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Abstract

Non-negative matrix factorization is a popular tool for decomposing data into
feature and weight matrices under non-negativity constraints. It enjoys practical
success but is poorly understood theoretically. This paper proposes an algorithm
that alternates between decoding the weights and updating the features, and shows
that assuming a generative model of the data, it provably recovers the ground-
truth under fairly mild conditions. In particular, its only essential requirement on
features is linear independence. Furthermore, the algorithm uses ReLU to exploit
the non-negativity for decoding the weights, and thus can tolerate adversarial noise
that can potentially be as large as the signal, and can tolerate unbiased noise much
larger than the signal. The analysis relies on a carefully designed coupling between
two potential functions, which we believe is of independent interest.

1 Introduction

In this paper, we study the problem of non-negative matrix factorization (NMF), where given a matrix
Y € R™*¥ | the goal to find a matrix A € R™*" and a non-negative matrix X € R™*¥ such
that' Y ~ AXE] A is often referred to as feature matrix and X referred as weights. NMF has been
extensively used in extracting a parts representation of the data (e.g., [LS97, [LS99, [LSO1]). It has
been shown that the non-negativity constraint on the coefficients forcing features to combine, but not
cancel out, can lead to much more interpretable features and improved downstream performance of
the learned features.

Despite all the practical success, however, this problem is poorly understood theoretically, with only
few provable guarantees known. Moreover, many of the theoretical algorithms are based on heavy
tools from algebraic geometry (e.g., [AGKMI2]) or tensors (e.g. [AKF™12]]), which are still not
as widely used in practice primarily because of computational feasibility issues or sensitivity to
assumptions on A and X. Some others depend on specific structure of the feature matrix, such as
separability [AGKM12] or similar properties [BGKP16].

A natural family of algorithms for NMF alternate between decoding the weights and updating the
features. More precisely, in the decoding step, the algorithm represents the data as a non-negative
combination of the current set of features; in the updating step, it updates the features using the
decoded representations. This meta-algorithm is popular in practice due to ease of implementation,
computational efficiency, and empirical quality of the recovered features. However, even less
theoretical analysis exists for such algorithms.

'In the usual formulation of the problem, A is also assumed to be non-negative, which we will not require in
this paper.
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This paper proposes an algorithm in the above framework with provable recovery guarantees. To
be specific, the data is assumed to come from a generative model y = A*x* + v. Here, A* is the
ground-truth feature matrix, z* are the non-negative ground-truth weights generated from an unknown
distribution, and v is the noise. Our algorithm can provably recover A* under mild conditions, even
in the presence of large adversarial noise.

Overview of main results. The existing theoretical results on NMF can be roughly split into two
categories. In the first category, they make heavy structural assumptions on the feature matrix A*
such as separability (JAGM12]) or allowing running time exponential in n ( [AGKM12])). In the
second one, they impose strict distributional assumptions on z* (JAKF™12]]), where the methods are
usually based on the method of moments and tensor decompositions and have poor tolerance to noise,
which is very important in practice.

In this paper, we present a very simple and natural alternating update algorithm that achieves the best
of both worlds. First, we have minimal assumptions on the feature matrix A*: the only essential
condition is linear independence of the features. Second, it is robust to adversarial noise v which
in some parameter regimes be potentially be on the same order as the signal A*z*, and is robust to
unbiased noise potentially even higher than the signal by a factor of O(y/n). The algorithm does not
require knowing the distribution of x*, and allows a fairly wide family of interesting distributions.
We get this at a rather small cost of a mild “warm start”. Namely, we initialize each of the features to
be “correlated” with the ground-truth features. This type of initialization is often used in practice as
well, for example in LDA-c, the most popular software for topic modeling ([Ida16l]).

