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Abstract

We study linear regression and classification in a setting where the learning algo-
rithm is allowed to access only a limited number of attributes per example, known
as the limited attribute observation model. In this well-studied model, we provide
the first lower bounds giving a limit on the precision attainable by any algorithm for
several variants of regression, notably linear regression with the absolute loss and
the squared loss, as well as for classification with the hinge loss. We complement
these lower bounds with a general purpose algorithm that gives an upper bound on
the achievable precision limit in the setting of learning with missing data.

1 Introduction

The primary objective of linear regression is to determine the relationships between multiple variables
and how they may affect a certain outcome. A standard example is that of medical diagnosis, whereby
the data gathered for a given patient provides information about their susceptibility to certain illnesses.
A major drawback to this process is the work necessary to collect the data, as it requires running
numerous tests for each person, some of which may be discomforting. In such cases it may be
necessary to impose limitations on the amount of data available for each example. For medical
diagnosis, this might mean having each patient only undergo a small subset of tests.

A formal setting for capturing regression and learning with limits on the number of attribute observa-
tions is known as the Limited Attribute Observation (LAO) setting, first introduced by Ben-David
and Dichterman [1]. For example, in a regression problem, the learner has access to a distribution
D over data (x, y) 2 Rd ⇥ R, and fits the best (generalized) linear model according to a certain loss
function, i.e., it approximately solves the optimization problem

min
w:kwkp B

LD (w), LD (w) = E(x,y)⇠D
f
`(w>x � y)

g
.

In the LAO setting, the learner does not have complete access to the examples x, which the reader
may think of as attributes of a certain patient. Rather, the learner can observe at most a fixed number
of these attributes, denoted k  d. If k = d, this is the standard regression problem which can be
solved to arbitrary precision.

The main question we address: is it possible to compute an arbitrarily accurate solution if the number
of observations per example, k, is strictly less than d? More formally, given any " > 0, can one
compute a vector w for which

LD (w)  min
kw⇤ kp B

LD (w⇤) + ".

Efficient algorithms for regression with squared loss when k < d have been shown in previous work
[2], and the sample complexity bounds have since been tightened [6, 8]. However, similar results for
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other common loss functions such as e.g. absolute loss have only been shown by relaxing the hard
limit of k attributes per example [3, 6].

In this paper we show, for the first time, that in fact this problem cannot be solved in general. Our
main result shows that even for regression with the absolute loss function, for any k  d � 1, there
is an information-theoretic lower bound on the error attainable by any algorithm. That is, there is
some "0 > 0 for which an "0-optimal solution cannot be determined, irrespective of the number
of examples the learner sees. Formally, with constant probability, any algorithm returning a vector
w 2 Rd must satisfy

LD (w) > min
kw⇤ kp B

LD (w⇤) + "0.

We further show that this ultimate achievable precision parameter is bounded from below by a
polynomial in the dimension, i.e., "0 = ⌦(d�3/2).

Additionally, for the basic setting of Ridge regression (with the squared loss), we give a tight lower
bound for the LAO setting. Cesa-Bianchi et al. [2] provided the first efficient algorithm for this
setting with sample complexity of O(d2/k"2) for " error. Hazan and Koren [6] improved upon this
result and gave a tight sample complexity of O(d/k"2) to achieve " error. In both cases, however, the
algorithms only work when k � 2. We complete the picture and show that k � 2 attributes are in
fact necessary to obtain arbitrarily low error. That is, with only one attribute per example, there is an
information-theoretic limit on the accuracy attainable by any regression algorithm. We remark that a
similar impossibility result was proven by Cesa-Bianchi et al. [3] in the related setting of learning
with noisy examples.

Classification may be similarly cast in the LAO setting. For classification with the hinge loss, namely
soft-margin SVM, we give a related lower bound, showing that it is impossible to achieve arbitrarily
low error if the number of observed attributes is bounded by k  d � 1. However, unlike our lower
bound for regression, the lower bound we prove for classification scales exponentially with the
dimension. Although Hazan et al. [7] showed how classification may be done with missing data, their
work includes low rank assumptions and so it is not in contradiction with the lower bounds presented
here.

