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Abstract

In classical reinforcement learning agents accept arbitrary short term loss for long
term gain when exploring their environment. This is infeasible for safety critical
applications such as robotics, where even a single unsafe action may cause system
failure or harm the environment. In this paper, we address the problem of safely
exploring finite Markov decision processes (MDP). We define safety in terms of an
a priori unknown safety constraint that depends on states and actions and satisfies
certain regularity conditions expressed via a Gaussian process prior. We develop a
novel algorithm, SAFEMDP, for this task and prove that it completely explores
the safely reachable part of the MDP without violating the safety constraint. To
achieve this, it cautiously explores safe states and actions in order to gain statistical
confidence about the safety of unvisited state-action pairs from noisy observations
collected while navigating the environment. Moreover, the algorithm explicitly
considers reachability when exploring the MDP, ensuring that it does not get stuck
in any state with no safe way out. We demonstrate our method on digital terrain
models for the task of exploring an unknown map with a rover.

1 Introduction

Today’s robots are required to operate in variable and often unknown environments. The traditional
solution is to specify all potential scenarios that a robot may encounter during operation a priori. This
is time consuming or even infeasible. As a consequence, robots need to be able to learn and adapt to
unknown environments autonomously [10, 2]. While exploration algorithms are known, safety is still
an open problem in the development of such systems [18]. In fact, most learning algorithms allow
robots to make unsafe decisions during exploration. This can damage the platform or its environment.

In this paper, we provide a solution to this problem and develop an algorithm that enables agents to
safely and autonomously explore unknown environments. Specifically, we consider the problem of
exploring a Markov decision process (MDP), where it is a priori unknown which state-action pairs
are safe. Our algorithm cautiously explores this environment without taking actions that are unsafe or
may render the exploring agent stuck.

Related Work. Safe exploration is an open problem in the reinforcement learning community and
several definitions of safety have been proposed [16]. In risk-sensitive reinforcement learning, the
goal is to maximize the expected return for the worst case scenario [5]. However, these approaches
only minimize risk and do not treat safety as a hard constraint. For example, Geibel and Wysotzki [7]
define risk as the probability of driving the system to a previously known set of undesirable states.
The main difference to our approach is that we do not assume the undesirable states to be known
a priori. Garcia and Fernández [6] propose to ensure safety by means of a backup policy; that is,
a policy that is known to be safe in advance. Our approach is different, since it does not require a
backup policy but only a set of initially safe states from which the agent starts to explore. Another
approach that makes use of a backup policy is shown by Hans et al. [9], where safety is defined in
terms of a minimum reward, which is learned from data.
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Moldovan and Abbeel [14] provide probabilistic safety guarantees at every time step by optimizing
over ergodic policies; that is, policies that let the agent recover from any visited state. This approach
needs to solve a large linear program at every time step, which is computationally demanding even
for small state spaces. Nevertheless, the idea of ergodicity also plays an important role in our method.
In the control community, safety is mostly considered in terms of stability or constraint satisfaction
of controlled systems. Akametalu et al. [1] use reachability analysis to ensure stability under the
assumption of bounded disturbances. The work in [3] uses robust control techniques in order to
ensure robust stability for model uncertainties, while the uncertain model is improved.

Another field that has recently considered safety is Bayesian optimization [13]. There, in order to
find the global optimum of an a priori unknown function [21], regularity assumptions in form of
a Gaussian process (GP) [17] prior are made. The corresponding GP posterior distribution over
the unknown function is used to guide evaluations to informative locations. In this setting, safety
centered approaches include the work of Sui et al. [22] and Schreiter et al. [20], where the goal is
to find the safely reachable optimum without violating an a priori unknown safety constraint at any
evaluation. To achieve this, the function is cautiously explored, starting from a set of points that is
known to be safe initially. The method in [22] was applied to the field of robotics to safely optimize
the controller parameters of a quadrotor vehicle [4]. However, they considered a bandit setting, where
at each iteration any arm can be played. In contrast, we consider exploring an MDP, which introduces
restrictions in terms of reachability that have not been considered in Bayesian optimization before.