A major feature of our algorithm is the significant robustness to noise. In the presence of adversarial
noise on each entry of y up to level C,,, the noise level ||v||; can be in the same order as the signal
A*x*. Still, our algorithm is able to output a matrix A such that the final ||A* — A|l; < O(Jjv|1) in
the order of the noise in one data point. If the noise is unbiased (i.e., E[v|z*] = 0), the noise level
lv]|1 can be Q(y/n) times larger than the signal A*z*, while we can still guarantee ||A* — A||; <
O (||7]l1+/n) - so our algorithm is not only tolerant to noise, but also has very strong denoising effect.
Note that even for the unbiased case the noise can potentially be correlated with the ground-truth in
very complicated manner, and also, all our results are obtained only requiring the columns of A* are
independent.

Technical contribution. The success of our algorithm crucially relies on exploiting the non-negativity
of z* by a ReLU thresholding step during the decoding procedure. Similar techniques have been
considered in prior works on matrix factorization, however to the best of our knowledge, the analysis
(e.g., [AGMM13]) requires that the decodings are correct in all the intermediate iterations, in the
sense that the supports of z* are recovered with no error. Indeed, we cannot hope for a similar
guarantee in our setting, since we consider adversarial noise that could potentially be the same order
as the signal. Our major technical contribution is a way to deal with the erroneous decoding through
out all the intermediate iterations. We achieve this by a coupling between two potential functions
that capture different aspects of the working matrix A. While analyzing iterative algorithms like
alternating minimization or gradient descent in non-convex settings is a popular topic in recent
years, the proof usually proceeds by showing that the updates are approximately performing gradient
descent on an objective with some local or hidden convex structure. Our technique diverges from the
common proof strategy, and we believe is interesting in its own right.

Organization. After reviewing related work, we define the problem in Section [3|and describe our
main algorithm in Section[d To emphasize the key ideas, we first present the results and the proof
sketch for a simplified yet still interesting case in Section[5] and then present the results under much
more general assumptions in Section[6] The complete proof is provided in the appendix.

2 Related work

Non-negative matrix factorization relates to several different topics in machine learning.

Non-negative matrix factorization. The area of non-negative matrix factorization (NMF) has a rich
empirical history, starting with the practical algorithm of [LS97].On the theoretical side, [AGKM12]]
provides a fixed-parameter tractable algorithm for NMF, which solves algebraic equations and thus has
poor noise tolerance. [AGKM 2] also studies NMF under separability assumptions about the features.



[BGKP16] studies NMF under heavy noise, but also needs assumptions related to separability, such
as the existence of dominant features. Also, their noise model is different from ours.

Topic modeling. A closely related problem to NMF is topic modeling, a common generative model
for textual data [BNJO3| Blel2]]. Usually, ||z*||; = 1 while there also exist work that assume
x¥ € [0, 1] and are independent [ZX12]]. A popular heuristic in practice for learning A* is variational
inference, which can be interpreted as alternating minimization in KL divergence norm. On the
theory front, there is a sequence of works by based on either spectral or combinatorial approaches,
which need certain “non-overlapping” assumptions on the topics. For example, [AGH™ 13] assume
the topic-word matrix contains “anchor words”: words which appear in a single topic. Most related
is the work of [AR15]] who analyze a version of the variational inference updates when documents
are long. However, they require strong assumptions on both the warm start, and the amount of
“non-overlapping” of the topics in the topic-word matrix.

ICA. Our generative model for z* will assume the coordinates are independent, therefore our problem
can be viewed as a non-negative variant of ICA with high levels of noise. Results here typically are
not robust to noise, with the exception of [AGMS12] that tolerates Gaussian noise. However, to best
of our knowledge, no result in this setting is provably robust to adversarial noise.