Similar to the LAO setting, the setting of learning with missing data [9, 4, 10, 11] presents the learner
with examples where the attributes are randomly observed. Since the missing data setting is at least
as difficult as the LAO setting, our lower bounds extend to this case as well.

We complement these lower bounds with a general purpose algorithm for regression and classification
with missing data that, given a sufficient number of samples, can achieve an error of O(1/

p
d). This

result leaves only a small polynomial gap compared to the information-theoretic lower bound that we
prove.

2 Setup and Statement of Results

The general framework of linear regression involves a set of instances, each of the form (x, y) where
x 2 Rd is the attribute vector and y 2 R is the corresponding target value. Under the typical statistical
learning framework [5], each (x, y) pair is drawn from a joint distribution D over Rd ⇥ R. The
learner’s objective is to determine some linear predictor w such that w>x does well in predicting y.
The quality of prediction is measured according to a loss function ` : R 7! R. Two commonly used
loss functions for regression are the squared loss `(w>x � y) = 1

2 (w>x � y)2 and the absolute loss
`(w>x � y) = |w>x � y |. Since our examples are drawn from some arbitrary distribution D, it is best
to consider the expected loss

LD (w) = E(x,y)⇠D
⇥
`(w>x � y)

⇤
.

The learner’s goal then is to determine a regressor w that minimizes the expected loss LD (w).
To avoid overfitting, a regularization term is typically added, which up to some constant factor is
equivalent to

min
w2Rd

LD (w) s.t. kwkp  B

for some regularization parameter B > 0, where k · kp is the standard `p norm, p � 1. Two common
variants of regression are Ridge regression (p = 2 with squared loss) and Lasso regression (p = 1
with squared loss).
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The framework for classification is nearly identical to that of linear regression. The main distinction
comes from a different meaning of y 2 R, namely that y acts as a label for the corresponding example.
The loss function also changes when learning a classifier, and in this paper we are interested in the
hinge loss `(y · w>x) = max{0, 1 � y · w>x}. The overall goal of the learner, however, remains the
same: namely, to determine a classifier w such that LD (w) is minimized. Throughout the paper, we
let w⇤ denote the minimizer of LD (w).

2.1 Main Results

As a first step, for Lasso and Ridge regressions, we show that one always needs to observe at least two
attributes to be able to learn a regressor to arbitrary precision. This is given formally in Theorem 1.

Theorem 1. Let 0 < " < 1
32 and let ` be the squared loss. Then there exists a distribution D over

{x : | |x| |1  1} ⇥ [�1, 1] such that kw⇤k1  2, and any regression algorithm that can observe at
most one attribute of each training example of a training set S cannot output a regressor ŵ such that
ES[LD (ŵ)] < LD (w⇤) + ".
Corollary 2. Let 0 < " < 1

64 and let ` be the squared loss. Then there exists a distribution D over
{x : | |x| |2  1} ⇥ [�1, 1] such that kw⇤k2  2, and any regression algorithm that can observe at
most one attribute of each training example of a training set S cannot output a regressor ŵ such that
ES[LD (ŵ)] < LD (w⇤) + ".

The lower bounds are tight—recall that with two attributes, it is indeed possible to learn a regressor to
within arbitrary precision [2, 6]. Also, notice the order of quantification in the theorems: it turns out
that there exists a distribution which is hard for all algorithms (rather than a different hard distribution
for any algorithm).

For regression with absolute loss, we consider the setting where the learner is limited to seeing k or
fewer attributes of each training sample. Theorem 3 below shows that in the case where k < d the
learner cannot hope to learn an "-optimal regressor for some " > 0.

Theorem 3. Let d � 4, d ⌘ 0 (mod 2), 0 < " < 1
60 d�

3
2 , and let ` be the absolute loss. Then there

exists a distribution D over {x : | |x| |1  1} ⇥ [�1, 1] such that kw⇤k1  2, and any regression
algorithm that can observe at most d�1 attributes of each training example of a training set S cannot
output a regressor ŵ such that ES[LD (ŵ)] < LD (w⇤) + ".
Corollary 4. Let 0 < " < 1

60 d�2, and let ` be the absolute loss. Then there exists a distribution D
over {x : | |x| |2  1} ⇥ [�1, 1] such that kw⇤k2  1, and any regression algorithm that can observe at
most d � 1 attributes of each training example of a training set S cannot output a regressor ŵ such
that ES[LD (ŵ)] < LD (w⇤) + ".

