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Abstract

Consider the stochastic composition optimization problem where the objective is a
composition of two expected-value functions. We propose a new stochastic first-
order method, namely the accelerated stochastic compositional proximal gradient
(ASC-PG) method, which updates based on queries to the sampling oracle using
two different timescales. The ASC-PG is the first proximal gradient method for
the stochastic composition problem that can deal with nonsmooth regularization
penalty. We show that the ASC-PG exhibits faster convergence than the best known
algorithms, and that it achieves the optimal sample-error complexity in several
important special cases. We further demonstrate the application of ASC-PG to
reinforcement learning and conduct numerical experiments.

1 Introduction

The popular stochastic gradient methods are well suited for minimizing expected-value objective
functions or the sum of a large number of loss functions. Stochastic gradient methods find wide
applications in estimation, online learning, and training of deep neural networks. Despite their
popularity, they do not apply to the minimization of a nonlinear function involving expected values or
a composition between two expected-value functions.

In this paper, we consider the stochastic composition problem, given by
min

x2<n
H(x) := E

v

(f
v

(E
w

(g
w

(x))))| {z }
=:F (x)

+R(x) (1)

where (f � g)(x) = f(g(x)) denotes the function composition, g
w

(·) : <n 7! <m and
f
v

(·) : <m 7! < are continuously differentiable functions, v, w are random variables, and
R(x) : <n 7! <[ {+1} is an extended real-valued closed convex function. We assume throughout
that there exists at least one optimal solution x

⇤ to problem (1). We focus on the case where f
v

and
g
w

are smooth, but we allow R to be a nonsmooth penalty such as the `
1

-norm. We do no require
either the outer function f

v

or the inner function g
w

to be convex or monotone. As a result, the
composition problem cannot be reformulated into a saddle point problem in general.

Our algorithmic objective is to develop efficient algorithms for solving problem (1) based on random
evaluations of f

v

, g
w

and their gradients. Our theoretical objective is to analyze the rate of conver-
gence for the stochastic algorithm and to improve it when possible. In the online setting, the iteration
complexity of our stochastic methods can be interpreted as a sample-error complexity upper bound
for estimating the optimal solution of problem (1).

1.1 Motivating Examples

One motivating example is reinforcement learning [Sutton and Barto, 1998]. Consider a controllable
Markov chain with states 1, . . . , S. Estimating the value-per-state of a fixed control policy ⇡ is known
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as on-policy learning. It can be casted into an S ⇥ S system of Bellman equations:

�P⇡V ⇡

+ r⇡ = V ⇡,

where � 2 (0, 1) is a discount factor, P⇡

ss̃

is the transition probability from state s to state s̃, and r⇡
s

is
the expected state transition reward at state s. The solution V ⇡ to the Bellman equation is the value
vector, with V ⇡

(s) being the total expected reward starting at state s. In the blackbox simulation
environment, P⇡, r⇡ are unknown but can be sampled from a simulator. As a result, solving the
Bellman equation becomes a special case of the stochastic composition optimization problem:

min

x2<S
kE[A]x� E[b]k2, (2)

where A,b are random matrices and random vectors such that E[A] = I � �P⇡ and E[b] = r⇡. It
can be viewed as the composition of the square norm function and the expected linear function. We
will give more details on the reinforcement learning application in Section 4.

Another motivating example is risk-averse learning. For example, consider the mean-variance
minimization problem

min

x

E
a,b

[h(x; a, b)] + �Var
a,b

[h(x; a, b)],

where h(x; a, b) is some loss function parameterized by random variables a and b, and � > 0 is a
regularization parameter. Its batch version takes the form

min

x

1

N

NX

i=1

h(x; a
i

, b
i

) +

�

N

NX

i=1

 
h(x; a

i

, b
i

)� 1

N

NX

i=1

h(x; a
i

, b
i

)

!
2

.

Here the variance term is the composition of the mean square function and an expected loss function.
Although the stochastic composition problem (1) was barely studied, it actually finds a broad spectrum
of emerging applications in estimation and machine learning (see Wang et al. [2016] for a list of
applications). Fast optimization algorithms with theoretical guarantees will lead to new computation
tools and online learning methods for a broader problem class, no longer limited to the expectation
minimization problem.

1.2 Related Works and Contributions

Contrary to the expectation minimization problem, “unbiased" gradient samples are no longer
available for the stochastic composition problem (1). The objective is nonlinear in the joint probability
distribution of (w, v), which substantially complicates the problem. In a recent work by Dentcheva
et al. [2015], a special case of the stochastic composition problem, i.e., risk-averse optimization,
has been studied. A central limit theorem has been established, showing that the K-sample batch
problem converges to the true problem at the rate of O(1/

p
K) in a proper sense. For the case

where R(x) = 0, Wang et al. [2016] has proposed and analyzed a class of stochastic compositional
gradient/subgradient methods (SCGD). The SCGD involves two iterations of different time scales,
one for estimating x⇤ by a stochastic quasi-gradient iteration, the other for maintaining a running
estimate of g(x⇤

). Wang and Liu [2016] studies the SCGD in the setting where samples are corrupted
with Markov noises (instead of i.i.d. zero-mean noises). Both works establish almost sure convergence
of the algorithm and several convergence rate results, which are the best-known convergence rate
prior to the current paper.