Non-convex optimization. The framework of having a “decoding” for the samples, along with
performing an update for the model parameters has proven successful for dictionary learning as
well. The original empirical work proposing such an algorithm (in fact, it suggested that the V1
layer processes visual signals in the same manner) was due to [OF97]. Even more, similar families
of algorithms based on “decoding” and gradient-descent are believed to be neurally plausible as
mechanisms for a variety of tasks like clustering, dimension-reduction, NMF, etc ([PC15 [PC14]). A
theoretical analysis came latter for dictionary learning due to [AGMM15] under the assumption that
the columns of A* are incoherent. The technique is not directly applicable to our case, as we don’t
wish to have any assumptions on the matrix A*. For instance, if A* is non-negative and columns
with [; norm 1, incoherence effectively means the the columns of A* have very small overlap.

3 Problem definition and assumptions

Given a matrix Y € R™* the goal of non-negative matrix factorization (NMF) is to find a matrix
A € R™*™ and a non-negative matrix X € R™*N so that Y ~ AX. The columns of Y are
called data points, those of A are features, and those of X are weights. We note that in the original
NMF, A is also assumed to be non-negative, which is not required here. We also note that typically
m > n, i.e., the features are a few representative components in the data space. This is different
from dictionary learning where overcompleteness is often assumed.

The problem in the worst case is NP-hard [AGKMI12], so some assumptions are needed to design
provable efficient algorithms. In this paper, we consider a generative model for the data point

y=A"z"+v (1)

where A* is the ground-truth feature matrix, x* is the ground-truth non-negative weight from some
unknown distribution, and v is the noise. Our focus is to recover A* given access to the data
distribution, assuming some properties of A*, z*, and v. To describe our assumptions, we let [M}’
denote the i-th row of a matrix M, [M]; its ¢-th column, M ; its (4, j)-th entry. Denote its column
norm, row norm, and symmetrized norm as [[ M|, = max; >, [M, ;|, [ M|, = max; 3, [M; ;],
and [|MI|, = max {[M] M|, }, respectively.

We assume the following hold for parameters C1, co, Co, £, C,, to be determined in our theorems.

(A1) The columns of A* are linearly independent.
(A2) Foralli € [n], 2} € [0,1], E[z}] < < and 2 < E[(2})?] < <2, and 2}’ are independent.

(A3) The initialization A(®) = A*(X©) + E©) + N©), where X is diagonal, E(?) is off-
diagonal, and

2O - (1)L HE(O)
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We consider two noise models.



(N1) Adversarial noise: only assume that max; |v;| < C,, almost surely.

(N2) Unbiased noise: max; |v;| < C, almost surely, and E[v|z*] = 0.

Remarks. We make several remarks about each of the assumptions.

(A1) is the assumption about A *. It only requires the columns of A* to be linear independent, which
is very mild and needed to ensure identifiability. Otherwise, for instance, if (A*)s = A;(A*); +
A2(A*)q, it is impossible to distinguish between the case when % = 1 and the case when z5 = \;
and x7 = Ag. In particular, we do not restrict the feature matrix to be non-negative, which is more
general than the traditional NMF and is potentially useful for many applications. We also do not
make incoherence or anchor word assumptions that are typical in related work.

(A2) is the assumption on x*. First, the coordinates are non-negative and bounded by 1; this is simply
a matter of scaling. Second, the assumption on the moments requires that, roughly speaking, each
feature should appear with reasonable probability. This is expected: if the occurrences of the features
are extremely unbalanced, then it will be difficult to recover the rare ones. The third requirement
on independence is motivated by that the features should be different so that their occurrences are
not correlated. Here we do not stick to a specific distribution, since the moment conditions are more
general, and highlight the essential properties our algorithm needs. Example distributions satisfying
our assumptions will be discussed later.

The warm start required by (A3) means that each feature AZ(-O) has a large fraction of the ground-
truth feature A} and a small fraction of the other features, plus some noise outside the span of the
ground-truth features. We emphasize that N(©) is the component of A (%) outside the column space
of A*, and is not the difference between A(®) and A*. This requirement is typically achieved in
practice by setting the columns of A (%) to reasonable “pure” data points that contains one major
feature and a small fraction of some other features (e.g. [ldal6,[AR15]); in this initialization, it is
generally believed that N(®) = 0. But we state our theorems to allow some noise N(?) for robustness
in the initialization.