Contribution. We introduce SAFEMDP, a novel algorithm for safe exploration in MDPs. We model
safety via an a priori unknown constraint that depends on state-action pairs. Starting from an initial
set of states and actions that are known to satisfy the safety constraint, the algorithm exploits the
regularity assumptions on the constraint function in order to determine if nearby, unvisited states are
safe. This leads to safe exploration, where only state-actions pairs that are known to fulfil the safety
constraint are evaluated. The main contribution consists of extending the work on safe Bayesian
optimization in [22] from the bandit setting to deterministic, finite MDPs. In order to achieve this, we
explicitly consider not only the safety constraint, but also the reachability properties induced by the
MDP dynamics. We provide a full theoretical analysis of the algorithm. It provably enjoys similar
safety guarantees in terms of ergodicity as discussed in [14], but at a reduced computational cost.
The reason for this is that our method separates safety from the reachability properties of the MDP.
Beyond this, we prove that SAFEMDP is able to fully explore the safely reachable region of the
MDP, without getting stuck or violating the safety constraint with high probability. To the best of
our knokwledge, this is the first full exploration result in MDPs subject to a safety constraint. We
validate our method on an exploration task, where a rover has to explore an a priori unknown map.

2 Problem Statement

In this section, we define our problem and assumptions. The unknown environment is modeled as a
finite, deterministic MDP [23]. Such a MDP is a tuple hS,A(·), f(s, a), r(s, a)i with a finite set of
states S , a set of state-dependent actions A(·), a known, deterministic transition model f(s, a), and
reward function r(s, a). In the typical reinforcement learning framework, the goal is to maximize
the cumulative reward. In this paper, we consider the problem of safely exploring the MDP. Thus,
instead of aiming to maximize the cumulative rewards, we define r(s, a) as an a priori unknown
safety feature. Although r(s, a) is unknown, we make regularity assumptions about it to make the
problem tractable. When traversing the MDP, at each discrete time step, k, the agent has to decide
which action and thereby state to visit next. We assume that the underlying system is safety-critical
and that for any visited state-action pair, (sk, ak), the unknown, associated safety feature, r(sk, ak),
must be above a safety threshold, h. While the assumption of deterministic dynamics does not hold
for general MDPs, in our framework, uncertainty about the environment is captured by the safety
feature. If requested, the agent can obtain noisy measurements of the safety feature, r(sk, ak), by
taking action ak in state sk. The index t is used to index measurements, while k denotes movement
steps. Typically k � t.

It is hopeless to achieve the goal of safe exploration unless the agent starts in a safe location. Hence,
we assume that the agent stays in an initial set of state action pairs, S0, that is known to be safe a
priori. The goal is to identify the maximum safely reachable region starting from S0, without visiting
any unsafe states. For clarity of exposition, we assume that safety depends on states only; that
is, r(s, a) = r(s). We provide an extension to safety features that also depend on actions in Sec. 3.
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Figure 1: Illustration of the set operators with S = {¯s1,¯s2}. The set S = {s} can be reached from s2
in one step and from s1 in two steps, while only the state s1 can be reached from s. Visiting s1 is safe;
that is, it is above the safety threshold, is reachable, and there exists a safe return path through s2.

Assumptions on the reward function Ensuring that all visited states are safe without any prior
knowledge about the safety feature is an impossible task (e.g., if the safety feature is discontinuous).
However, many practical safety features exhibit some regularity, where similar states will lead to
similar values of r.

In the following, we assume that S is endowed with a positive definite kernel function k(·, ·) and that
the function r(·) has bounded norm in the associated Reproducing Kernel Hilbert Space (RKHS) [19].
The norm induced by the inner product of the RKHS indicates the smoothness of functions with re-
spect to the kernel. This assumption allows us to model r as a GP [21], r(s) ⇠ GP(µ(s), k(s, s0)). A
GP is a probability distribution over functions that is fully specified by its mean function µ(s)
and its covariance function k(s, s0). The randomness expressed by this distribution captures
our uncertainty about the environment. We assume µ(s) = 0 for all s 2 S, without loss of
generality. The posterior distribution over r(·) can be computed analytically, based on t mea-
surements at states Dt = {s1, . . . , st} ✓ S with measurements, yt = [r(s1) + !1 . . . r(st) + !t]

T,
that are corrupted by zero-mean Gaussian noise, !t ⇠ N (0,�2

). The posterior is a GP
distribution with mean µt(s) = kt(s)T(Kt + �2I)�1yt, variance �t(s) = kt(s, s), and covari-
ance kt(s, s0) = k(s, s0)� kt(s)T(Kt + �2I)�1kt(s0), where kt(s) = [k(s1, s), . . . , k(st, s)]T and
Kt is the positive definite kernel matrix, [k(s, s0)]s,s02Dt . The identity matrix is denoted by I 2 Rt⇥t.

