient condition for the observability of any Â is in Theorem 1. Proofs of all
claims are in the supplementary material.
Definition 1. (Shaded Observation Matrix) Given k : Ω× Ω→ R positive-definite on a domain Ω,
let {ψ̂1(x), . . . , ψ̂M (x)} be the set of bases generating an approximate feature map ψ̂ : Ω→ Ĥ, and
let X = {x1, . . . , xN}, xi ∈ Ω. Let K ∈ RN×M be the observation matrix, where Kij := ψ̂j(xi).
For each row K(i) := [ ψ̂1(xi) ··· ψ̂M (xi) ], define the set I(i) := {ι(i)1 , ι

(i)
2 , . . . , ι

(i)
Mi
} to be the indices

in the observation matrix row i which are nonzero. Then if
⋃
i∈{1,...,N} I(i) = {1, 2, . . . ,M}, we

denote K as a shaded observation matrix (see Figure 2a).

This definition seems quite abstract, so the following remark considers a more concrete example.

Remark 1. Let ψ̂ be generated by the dictionary given by C = {c1, . . . , cM}, ci ∈ Ω. Note that since
ψ̂j(xi) = 〈ψ(xi), ψ(cj)〉H = k(xi, cj), K is the kernel matrix between X and C. For the kernel
matrix to be shaded thus implies that there does not exist an atom ψ(cj) such that the projections
〈ψ(xi), ψ(cj)〉H vanish for all xi, 1 ≤ i ≤ N . Intuitively, the shadedness property requires that the
sensor locations xi are privy to information propagating from every cj . As an example, note that, in
principle, for the Gaussian kernel, a single row generates a shaded kernel matrix2.

Proposition 1. Given k : Ω× Ω→ R positive-definite on a domain Ω, let {ψ̂1(x), . . . , ψ̂M (x)} be
the set of bases generating an approximate feature map ψ̂ : Ω → Ĥ, and let X = {x1, . . . , xN},
xi ∈ Ω. Consider the discrete linear system on Ĥ given by the evolution and measurement equations
(3). Suppose that a full-rank Jordan decomposition of Â ∈ RM×M of the form Â = PΛP−1

exists, where Λ = [ Λ1 ··· ΛO ], and there are no repeated eigenvalues. Then, given a set of time
instances Υ = {τ1, τ2, . . . , τL}, and a set of sampling locations X = {x1, . . . , xN}, the system (3)
is observable if the observation matrix Kij is shaded according to Definition 1, Υ has distinct values,
and |Υ| ≥M .

When the eigenvalues of the system matrix are repeated, it is not enough for K to be shaded. In
the next proposition, we take a geometric approach and utilize the rational canonical form of Â to
obtain a lower bound on the number of sampling locations required. Let r be the number of unique
eigenvalues of Â, and let γλi denote the geometric multiplicity of eigenvalue λi. Then the cyclic
index of Â is defined as ` = max1≤i≤r γλi [19] (see supplementary section ?? for details).
Proposition 2. Suppose that the conditions in Proposition 1 hold, with the relaxation that the Jordan
blocks [ Λ1 ··· ΛO ] may have repeated eigenvalues (i.e. ∃Λi and Λj s.t. λi = λj). Then there exist
kernels k(x, y) such that the lower bound ` on the number of sampling locations N is given by the
cyclic index of Â.

Section ?? in supplementary gives a concrete example to build intuition regarding this lower bound.
We now show how to construct a matrix K̃ corresponding to the lower bound `.
Proposition 3. Given the conditions stated in Proposition 2, it is possible to construct a measurement
map K̃ ∈ R`×M for the system given by (3), such that the pair (K̃, Â) is observable.

The construction provided in the proof of Proposition 3 is utilized in Algorithm 1, which uses
the rational canonical structure of Â to generate a series of vectors vi ∈ RM , whose iterations

2However, in this case, the matrix can have many entries that are extremely close to zero, and will probably
be very ill-conditioned.
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Algorithm 1 Measurement Map K̃

Input: Â ∈ RM×M

Compute rational canonical form, such that C = Q−1ÂTQ. Set C0 := C, and M0 := M .
for i = 1 to ` do

Obtain MP αi(λ) of Ci−1. This returns associated indices J (i) ⊂ {1, 2, . . . ,Mi−1}.
Construct vector vi ∈ RM such that ξvi(λ) = αi(λ) .
Use indices {1, 2, . . . ,Mi−1} \ J (i) to select matrix Ci. Set Mi := |{1, 2, . . . ,Mi−1} \ J (i)|

end for
Compute K̊ = [vT1 , v

T
2 , ..., v

T
` ]T

Output: K̃ = K̊Q−1

{v1, . . . , Â
m1−1v1, . . . , v`, . . . , Â

m`−1v`} generate a basis for RM . Unfortunately, the measurement
map K̃, being an abstract construction unrelated to the kernel, does not directly select X . We will
show how to use the measurement map to guide a search for X in Remark ??. For now, we state a
sufficient condition for observability of a general system.
Theorem 1. Suppose that the conditions in Proposition 1 hold, with the relaxation that the Jordan
blocks [Λ1 · · · ΛO] may have repeated eigenvalues. Let ` be the cyclic index of Â. Define