The adversarial noise model (N1) is very general, only imposing an upper bound on the entry-wise
noise level. Thus, v can be correlated with =* in some complicated unknown way. (N2) additionally
requires it to be zero mean, which is commonly assumed and will be exploited by our algorithm to
tolerate larger noise.

4 Main algorithm

Algorithm 1 Purification

Input: initialization A O threshold a, step size 7, scaling factor r, sample size NN, iterations T’
1: fort =0,1,2,...., T —1do
2:  Draw examples y1,...,yn.
3. (Decode) Compute AT, the pseudo-inverse of A®) with minimum ||(A)T| .
Set x = ¢ (A'y) for each example y. /¢, is ReLU activation; see (2)) for the
definition
4:  (Update) Update the feature matrix
AT = (1 =) AD 4B [(y —y/) (@ — 2')T]
where I is over independent uniform y, 3/ from {y1,...,yn}, and 2, z’ are their decodings.
Output: A =A™

Our main algorithm is presented in Algorithm[I] It keeps a working feature matrix and operates in
iterations. In each iteration, it first compute the weights for a batch of N examples (decoding), and
then uses the computed weights to update the feature matrix (updating).

The decoding is simply multiplying the example by the pseudo-inverse of the current feature matrix
and then passing it through the rectified linear unit (ReLU) ¢, with offset a. The pseudo-inverse
with minimum infinity norm is used so as to maximize the robustness to noise (see the theorems).
The ReL.U function ¢, operates element-wisely on the input vector v, and for an element v;, it is



defined as
¢ (v;) = max {v; — a,0} . 2)

To get an intuition why the decoding makes sense, suppose the current feature matrix is the ground-
truth. Then Aty = ATA*z* + ATy = 2* + Afv. So we would like to use a small At and use
threshold to remove the noise term.

In the encoding step, the algorithm move the feature matrix along the direction E [(y — y/)(z — 2/) " ].
To see intuitively why this is a good direction, note that when the decoding is perfect and there is no
noise, E [(y — y/)(z — 2’) "] = A*, and thus it is moving towards the ground-truth. Without those
ideal conditions, we need to choose a proper step size, which is tuned by the parameters 1 and r.

5 Results for a simplified case

Our intuitions can be demonstrated in a simplified setting with (A1), (A2’), (A3), and (N1), where

(A2’) x}’s are independent, and =} = 1 with probability s/n and 0 otherwise for a constant s > 0.

Furthermore, let N(®) = (. This is a special case of our general assumptions, with C; = ¢y = Cy = s
where s is the parameter in (A2”). It is still an interesting setting; as far as we know, there is no
existing guarantee of alternating type algorithms for it.

To present our results, we let (A*)T denote the matrix satisfying (A*)" A* = I; if there are multiple
such matrices we let it denote the one with minimum ||(A*)T||.

Theorem 1 (Simplified case, adversarial noise). There exists a absolute constant G such that when

Assumption (A1)(A2°)(A3) and (N1) are satisfied with | = 1/10, C,, < s {m nﬁ(cA*)TH 7 for

some 0 < ¢ < 1, and N = 0, then there exist o,n,r such that for every 0 < €,§ < 1 and
N = poly(n,m,1/e,1/0) the following holds with probability at least 1 — 4.

After T = O (hl %) iterations, Algorithm |I| outputs a solution A = A*(X + E) + N where
3 = (1 —0)Lis diagonal, |E||; < € + cis off-diagonal, and |N||; < c.

Remarks. Consequently, when ||A*||, = 1, we can do normalization A; = A;/||A;

1> and the
normalized output A satisfies

||A — A% <e+2ec
So under mild conditions and with proper parameters, our algorithm recovers the ground-truth in a

geometric rate. It can achieve arbitrary small recovery error in the noiseless setting, and achieve error
up to the noise limit even with adversarial noise whose level is comparable to the signal.