We complement our findings for regression with the following analogous lower bound for classifica-
tion with the hinge loss (a.k.a., soft margin SVM).
Theorem 5. Let d � 4, d ⌘ 0 (mod 2), and let ` be the hinge loss. Then there exists an "0 > 0
such that the following holds: there exists a distribution D over {x : | |x| |2  1} ⇥ [�1, 1] such that
kw⇤k2  1, and any classification algorithm that can observe at most d � 1 attributes of each training
example of a training set S cannot output a regressor ŵ such that ES[LD (ŵ)] < LD (w⇤) + "0.

3 Lower Bounds

In this section we discuss our lower bounds for regression with missing attributes. As a warm-up,
we first prove Theorem 1 for regression with the squared loss. While the proof is very simple,
it illustrates some of the main ideas used in all of our lower bounds. Then, we give a proof of
Theorem 3 for regression with the absolute loss. The proofs of the remaining bounds are deferred to
the supplementary material.

3.1 Lower bounds for the squared loss

Proof of Theorem 1. It is enough to prove the theorem for deterministic learning algorithms, namely,
for algorithms that do not use any external randomization (i.e., any randomization besides the random
samples drawn from the data distribution itself). This is because any randomized algorithm can
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be thought of as a distribution over deterministic algorithms, which is independent of the data
distribution.

Now, suppose 0 < " < 1
32 . Let X1 = {(0, 0), (1, 1)}, X2 = {(0, 1), (1, 0)}, and let D1 and D2

be uniform distributions over X1 ⇥ {1} and X2 ⇥ {1}, respectively. The main observation is that
any learner that can observe at most one attribute of each example cannot distinguish between the
two distributions with probability greater than 1

2 , no matter how many samples it is given. This is
because the marginal distributions of the individual attributes under both D1 and D2 are exactly the
same. Thus, to prove the theorem it is enough to show that the sets of "-optimal solutions under the
distributions D1 and D2 are disjoint. Indeed, suppose that there is a learning algorithm that emits a
vector ŵ such that E[LD (ŵ) � LD (w⇤)] < "/2 (where the expectation is over the random samples
from D used by the algorithm). By Markov’s inequality, it holds that LD (ŵ) < LD (w⇤) + " with
probability > 1/2. Hence, the output of the algorithm allows one to distinguish between the two
distributions with probability > 1/2, contradicting the indistinguishability property.

We set to characterize the sets of "-optimal solutions under D1 and D2. For D1, we have

LD1 (w) =
1
2

X

x2X1

1
2

(w>x � 1)2 =
1
4
+

1
4

(w1 + w2 � 1)2,

while for D2,

LD2 (w) =
1
2

X

x2X2

1
2

(w>x � 1)2 =
1
4

(w1 � 1)2 +
1
4

(w2 � 1)2.

Note that the set of "-optimal regressors for LD1 is S1 = {w : |w>1 � 1|  2
p
"}, whereas for LD2

the set is S2 = {w : kw � 1k2  2
p
"}. Let S02 = {w : |w>1 � 2|  2

p
2"}. Then S2 ✓ S02, so it is

sufficient to show that S1 and S02 are disjoint.

Since " < 1
32 , for any w 2 S1, |w>1 � 1| < 1

2 , meaning w>1 < 3
2 . However, for any w 2 S02,

|w>1 � 2| < 1
2 meaning w>1 > 3

2 , and so w cannot be a member of both S1 and S2. As we argued
earlier, this suffices to prove the theorem. ⇤

3.2 Lower bounds for the absolute loss

As in the proof of Theorem 1, the main idea is to show that one can design two distributions that are
indistinguishable to a learner who can observe no more than d � 1 attributes of any sample given by
the distribution (i.e., that their marginals over any choice of d � 1 attributes are identical), but whose
respective sets of "-optimal regressors are disjoint. However, in contrast to Theorem 1, both handling
general d along with switching to the absolute loss introduce additional complexities to the proof that
require different techniques.