We also assume L-Lipschitz continuity of the safety function with respect to some metric d(·, ·) on S .
This is guaranteed by many commonly used kernels with high probability [21, 8].

Goal In this section, we define the goal of safe exploration. In particular, we ask what the best that
any algorithm may hope to achieve is. Since we only observe noisy measurements, it is impossible to
know the underlying safety function r(·) exactly after a finite number of measurements. Instead, we
consider algorithms that only have knowledge of r(·) up to some statistical confidence ✏. Based on
this confidence within some safe set S, states with small distance to S can be classified to satisfy the
safety constraint using the Lipschitz continuity of r(·). The resulting set of safe states is

Rsafe
✏ (S) = S [ {s 2 S | 9s0 2 S : r(s0)� ✏� Ld(s, s0) � h}, (1)

which contains states that can be classified as safe given the information about the states in S.
While (1) considers the safety constraint, it does not consider any restrictions put in place by the
structure of the MDP. In particular, we may not be able to visit every state in Rsafe

✏ (S) without visiting
an unsafe state first. As a result, the agent is further restricted to

Rreach
(S) = S [ {s 2 S | 9s0 2 S, a 2 A(s0) : s = f(s0, a)}, (2)

the set of all states that can be reached starting from the safe set in one step. These states are called
the one-step safely reachable states. However, even restricted to this set, the agent may still get stuck
in a state without any safe actions. We define

Rret
(S, S) = S [ {s 2 S | 9a 2 A(s) : f(s, a) 2 S} (3)

as the set of states that are able to return to a set S through some other set of states, S, in one step. In
particular, we care about the ability to return to a certain set through a set of safe states S. Therefore,
these are called the one-step safely returnable states. In general, the return routes may require taking
more than one action, see Fig. 1. The n-step returnability operator Rret

n (S, S) = Rret
(S,Rret

n�1(S, S))

with Rret
1 (S, S) = Rret

(S, S) considers these longer return routes by repeatedly applying the return
operator, Rret in (3), n times. The limit R

ret
(S, S) = limn!1 Rret

n (S, S) contains all the states that
can reach the set S through an arbitrarily long path in S.
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Algorithm 1 Safe exploration in MDPs (SafeMDP)
Inputs: states S, actions A, transition function f(s, a), kernel k(s, s0), Safety

threshold h, Lipschitz constant L, Safe seed S0.
C0(s) [h,1) for all s 2 S0

for t = 1, 2, . . . do
St  {s 2 S | 9s0 2 ˆSt�1 : lt(s0)� Ld(s, s0) � h}
ˆSt  {s 2 St | s 2 Rreach

(

ˆSt�1), s 2 R
ret

(St, ˆSt�1)}
Gt  {s 2 ˆSt | gt(s) > 0}
st  argmaxs2Gt

wt(s)
Safe Dijkstra in St from st�1 to st
Update GP with st and yt  r(st) + !t

if Gt = ; or max

s2Gt

wt(s)  ✏ then Break

For safe exploration of MDPs, all of the above are requirements; that is, any state that we may want
to visit needs to be safe (satisfy the safety constraint), reachable, and we must be able to return to safe
states from this new state. Thus, any algorithm that aims to safely explore an MDP is only allowed to
visit states in

R✏(S) = Rsafe
✏ (S) \Rreach

(S) \R
ret

(Rsafe
✏ (S), S), (4)

which is the intersection of the three safety-relevant sets. Given a safe set S that fulfills the safety
requirements, R

ret
(Rsafe

✏ (S), S) is the set of states from which we can return to S by only visiting
states that can be classified as above the safety threshold. By including it in the definition of R✏(S),
we avoid the agent getting stuck in a state without an action that leads to another safe state to take.