The condition on ¢ means that a constant warm start is sufficient for our algorithm to converge, which
is much better than previous work such as [[AR15]]. Indeed, in that work, the ¢ needs to even depend
on the dynamic range of the entries of A* which is problematic in practice.

It is shown that with large adversarial noise, the algorithm can still recover the features up to the

noise limit. When m > n|| (A*)" ||, each data point has adversarial noise with ¢; norm as large
as ||v||1 = Cu,m = Q(c), which is in the same order as the signal || A*z*||; = O(1). Our algorithm
still works in this regime. Furthermore, the final error ||A — A*||; is O(c), in the same order as the
adversarial noise in one data point.

Note the appearance of || (A*)T || is not surprising. The case when the columns are the canonical
unit vectors for instance, which corresponds to || (A" || = 1, is expected to be easier than the
case when the columns are nearly the same, which corresponds to large || (A*)T Iloo-

A similar theorem holds for the unbiased noise model.

Theorem 2 (Simplified case, unbiased noise). If Assumption (A1)(A2°)(A3) and (N2) are satisfied

with C, = gc\/ﬁ* :
[ [ (AT

guarantee in holds.

T and the other parameters set as in Theorem |I| then the same



Remarks. With unbiased noise which is commonly assumed in many applications, the algorithm can
tolerate noise level y/n larger than the adversarial case. When m > n|| (A*)T ||, each data point
has adversarial noise with ¢ norm as large as |||y = C,m = Q(cy/n), which can be Q(y/n) times
larger than the signal ||A*x*||; = O(1). The algorithm can recover the ground-truth in this heavy
noise regime. Furthermore, the final error ||A — A*||, is O (||v||1/+/n), which is only O(1/y/n)
fraction of the noise in one data point. This is very strong denoising effect and a bit counter-intuitive.
It is possible since we exploit the average of the noise for cancellation, and also use thresholding to
remove noise spread out in the coordinates.

5.1 Analysis: intuition

A natural approach typically employed to analyze algorithms for non-convex problems is to define a
function on the intermediate solution A and the ground-truth A* measuring their distance and then
show that the function decreases at each step. However, a single potential function will not be enough
in our case, as we argue below, so we introduce a novel framework of maintaining two potential
functions which capture different aspects of the intermediate solutions.

Let us denote the intermediate solution and the update as (omitting the superscript (t))
A=A"(Z+E)+N, E[y-y)(z-2)]=A"E+E)+N,

where X and 3 are diagonal, E and E are off-diagonal, and N and N are the terms outside the span
of A* which is caused by the noise. To cleanly illustrate the intuition behind ReLU and the coupled
potential functions, we focus on the noiseless case and assume that we have infinite samples.

Since A; = X, ;A +Z#i E; A}, if the ratio between ||E; ||, = Z#i |E, ;| and 3; ; gets smaller,
then the algorithm is making progress; if the ratio is large at the end, a normalization of A; gives a
good approximation of A7. So it suffices to show that 3; ; is always about a constant while ||E;||,
decreases at each iteration. We will focus on E and consider the update rule in more detail to argue
this. After some calculation, we have

E « (1-n)E+ ik, E =E[(z" ())& )], ©
where z, ' are the decoding for 2*, (2’)* respectively:

=0 (Z+E)'2%), ' =¢o (E+E)"H(2)"). 4)
To see why the ReLLU function matters, consider the case when we do not use it.

E=E@" - (2)7) [ATA* @ — (@))] =E [ - (@)) @ - @)) ] [(E+B)Y
x[(Z+E)] &2 ' -n'Ex

where we used Taylor expansion and the fact that E [(2* — (2/)*)(2z* — (2/)*) "] is a scaling of
identity. Hence, if we think of 3 as approximately I and take an appropriate r, the update to the
matrix E is approximately E «+ E — nET. Since we do not have control over the signs of E

throughout the iterations, the problematic case is when the entries of ET and E roughly match in
signs, which would lead to the entries of E increasing.