We start by constructing these two distributions D1 and D2. Let X1 = {x = (x1, . . . , xd ) : x 2
{0, 1}d, kxk1 ⌘ 0 (mod 2)} and X2 = {x = (x1, . . . , xd ) : x 2 {0, 1}d, kxk1 ⌘ 1 (mod 2)}, and let D1
and D2 be uniform over X1 ⇥ {1} and X2 ⇥ {1}, respectively. From this construction, it is not hard to
see that for any choice of k  d � 1 attributes, the marginals over the k attributes of both distributions
are identical: they are both a uniform distribution over k bits. Thus, the distributions D1 and D2 are
indistinguishable to a learner that can only observe at most d � 1 attributes of each example.

Let `(w>x � y) = |w>x � y |, and let

LD1 (w) = E(x,y)⇠D1 [`(w>x, y)] =
1

2d�1

X

x2X1

|w>x � 1|,

and
LD2 (w) = E(x,y)⇠D2 [`(w>x, y)] =

1
2d�1

X

x2X2

|w>x � 1|.

It turns out that the subgradients of LD1 (w) and LD2 (w), which we denote by @LD1 (w) and @LD2 (w)
respectively, can be expressed precisely. In fact, the full subgradient set at every point in the domain
for both functions can be made explicit. With these representations in hand, we can show that
w⇤1 =

2
d 1d and w⇤2 =

2
d+2 1d are minimizers of LD1 (w) and LD2 (w), respectively.
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Figure 1: Geometric intuition for Lemmas 6 and 7. The lower bounding absolute value function acts
as a relaxation of the true expected loss LD (depicted here as a cone).

In fact, using the subgradient sets we can prove a much stronger property of the expected losses
LD1 and LD2 , akin to a “directional strong convexity” property around their respective minimizers.
The geometric idea behind this property is shown in Figure 1, whereby LD is lower bounded by an
absolute value function.
Lemma 6. Let w⇤1 =

2
d 1d . For any w 2 Rd we have

LD1 (w) � LD1 (w⇤1) �
p

2⇡
e4
p

d
· ���1>d (w � w⇤1)��� .

Lemma 7. Let w⇤2 =
2

d+2 1d . For any w 2 Rd we have

LD2 (w) � LD2 (w⇤2) �
p

2⇡
e4
p

d
· ���1>d (w � w⇤2)��� .

Given Lemmas 6 and 7, the proof of Theorem 3 is immediate.

Proof of Theorem 3. As a direct consequence of Lemmas 6 and 7, we obtain that the sets

S1 =
8><>:w :

������
p

2⇡
e4
p

d
· 1>d (w � w⇤1)

������  "
9>=>;

and

S2 =
8><>:w :

������
p

2⇡
e4
p

d
· 1>d (w � w⇤2)

������  "
9>=>;

contain the sets of "-optimal regressors for LD1 (w) and LD2 (w), respectively. All that is needed now
is to show a separation of their "-optimal sets for 0 < " < 1

60 d�
3
2 , and this is done by showing a

separation of the more manageable sets S1 and S2. Indeed, fix 0 < " < 1
60 d�

3
2 and observe that for

any w 2 S1 we have �
p

2⇡
e4
p
d
· 1>d (w � w⇤1)  1

60 d�
3
2 and so, for d � 4,

1>dw � 2 � 1
2d
> 2 � 1

d + 2
=

2d + 3
d + 2

.

On the other hand, for any w 2 S2 we have
p

2⇡
e4
p
d
· 1>d (w � w⇤2)  1

60 d�
3
2 , thus

1>dw  2d
d + 2

+
1

2d
<

2d
d + 2

+
1

d + 2
=

2d + 1
d + 2

.

We see that no w can exist in both S1 and S2, so these sets are disjoint. Theorem 3 follows by the
same reasoning used to conclude the proof of Theorem 1. ⇤

5



It remains to prove Lemmas 6 and 7. As the proofs are very similar, we will only prove Lemma 6
here and defer the proof of Lemma 7 to the supplementary material.

Proof of Lemma 6. We first write

@LD1 (w) =
1

2d�1

X

x2X1

@`(w>x, 1) =
1

2d�1

X

x2X1

sign(w>x � 1) · x.