Given knowledge about the safety feature in S up to ✏ accuracy thus allows us to expand the set of
safe ergodic states to R✏(S). Any algorithm that has the goal of exploring the state space should
consequently explore these newly available safe states and gain new knowledge about the safety
feature to potentially further enlargen the safe set. The safe set after n such expansions can be found
by repeatedly applying the operator in (4): Rn

✏ (S) = R✏(R
n�1
✏ (S)) with R1

✏ = R✏(S). Ultimately,
the size of the safe set is bounded by surrounding unsafe states or the number of states in S. As a
result, the biggest set that any algorithm may classify as safe without visiting unsafe states is given
by taking the limit, R✏(S) = limn!1 Rn

✏ (S).

Thus, given a tolerance level ✏ and an initial safe seed set S0, R✏(S0) is the set of states that any
algorithm may hope to classify as safe. Let St denote the set of states that an algorithm determines
to be safe at iteration t. In the following, we will refer to complete, safe exploration whenever an
algorithm fulfills R✏(S0) ✓ limt!1 St ✓ R0(S0); that is, the algorithm classifies every safely
reachable state up to ✏ accuracy as safe, without misclassification or visiting unsafe states.

3 SAFEMDP Algorithm

We start by giving a high level overview of the method. The SAFEMDP algorithm relies on a GP
model of r to make predictions about the safety feature and uses the predictive uncertainty to guide
the safe exploration. In order to guarantee safety, it maintains two sets. The first set, St, contains
all states that can be classified as satisfying the safety constraint using the GP posterior, while the
second one, ˆSt, additionally considers the ability to reach points in St and the ability to safely return
to the previous safe set, ˆSt�1. The algorithm ensures safety and ergodicity by only visiting states
in ˆSt. In order to expand the safe region, the algorithm visits states in Gt ✓ ˆSt, a set of candidate
states that, if visited, could expand the safe set. Specifically, the algorithm selects the most uncertain
state in Gt, which is the safe state that we can gain the most information about. We move to this state
via the shortest safe path, which is guaranteed to exist (Lemma 2). The algorithm is summarized
in Algorithm 1.

Initialization. The algorithm relies on an initial safe set S0 as a starting point to explore the MDP.
These states must be safe; that is, r(s) � h, for all s 2 S0. They must also fulfill the reachability and
returnability requirements from Sec. 2. Consequently, for any two states, s, s0 2 S0, there must exist
a path in S0 that connects them: s0 2 R

ret
(S0, {s}). While this may seem restrictive, the requirement

is, for example, fulfilled by a single state with an action that leads back to the same state.
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(a) States are classified as safe (above the safety con-
straint, dashed line) according to the confidence in-
tervals of the GP model (red bar). States in the green
bar can expand the safe set if sampled, Gt.

(b) Modified MDP model that is used to encode safety
features that depend on actions. In this model, actions
lead to abstract action-states sa, which only have one
available action that leads to f(s, a).

Classification. In order to safely explore the MDP, the algorithm must determine which states are
safe without visiting them. The regularity assumptions introduced in Sec. 2 allow us to model the
safety feature as a GP , so that we can use the uncertainty estimate of the GP model in order to
determine a confidence interval within which the true safety function lies with high probability. For
every state s, this confidence interval has the form Qt(s) =

⇥
µt�1(s) ±

p
�t�t�1(s)

⇤
, where �t is a

positive scalar that determines the amplitude of the interval. We discuss how to select �t in Sec. 4.

Rather than defining high probability bounds on the values of r(s) directly in terms of Qt, we consider
the intersection of the sets Qt up to iteration t, Ct(s) = Qt(s) \ Ct�1(s) with C0(s) = [h,1] for
safe states s 2 S0 and C0(s) = R otherwise. This choice ensures that set of states that we classify as
safe does not shrink over iterations and is justified by the selection of �t in Sec. 4. Based on these con-
fidence intervals, we define a lower bound, lt(s) = min Ct(s), and upper bound, ut(s) = max Ct(s),
on the values that the safety features r(s) are likely to take based on the data obtained up to iteration t.
Based on these lower bounds, we define

St =

�
s 2 S | 9s0 2 ˆSt�1 : lt(s

0
)� Ld(s, s0) � h

 
(5)

as the set of states that fulfill the safety constraint on r with high probability by using the Lipschitz
constant to generalize beyond the current safe set. Based on this classification, the set of ergodic safe
states is the set of states that achieve the safety threshold and, additionally, fulfill the reachability and
returnability properties discussed in Sec. 2:

ˆSt =

�
s 2 St | s 2 Rreach

(

ˆSt�1) \R
ret

(St, ˆSt�1)
 