Now we consider the decoding to see why ReLLU is important. Ignoring the higher order terms and
regarding ¥ = I, we have

T=¢o (E+E) '2*) m o (T '2* — Z'EZ'2") m ¢, (2 — Ez¥). (3)

The problematic term is Ex*. These errors when summed up will be comparable or even larger
than the signals, and the algorithm will fail. However, since the signals are non-negative and most
coordinates with errors only have small values, thresholding with ReLU properly can remove those

errors while keeping a large fraction of the signals. This leads to large X; ; and small E; ;’s, and then
we can choose an r such that E; ;’s keep decreasing while X, ;’s stay in a certain range.

To get a quantitative bound, we divide E into its positive part E and its negative part E_:

[E]; ; = max{E; ;,0}, [E_]; ; = max{-E; ;,0}. (6)

]



The reason to do so is the following: when E; ; is negative, by the Taylor expansion approxima-

tion, [(E + E)*I:c*]i will tend to be more positive and will not be thresholded most of the time.
Therefore, E; ; will turn more positive at next iteration. On the other hand, when E; ; is positive,

[(E + E)_lx*}i will tend to be more negative and zeroed out by the threshold function. Therefore,
E; ; will not be more negative at next iteration. We will show for positive and negative parts of E:

postive 1)« (1—p)positive® +(n)negative® , negative "™V «— (1—n)negative® +(en)positive ")

for a small ¢ < 1. Due to €, we can couple the two parts so that a weighted average of them will
decrease, which implies that ||E|; is small at the end. This leads to our coupled potential function]

5.2 Analysis: proof sketch

Here we describe a proof sketch for the simplified case while the complete proof for the general case
is presented in the appendix. The lemmas here are direct corollaries of those in the appendix.

One iteration. We focus on one update and omit the superscript (¢). Recall the definitions of E, X
and N in 1' and E, ¥ and N in ll Our goal is to derive lower and upper bounds for E, ¥

and N, assuming that X3, ; falls into some range around 1, while E and N are small. This will allow
doing induction on them.

First, begin with the decoding. Some calculation shows that, the decoding for y = A*z* 4+ v is

&= ¢o(Zz*+¢), whereZ = (Z+E) ", ¢ = —ATNZz* + Afw. (7)

Now, we can present our key lemmas bounding E, ENJ, and N.

Lemma 3 (Simplified bound on E, informal). (1) ifZ;; <0, then

E;i| <0 (% (1Zijl +0),
<O (E1Ziy)) -

(2)ifZij; >0, then —O (5% + £|Z; 5| + 5|2 ;]) < ’EJ

Note that Z ~ X! — X7'EX~!, s0 Z; ; < 0 corresponds roughly to E; ; > 0. In this case,

the upper bound on |E; ;| is very small and thus |E; ;| decreases, as described in the intuition.
What is most interesting is the case when Z; ; > 0 (roughly E; ; < 0). The upper bound is much
larger, corresponding to the intuition that negative E; ; can contribute a large positive value to E; ;.
Fortunately, the lower bounds are of much smaller absolute value, which allows us to show that a
potential function that couples Case (1) and Case (2) in Lemma[3|actually decreases; see the induction
below.

Lemma 4 (Simplified bound on 3, informal). f]“ > Q(X}Zi1 —a)/n.
< 0(C,/n).

Lemma 5 (Simplified bound on N adversarial noise, informal). ‘NZ j

Induction by iterations. We now show how to use the three lemmas to prove the theorem for the
adversarial noise, and that for the unbiased noise is similar.

Let a; := HE@’ and b, := HE(_t) , and choose 1 = ¢/6. We begin with proving the following

three claims by induction on ¢: at the beginning of iteration ¢,

1) (1-01=<x®

2 HE(t)HS < 1/8,andif t > 0, then a; + Bb; < (1 — %n) (at—1 + Bbi—1) + nh, for some
B € (1,8), and some small value h,

3) IN®| < ¢/10.
The most interesting part is the second claim. At a high level, by Lemma[3] we can show that
3 24 1
a1 S (1= gzm o+ Tnbe + nh, beyr < (1— 55" bt + Too"ot + nh.