Letting w⇤1 =
2
d · 1d , we have that

@LD1 (w⇤1) =
1

2d�1

X

x2X1

sign(w⇤>1 x � 1) · x

=
1

2d�1

✓ X

x2X1,
kxk1= d

2

sign(w⇤>1 x � 1) · x

+
X

x2X1,
kxk1> d

2

sign(w⇤>1 x � 1) · x +
X

x2X1,
kxk1< d

2

sign(w⇤>1 x � 1) · x
◆

=
1

2d�1

✓ X

x2X1,
kxk1= d

2

sign(0) · x +
X

x2X1,
kxk1> d

2

x �
X

x2X1,
kxk1< d

2

x
◆
,

where sign(0) can be any number in [�1, 1]. Next, we compute

X

x2X1,
kxk1> d

2

x �
X

x2X1,
kxk1< d

2

x =
d
2X

i= d
4 +1

 
d � 1
2i � 1

!
· 1d �

d
4 �1X

i=1

 
d � 1
2i � 1

!
· 1d

=

d
2 �2X

i=0

(�1)i
 
d � 1

i

!
· 1d

=

 
d � 2
d
2 � 2

!
· 1d ,

where the last equality follows from the elementary identity
Pk

i=0(�1)i
⇣
n
i

⌘
= (�1)k

⇣
n�1
k

⌘
, which we

prove in Lemma 9 in the supplementary material. Now, let X⇤ = {x 2 X1 : kxk1 = d
2 }, let m = |X⇤ |,

and let X = [x1, . . . , xm] 2 Rd⇥m be the matrix formed by all x 2 X⇤. Then we may express the
entire subgradient set explicitly as

@LD1 (w⇤1) =
⇢ 1

2d�1

✓
Xr +

 
d � 2
d
2 � 2

!
· 1d

◆ ���� r 2 [�1, 1]m
�
.

Thus, any choice of r 2 [�1, 1]m will result in a specific subgradient of LD1 (w⇤1). Consider two such
choices: r1 = 0 and r2 = �1d . Note that Xr1 = 0 and Xr2 = �

⇣
d�1
d
2 �1

⌘
· 1d ; to see the last equality,

consider any fixed coordinate i and notice that the number of elements in X⇤ with non-zero values in
the i’th coordinate is equal to the number of ways to choose the remaining d

2 � 1 non-zero coordinates
from the other d � 1 coordinates. We then observe that the corresponding subgradients are

h+ = 1
2d�1

 
Xr1 +

 
d � 2
d
2 � 2

!
· 1d

!
=

1
2d�1

 
d � 2
d
2 � 2

!
· 1d,

and
h� = 1

2d�1

 
Xr2 +

 
d � 2
d
2 � 2

!
· 1d

!
= � 1

2d�1

 
d � 2
d
2 � 1

!
· 1d .

Note that, since the set of subgradients of LD1 (w⇤1) is a convex set, by taking a convex combination
of h+ and h� it follows that 0 2 @LD1 (w⇤1) and so we see that w⇤1 is a minimizer of LD1 (w).
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Given a handle on the subgradient set, we now show that these coefficients are polynomial in d.
Observe that, using the fact that

p
2⇡n( ne )n  n!  e

p
n( ne )n, we have

1
2d�1

 
d � 2
d
2 � 2

!
� 1

2d�1

*...
,

p
2⇡(d � 2)

⇣
d�2
e

⌘d�2

e2
q

d�4
2

q
d
2

⇣
d�4
2e

⌘ d
2 �2 ⇣

d
2e

⌘ d
2

+///
-

� 1
2d�1

*.
,

p
2⇡

e2
p

d
⇣

1
2d�1

⌘ +/
-
 

d � 2
d

!d�2

� *
,
p

2⇡
e2
p

d
+
-
 
1 � 2

d � 2

!d�2

�
p

2⇡
e4
p

d
.

Let h⇤ =
p

2⇡
e4
p
d
· 1d . Since h⇤ can be written as a convex combination of h+ and 0, we see that

h⇤ 2 @LD1 (w⇤1). Similarly we may see that

� 1
2d�1

 
d � 2
d
2 � 1

!
 � 1

2d�1

*..
,

p
2⇡(d � 2)

⇣
d�2
e

⌘d�2

e2( d2 � 1)
⇣
d�2
2e

⌘d�2

+//
-
= �

p
2⇡

e2
p

d � 2
 �
p

2⇡
e4
p

d
.