. (6)

Expanders. With the set of safe states defined, the task of the algorithm is to identify and explore
states that might expand the set of states that can be classified as safe. We use the uncertainty estimate
in the GP in order to define an optimistic set of expanders,

Gt = {s 2 ˆSt | gt(s) > 0}, (7)

where gt(s) =

��{s0 2 S \ St |ut(s)� Ld(s, s0) � h}
��. The function gt(s) is positive whenever an

optimistic measurement at s, equal to the upper confidence bound, ut(s), would allow us to determine
that a previously unsafe state indeed has value r(s0) above the safety threshold. Intuitively, sampling s
might lead to the expansion of St and thereby ˆSt. The set Gt explicitly considers the expansion of
the safe set as exploration goal, see Fig. 2a for a graphical illustration of the set.

Sampling and shortest safe path. The remaining part of the algorithm is concerned with selecting
safe states to evaluate and finding a safe path in the MDP that leads towards them. The goal is to
visit states that allow the safe set to expand as quickly as possible, so that we do not waste resources
when exploring the MDP. We use the GP posterior uncertainty about the states in Gt in order to make
this choice. At each iteration t, we select as next target sample the state with the highest variance
in Gt, st = argmaxs2Gt

wt(s), where wt(s) = ut(s) � lt(s). This choice is justified, because
while all points in Gt are safe and can potentially enlarge the safe set, based on one noisy sample
we can gain the most information from the state that we are the most uncertain about. This design
choice maximizes the knowledge acquired with every sample but can lead to long paths between
measurements within the safe region. Given st, we use Dijkstra’s algorithm within the set ˆSt in order
to find the shortest safe path to the target from the current state, st�1. Since we require reachability
and returnability for all safe states, such a path is guaranteed to exist. We terminate the algorithm
when we reach the desired accuracy; that is, argmaxs2Gt

wt(s)  ✏.

Action-dependent safety. So far, we have considered safety features that only depend on the
states, r(s). In general, safety can also depend on the actions, r(s, a). In this section, we introduce a
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modified MDP that captures these dependencies without modifying the algorithm. The modified MDP
is equivalent to the original one in terms of dynamics, f(s, a). However, we introduce additional
action-states sa for each action in the original MDP. When we start in a state s and take action a, we
first transition to the corresponding action-state and from there transition to f(s, a) deterministically.
This model is illustrated in Fig. 2b. Safety features that depend on action-states, sa, are equivalent
to action-dependent safety features. The SAFEMDP algorithm can be used on this modified MDP
without modification. See the experiments in Sec. 5 for an example.

4 Theoretical Results

The safety and exploration aspects of the algorithm that we presented in the previous section rely
on the correctness of the confidence intervals Ct(s). In particular, they require that the true value of
the safety feature, r(s), lies within Ct(s) with high probability for all s 2 S and all iterations t > 0.
Furthermore, these confidence intervals have to shrink sufficiently fast over time. The probability
of r taking values within the confidence intervals depends on the scaling factor �t. This scaling
factor trades off conservativeness in the exploration for the probability of unsafe states being visited.
Appropriate selection of �t has been studied by Srinivas et al. [21] in the multi-armed bandit setting.
Even though our framework is different, their setting can be applied to our case. We choose,

�t = 2B + 300�t log

3
(t/�), (8)

where B is the bound on the RKHS norm of the function r(·), � is the probability of visiting
unsafe states, and �t is the maximum mutual information that can be gained about r(·) from t
noisy observations; that is, �t = max|A|t I(r,yA). The information capacity �t has a sublinear
dependence on t for many commonly used kernels [21]. The choice of �t in (8) is justified by the
following Lemma, which follows from [21, Theorem 6]:
Lemma 1. Assume that krk2k  B, and that the noise !t is zero-mean conditioned on the history,
as well as uniformly bounded by � for all t > 0. If �t is chosen as in (8), then, for all t > 0 and
all s 2 S , it holds with probability at least 1� � that r(s) 2 Ct(s).

This Lemma states that, for �t as in (8), the safety function r(s) takes values within the confidence
intervals C(s) with high probability. Now we show that the the safe shortest path problem has always
a solution:
Lemma 2. Assume that S0 6= ; and that for all states, s, s0 2 S0, s 2 R

ret
(S0, {s0}). Then, when

using Algorithm 1 under the assumptions in Theorem 1, for all t > 0 and for all states, s, s0 2 ˆSt,
s 2 R

ret
(St, {s0}).