’Note that since intuitively, E; ; gets affected by E; ; after an update, if we have a row which contains
negative entries, it is possible that ||A; — A |1 increases. So we cannot simply use max; [[A; — A1 asa
potential function.



Notice that the contribution of b, to a,; is quite large (due to the larger upper bound in Case (2)
in Lemma E]), but the other terms are much nicer, such as the small contribution of a; to b.11. This
allows to choose a 5 € (1,8) so that a; 1 + 8bsy1 leads to the desired recurrence in the second
claim. In other words, a;y1 + 8b;+1 is our potential function which decreases at each iteration up to
the level h. The other claims can also be proved by the corresponding lemmas. Then the theorem
follows from the induction claims.

6 More general results

More general weight distributions. Our argument holds under more general assumptions on z*.

Theorem 6 (Adversarial noise). There exists an absolute constant G such that when Assumption (A0)-

. S 3 2 c3Gc c3G¢
(A3) and (N1) are satisfied with | = 1/10, Cy < 2¢9, C}? < Gein, C, < {Cizm, Cf"H(QA*)THm

for0 < c <1, and HN(O) HOO < 05”(0279;“ then there exist o, m, r such that for every 0 < €,§ < 1
and N = poly(n,m,1/e,1/0), with probability at least 1 — 0 the following holds.

After T = O (ln %) iterations, Algorithm |I| outputs a solution A = A*(X + E) + N where
3 = (1 — £)1is diagonal, |E||; < €+ ¢/2 is off-diagonal, and |N||; < ¢/2.

Theorem 7 (Unbiased noise). If Assumption (A0)-(A3) and (N2) are satisfied with C, =
ngﬁ

Cy max{m,n”(A*)Jf”oc}

holds.

and the other parameters set as in Theorem |6} then the same guarantee

The conditions on C', ca, Cy intuitively mean that each feature needs to appear with reasonable
probability. Co < 2c¢, means that their proportions are reasonably balanced. This may be a mild
restriction for some applications, and additionally we propose a pre-processing step that can relax
this in the next subsection. The conditions allow a rather general family of distributions, so we point
out an important special case to provide a more concrete sense of the parameters. For example, for
the uniform independent distribution considered in the simplified case, we can actually allow s to be
much larger than a constant; our algorithm just requires s < Gn for a fixed constant G. So it works
for uniform sparse distributions even when the sparsity is linear, which is an order of magnitude larger
than in the dictionary learning regime. Furthermore, the distributions of = can be very different,
since we only require C3 = O(c3n). Moreover, all these can be handled without specific structural
assumptions on A*.

More general proportions. A mild restriction in Theorem [6] and [7] is that C'; < 2¢,, that is,
maX;e ] E[(z})?] <2 min;e [y, E[(2})?]. To satisfy this, we propose a preprocessing algorithm for
balancing E[(z})?]. The idea is quite simple: instead of solving Y ~ A*X, we could also solve
Y ~ [A*D][(D)~X] for a positive diagonal matrix D, where E[(x})?]/D?2, is with in a factor of
2 from each other. We show in the appendix that this can be done under assumptions as the above
theorems, and additionally ¥ < (1 + ¢)I and E(®) > entry-wise. After balancing, one can use
Algorithm [T]on the new ground-truth matrix [A*D] to get the final result.

7 Conclusion

A simple and natural algorithm that alternates between decoding and updating is proposed for
non-negative matrix factorization and theoretical guarantees are provided. The algorithm provably
recovers a feature matrix close to the ground-truth and is robust to noise. Our analysis provides
insights on the effect of the ReLU units in the presence of the non-negativity constraints, and the
resulting interesting dynamics of the convergence.
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