K = [K(1)T ··· K(`)T ]
T (4)

as the `-shaded matrix which consists of ` shaded matrices with the property that any subset of `
columns in the matrix are linearly independent from each other. Then system (3) is observable if Υ
has distinct values, and |Υ| ≥M .

While Theorem 1 is a quite general result, the condition that any ` columns of K be linearly
independent is a very stringent condition. One scenario where this condition can be met with
minimal measurements is in the case when the feature map ψ̂(x) is generated by a dictionary of
atoms with the Gaussian RBF kernel evaluated at sampling locations {x1, . . . , xN} according to
(2), where xi ∈ Ω ⊂ Rd, and xi are sampled from a non-degenerate probability distribution on
Ω such as the uniform distribution. For a semi-deterministic approach, when the dynamics matrix
Â is block-diagonal, a simple heuristic is given in Remark ?? in the supplementary. Note that in
practice the matrix Â needs to be inferred from measurements of the process fτ . If no assumptions
are placed on Â, at least M sensors are required for the system identification phase. Future work will
study the precise conditions under which system identification is possible with less than M sensors.
Finally, computing the Jordan and rational canonical forms can be computationally expensive: see the
supplementary for more details. We note that the crucial step in our approach is computing the cyclic
index, which gives us the minimum number of sensors that need to be deployed, the computational
complexity of which is O(M3). Computation of the canonical forms is required in the case we need
to strictly realize the lower bound on the number of sensors.

3 Experimental Results
3.1 Sampling Locations for Synthetic Data Sets

The goal of this experiment is to investigate the dependency of the observability of system (3) on
the shaded observation matrix and the lower bound presented in Proposition 2. The domain is fixed
on the interval Ω = [0, 2π]. First, we pick sets of points C(ι) = {c1, . . . , cMι

}, cj ∈ Ω, M = 50,
and construct a dynamics matrix A = Λ ∈ RM×M , with cyclic index 5. We pick the RBF kernel
k(x, y) = e−‖x−y‖

2/2σ2

, σ = 0.02. Generating samples X = {x1, . . . , xN}, xi ∈ Ω randomly, we
compute the `-shaded property and observability for this system. Figure 3a shows how shadedness is
a necessary condition for observability, validating Proposition 1: the slight gap between shadedness
and observability here can be explained due to numerical issues in computing the rank of OΥ. Next,
we again pick M = 50, but for a system with a cyclic index ` = 18. We constructed the measurement
map K̃ using Algorithm 1, and the heuristic in Remark ?? (Algorithm 2 in the supplementary) as
well as random sampling to generate the sampling locations X . These results are presented in Figure
3b. The plot for random sampling has been averaged over 100 runs. It is evident from the plot that
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observability cannot be achieved for a number of samples N < `. Clearly, the heuristic presented
outperforms random sampling; note however, that our intent is not to compare the heuristic against
random sampling, but to show that the lower bound ` provides decisive guidelines for selecting the
number of samples while using the computationally efficient random approach.

3.2 Comparison With Nonstationary Kernel Methods on Real-World Data

We use two real-world datasets to evaluate and compare the kernel observer with the two different
lines of approach for non-stationary kernels discussed in Section 1.1. For the Process Convolution
with Local Smoothing Kernel (PCLSK) and Latent Extension of Input Space (LEIS) approaches, we
compare with NOSTILL-GP [4] and [11] respectively, on the Intel Berkeley and Irish Wind datasets.

Model inference for the kernel observer involved three steps: 1) picking the Gaussian RBF kernel
k(x, y) = e−‖x−y‖

2/2σ2

, a search for the ideal σ is performed for a sparse Gaussian Process model
(with a fixed basis vector set C selected using the method in [3]. For the data set discussed in this
section, the number of basis vectors were equal to the number of sensing locations in the training
set, with the domain for input set defined over R2; 2) having obtained σ, Gaussian process inference
is used to generate weight vectors for each time-step in the training set, resulting in the sequence
wτ , τ ∈ {1, . . . , T}; 3) matrix least-squares is applied to this sequence to infer Â (Algorithm 3 in
the supplementary). For prediction in the autonomous setup, Â is used to propagate the state wτ
forward to make predictions with no feedback, and in the observer setup, a Kalman filter (Algorithm
4 in the supplementary) with N determined using Proposition 2, and locations picked randomly, is
used to propagate wτ forward to make predictions. We also compare with a baseline GP (denoted by
‘original GP’), which is the sparse GP model trained using all of the available data.