This lemma states that, given an initial safe set that fulfills the initialization requirements, we can
always find a policy that drives us from any state in ˆSt to any other state in ˆSt without leaving the set
of safe states, St. Lemmas 1 and 2 have a key role in ensuring safety during exploration and, thus, in
our main theoretical result:
Theorem 1. Assume that r(·) is L-Lipschitz continuous and that the assumptions of Lemma 1
hold. Also, assume that S0 6= ;, r(s) � h for all s 2 S0, and that for any two states, s, s0 2 S0,
s0 2 R

ret
(S0, {s}). Choose �t as in (8). Then, with probability at least 1� �, we have r(s) � h for

any s along any state trajectory induced by Algorithm 1 on an MDP with transition function f(s, a).
Moreover, let t⇤ be the smallest integer such that t⇤

�t⇤�t⇤
� C |R0(S0)|

✏2 , with C = 8/ log(1 + ��2
).

Then there exists a t0  t⇤ such that, with probability at least 1� �, R✏(S0) ✓ ˆSt0 ✓ R0(S0).

Theorem 1 states that Algorithm 1 performs safe and complete exploration of the state space; that
is, it explores the maximum reachable safe set without visiting unsafe states. Moreover, for any
desired accuracy ✏ and probability of failure �, the safely reachable region can be found within a
finite number of observations. This bound depends on the information capacity �t, which in turn
depends on the kernel. If the safety feature is allowed to change rapidly across states, the information
capacity will be larger than if the safety feature was smooth. Intuitively, the less prior knowledge
the kernel encodes, the more careful we have to be when exploring the MDP, which requires more
measurements.
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5 Experiments

In this section, we demonstrate Algorithm 1 on an exploration task. We consider the setting in [14],
the exploration of the surface of Mars with a rover. The code for the experiments is available
at http://github.com/befelix/SafeMDP.

For space exploration, communication delays between the rover and the operator on Earth can be
prohibitive. Thus, it is important that the robot can act autonomously and explore the environment
without risking unsafe behavior. For the experiment, we consider the Mars Science Laboratory
(MSL) [11], a rover deployed on Mars. Due to communication delays, the MSL can travel 20 meters
before it can obtain new instructions from an operator. It can climb a maximum slope of 30

� [15,
Sec. 2.1.3]. In our experiments we use digital terrain models of the surface of Mars from the High
Resolution Imaging Science Experiment (HiRISE), which have a resolution of one meter [12].

As opposed to the experiments considered in [14], we do not have to subsample or smoothen the data
in order to achieve good exploration results. This is due to the flexibility of the GP framework that
considers noisy measurements. Therefore, every state in the MDP represents a d ⇥ d square area
with d = 1m, as opposed to d = 20m in [14].

At every state, the agent can take one of four actions: up, down, left, and right. If the rover
attempts to climb a slope that is steeper than 30

�, it fails and may be damaged. Otherwise it moves
deterministically to the desired neighboring state. In this setting, we define safety over state transitions
by using the extension introduced in Sec. 3. The safety feature over the transition from s to s0 is defined
in terms of height difference between the two states, H(s)�H(s0). Given the maximum slope of
↵ = 30

� that the rover can climb, the safety threshold is set at a conservative h = �d tan(25

�
). This

encodes that it is unsafe for the robot to climb hills that are too steep. In particular, while the MDP
dynamics assume that Mars is flat and every state can be reached, the safety constraint depends on the
a priori unknown heights. Therefore, under the prior belief, it is unknown which transitions are safe.

We model the height distribution, H(s), as a GP with a Matérn kernel with ⌫ = 5/2. Due to the
limitation on the grid resolution, tuning of the hyperparameters is necessary to achieve both safety
and satisfactory exploration results. With a finer resolution, more cautious hyperparameters would
also be able to generalize to neighbouring states. The lengthscales are set to 14.5 m and the prior
standard deviation of heights is 10 m. We assume a noise standard deviation of 0.075 m. Since the
safety feature of each state transition is a linear combination of heights, the GP model of the heights
induces a GP model over the differences of heights, which we use to classify whether state transitions
fulfill the safety constraint. In particular, the safety depends on the direction of travel, that is, going
downhill is possible, while going uphill might be unsafe.