Again, since �h⇤ can be written as a convex combination of the vectors h� and 0 in the subgradient
set, we may conclude that �h⇤ 2 @LD1 (w⇤1) as well.

By the subgradient inequality it follows that, for all w 2 Rd ,

LD1 (w) � LD1 (w⇤1) � h⇤>(w � w⇤1) =
p

2⇡
e4
p

d
· 1>d (w � w⇤1)

and

LD1 (w) � LD1 (w⇤1) � �h⇤>(w � w⇤1) = �
p

2⇡
e4
p

d
· 1>d (w � w⇤1),

which taken together imply that

LD1 (w) � LD1 (w⇤1) �
p

2⇡
e4
p

d
· ���1>d (w � w⇤1)���

as required. ⇤

4 General Algorithm for Limited Precision

Although we have established limits on the attainable precision for some learning problems, there is
still the possibility of reaching this limit. In this section we provide a general algorithm, whereby a
learner that can observe k < d attributes can always achieve an expected loss of O(

p
1 � k/d).

We provide the pseudo-code in Algorithm 1. Although similar to the AERR algorithm of Hazan and
Koren [6]—which is designed to work only with the squared loss—Algorithm 1 avoids the necessity
of an unbiased gradient estimator by replacing the original loss function with a slightly biased one.
As long as the new loss function is chosen carefully (and the functions are Lipschitz bounded), and
given enough samples, the algorithm can return a regressor of limited precision. This is in contrast to
AERR whereby an arbitrarily precise regressor can always be achieved with enough samples.

Formally, for Algorithm 1 we prove the following (proof in the supplementary material).
Theorem 8. Let ` : R 7! R be an H-Lipschitz function defined over [�2B, 2B]. Assume the
distribution D is such that kxk2  1 and |y |  B with probability 1. Let B̃ = max{B, 1}, and let ŵ
be the output of Algorithm 1, when run with ⌘ = 2B

G
p
m

. Then, kŵk2  B, and for any w⇤ 2 Rd with
kw⇤k2  B,

E[LD (ŵ)]  LD (w⇤) + 2HBp
m
+ 2HB̃2

r
1 � k

d
.
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Algorithm 1 General algorithm for regression/classification with missing attributes
Input: Loss function `, training set S = {(xt, yt )}t 2[m], k, B, ⌘ > 0
Output: Regressor ŵ with kŵk2  B

1: Initialize w1 , 0, kw1k2  B arbitrarily
2: for t = 1 to m do
3: Uniformly choose subset of k indices {it,r }r 2[k] from [d] without replacement
4: Set x̃t =

Pk
r=1 x[it,r ] · eit,r

5: Regression case:
6: Choose �̂t 2 @`(w>t x̃t � yt )
7: Classification case:
8: Choose �̂t 2 @`(yt · w>t x̃t )
9: Update

wt+1 =
B

max{kwt � ⌘(�̂t · x̃t )k2, B}
· (wt � ⌘(�̂t · x̃t ))

10: end for
11: Return ŵ = 1

m

Pm
t=1 wt

In particular, for m = d/(d � k) we have

E[LD (ŵ)]  LD (w⇤) + 4HB̃2

r
1 � k

d
,

and so when the learner observes k = d � 1 attributes, the expected loss is O(1/
p

d)-away from
optimum.

5 Conclusions and Future Work

In the limited attribute observation setting, we have shown information-theoretic lower bounds for
some variants of regression, proving that a distribution-independent algorithm for regression with
absolute loss that attains " error cannot exist and closing the gap for ridge regression as suggested
by Hazan and Koren [6]. We have also shown that the proof technique applied for regression
with absolute loss can be extended to show a similar bound for classification with the hinge loss.
In addition, we have described a general purpose algorithm which complements these results by
providing a means of achieving error up to a certain precision limit.

An interesting possibility for future work would be to try to bridge the gap between the upper and
lower bounds of the precision limits, particularly in the case of the exponential gap for classification
with hinge loss. Another direction would be to develop a more comprehensive understanding of these
lower bounds in terms of more general functions, one example being classification with logistic loss.
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