Our first dataset, the Intel Berkeley research lab temperature data, consists of 50 wireless temperature
sensors in indoor laboratory region spanning 40.5 meters in length and 31 meters in width3. Training
data consists of temperature data on March 6th 2004 at intervals of 20 minutes (beginning 00:20
hrs) which totals to 72 timesteps. Testing is performed over another 72 timesteps beginning 12:20
hrs of the same day. Out of 50 locations, we uniformly selected 25 locations each for training and
testing purposes. Results of the prediction error are shown in box-plot form in Figure 4a and as a
time-series in Figure 4b, note that ‘Auto’ refers to autonomous set up. Here, the cyclic index of Â
was determined to be 2, so N was set to 2 for the kernel observer with feedback. Note that here, even
the autonomous kernel observer outperforms PCLSK and LEIS overall, and the kernel observer with
feedback N = 2 does so significantly, which is why we did not include results with N > 2.

The second dataset is the Irish wind dataset, consisting of daily average wind speed data collected
from year 1961 to 1978 at 12 meteorological stations in the Republic of Ireland4. The prediction
error is in box-plot form in Figure 5a and as a time-series in Figure 5b. Again, the cyclic index of Â
was determined to be 2. In this case, the autonomous kernel observer’s performance is comparable to
PCLSK and LEIS, while the kernel observer with feedback with N = 2 again outperforms all other
methods. Table ?? in the supplementary reports the total training and prediction times associated
with PCLSK, LEIS, and the kernel observer. We observed that 1) the kernel observer is an order of
magnitude faster, and 2) even for small sets, competing methods did not scale well.
3.3 Prediction of Global Ocean Surface Temperature

We analyzed the feasibility of our approach on a large dataset from the National Oceanographic
Data Center: the 4 km AVHRR Pathfinder project, which is a satellite monitoring global ocean
surface temperature (Fig. 6a). This dataset is challenging, with measurements at over 37 million
possible coordinates, but with only around 3-4 million measurements available per day, leading to
a lot of missing data. The goal was to learn the day and night temperature models on data from
the year 2011, and to monitor thereafter for 2012. Success in monitoring would demonstrate two
things: 1) the modeling process can capture spatiotemporal trends that generalize across years, and
2) the observer framework allows us to infer the state using a number of measurements that are
an order of magnitude fewer than available. Note that due to the size of the dataset and the high
computational requirements of the nonstationary kernel methods, a comparison with them was not
pursued. To build the autonomous kernel observer and general kernel observer models, we followed
the same procedure outlined in Section 3.2, but with C = {c1, . . . , cM}, cj ∈ R2, |C| = 300. Cyclic

3http://db.csail.mit.edu/labdata/labdata.html
4http://lib.stat.cmu.edu/datasets/wind.desc
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Figure 3: Kernel observability results.
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Figure 4: Comparison of kernel observer to
PCLSK and LEIS methods on Intel dataset.
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Figure 5: Irish Wind
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Figure 6: Performance of the kernel observer over AVVHR satellite
2011-12 data with different numbers of observation locations.

index of Â was determined to be 250 and hence the Kalman filter for kernel observer model using
N ∈ {250, 500, 1000} at random locations was utilized to track the system state given a random
initial condition w0. As a fair baseline, the observers are compared to training a sparse GP model
(labeled ‘original’) on approximately 400, 000 measurements per day. Figures 6b and 6c compare the
autonomous and feedback approach with 1, 000 samples to the baseline GP; here, it can be seen that
the autonomous does well in the beginning, but then incurs an unacceptable amount of error when
the time series goes into 2012, i.e. where the model has not seen any training data, whereas KO does
well throughout. Figures 6d and 6e show a comparison of the RMS error of estimated values from
the real data. This figure shows the trend of the observer getting better state estimates as a function of
the number of sensing locations N 5. Finally, the prediction time of KO is much less than retraining
the model every time step, as shown in Figure 6f.
4 Conclusions
This paper presented a new approach to the problem of monitoring complex spatiotemporally evolving
phenomena with limited sensors. Unlike most Neural Network or Kernel based models, the presented
approach inherently incorporates differential constraints on the spatiotemporal evolution of the mixing
weights of a kernel model. In addition to providing an elegant and efficient model, the main benefit
of the inclusion of the differential constraint in the model synthesis is that it allowed the derivation
of fundamental results concerning the minimum number of sampling locations required, and the
identification of correlations in the spatiotemporal evolution, by building upon the rich literature in
systems theory. These results are non-conservative, and as such provide direct guidance in ensuring
robust real-world predictive inference with distributed sensor networks.
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