Following the recommendations in [22], in our experiments we use the GP confidence intervals
Qt(s) directly to determine the safe set St. As a result, the Lipschitz constant is only used to
determine expanders in G. Guaranteeing safe exploration with high probability over multiple steps
leads to conservative behavior, as every step beyond the set that is known to be safe decreases the
‘probability budget’ for failure. In order to demonstrate that safety can be achieved empirically
using less conservative parameters than those suggested by Theorem 1, we fix �t to a constant
value, �t = 2, 8t � 0. This choice aims to guarantee safety per iteration rather than jointly over all
the iterations. The same assumption is used in [14].

We compare our algorithm to several baselines. The first one considers both the safety threshold and
the ergodicity requirements but neglects the expanders. In this setting, the agent samples the most
uncertain safe state transaction, which corresponds to the safe Bayesian optimization framework
in [20]. We expect the exploration to be safe, but less efficient than our approach. The second baseline
considers the safety threshold, but does not consider ergodicity requirements. In this setting, we
expect the rover’s behavior to fulfill the safety constraint and to never attempt to climb steep slopes,
but it may get stuck in states without safe actions. The third method uses the unconstrained Bayesian
optimization framework in order to explore new states, without safety requirements. In this setting,
the agent tries to obtain measurements from the most uncertain state transition over the entire space,
rather than restricting itself to the safe set. In this case, the rover can easily get stuck and may also
incur failures by attempting to climb steep slopes. Last, we consider a random exploration strategy,
which is similar to the ✏-greedy exploration strategies that are widely used in reinforcement learning.
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Random 0.98 % 219

(f) Performance metrics.

Figure 2: Comparison of different exploration schemes. The background color shows the real altitude
of the terrain. All algorithms are run for 525 iterations, or until the first unsafe action is attempted.
The saturated color indicates the region that each strategy is able to explore. The baselines get stuck
in the crater in the bottom-right corner or fail to explore, while Algorithm 1 manages to safely explore
the unknown environment. See the statistics in Fig. 2f.

We compare these baselines over an 120 by 70 meters area at �30.6� latitude and 202.2� longitude.
We set the accuracy ✏ = �n�. The resulting exploration behaviors can be seen in Fig. 2. The rover
starts in the center-top part of the plot, a relatively planar area. In the top-right corner there is a hill
that the rover cannot climb, while in the bottom-right corner there is a crater that, once entered, the
rover cannot leave. The safe behavior that we expect is to explore the planar area, without moving
into the crater or attempting to climb the hill. We run all algorithms for 525 iterations or until the
first unsafe action is attempted. It can be seen in Fig. 2e that our method explores the safe area
that surrounds the crater, without attempting to move inside. While some state-action pairs closer
to the crater are also safe, the GP model would require more data to classify them as safe with the
necessary confidence. In contrast, the baselines perform significantly worse. The baseline that does
not ensure the ability to return to the safe set (non-ergodic) can be seen in Fig. 2a. It does not explore
the area, because it quickly reaches a state without a safe path to the next target sample. Our approach
avoids these situations explicitly. The unsafe exploration baseline in Fig. 2b considers ergodicity,
but concludes that every state is reachable according to the MDP model. Consequently, it follows
a path that crosses the boundary of the crater and eventually evaluates an unsafe action. Overall,
it is not enough to consider only ergodicity or only safety, in order to solve the safe exploration
problem. The random exploration in Fig. 2c attempts an unsafe action after some exploration. In
contrast, Algorithm 1 manages to safely explore a large part of the unknown environment. Running
the algorithm without considering expanders leads to the behavior in Fig. 2d, which is safe, but only
manages to explore a small subset of the safely reachable area within the same number of iterations
in which Algorithm 1 explores over 80% of it. The results are summarized in Table 2f.

6 Conclusion

We presented SAFEMDP, an algorithm to safely explore a priori unknown environments. We used
a Gaussian process to model the safety constraints, which allows the algorithm to reason about the
safety of state-action pairs before visiting them. An important aspect of the algorithm is that it
considers the transition dynamics of the MDP in order to ensure that there is a safe return route before
visiting states. We proved that the algorithm is capable of exploring the full safely reachable region
with few measurements, and demonstrated its practicality and performance in experiments.
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