The idea of using two-timescale quasi-gradient traced back to the earlier work Ermoliev [1976]. The
incremental treatment of proximal gradient iteration has been studied extensively for the expectation
minimization problem, see for examples Beck and Teboulle [2009], Bertsekas [2011], Ghadimi and
Lan [2015], Gurbuzbalaban et al. [2015], Nedić [2011], Nedić and Bertsekas [2001], Nemirovski
et al. [2009], Rakhlin et al. [2012], Shamir and Zhang [2013], Wang and Bertsekas [2016], Wang et al.
[2015]. However, except for Wang et al. [2016] and Wang and Liu [2016], all of these works focus
on variants of the expectation minimization problem and do not apply to the stochastic composition
problem (1). Another work partially related to this paper is by Dai et al. [2016]. They consider a
special case of problem (1) arising in kernel estimation, where they assume that all functions f

v

’s are
convex and their conjugate functions f?

v

’s can be easily obtained/sampled. Under these additional
assumptions, they essentially rewrite the problem into a saddle point optimization involving functional
variables.
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In this paper, we propose a new accelerated stochastic compositional proximal gradient (ASC-PG)
method that applies to the penalized problem (1), which is a more general problem than the one
considered in Wang et al. [2016]. We use a coupled martingale stochastic analysis to show that
ASC-PG achieves significantly better sample-error complexity in various cases. We also show that
ASC-PG exhibits optimal sample-error complexity in two important special cases: the case where the
outer function is linear and the case where the inner function is linear.

Our contributions are summarized as follows:

1. We propose the first stochastic proximal-gradient method for the stochastic composition problem.
This is the first algorithm that is able to address the nonsmooth regularization penalty R(·) without
deteriorating the convergence rate.

2. We obtain a convergence rate O(K�4/9

) for smooth optimization problems that are not necessarily
convex, where K is the number of queries to the stochastic first-order oracle. This improves the best
known convergence rate and provides a new benchmark for the stochastic composition problem.

3. We provide a comprehensive analysis and results that apply to various special cases. In particular,
our results contain as special cases the known optimal rate results for the expectation minimization
problem, i.e., O(1/

p
K) for general objectives and O(1/K) for strongly convex objectives.

4. In the special case where the inner function g(·) is a linear mapping, we show that it is sufficient
to use one timescale to guarantee convergence. Our result achieves the non-improvable rate of
convergence O(1/K) for optimal strongly convex optimization and O(1/

p
K) for nonconvex

smooth optimization. It implies that the inner linearity does not bring fundamental difficulty to the
stochastic composition problem.

5. We show that the proposed method leads to a new on-policy reinforcement learning algorithm.
The new learning algorithm achieves the optimal convergence rate O(1/

p
K) for solving Bellman

equations (or O(1/K) for solving the least square problem) based on K observations of state-to-
state transitions.

In comparison with Wang et al. [2016], our analysis is more succinct and leads to stronger results.
To the best of our knowledge, Theorems 1 and 2 in this paper provide the best-known rates for the
stochastic composition problem.

Paper Organization. Section 2 states the sampling oracle and the accelerated stochastic composi-
tional proximal gradient algorithm (ASC-PG). Section 3 states the convergence rate results in the case
of general nonconvex objective and in the case of strongly convex objective, respectively. Section 4
describes an application of ASC-PG to reinforcement learning and gives numerical experiments.

Notations and Definitions. For x 2 <n, we denote by x

0 its transpose, and by kxk its Euclidean
norm (i.e., kxk=

p
x

0
x). For two sequences {y

k

} and {z
k

}, we write y

k

= O(z

k

) if there exists
a constant c > 0 such that ky

k

k ckz
k

k for each k. We denote by I

value
condition the indicator function,

which returns “value” if the “condition” is satisfied; otherwise 0. We denote by H⇤ the optimal
objective function value of problem (1), denote by X⇤ the set of optimal solutions, and denote by
P
S

(x) the Euclidean projection of x onto S for any convex set S. We also denote by short that
f(y) = E

v

[f
v

(y)] and g(x) = E
w

[g
w

(x)].

2 Algorithm

We focus on the black-box sampling environment. Suppose that we have access to a stochastic
first-order oracle, which returns random realizations of first-order information upon queries. This
is a typical simulation oracle that is available in both online and batch learning. More specifically,
assume that we are given a Sampling Oracle (SO) such that

• Given some x 2 <n, the SO returns a random vector g
w

(x) and a noisy subgradient rg
w

(x).
• Given some y 2 <m, the SO returns a noisy gradient rf

v

(y).

Now we propose the Accelerated Stochastic Compositional Proximal Gradient (ASC-PG) algorithm,
see Algorithm 1. ASC-PG is a generalization of the SCGD proposed by Wang et al. [2016], in which
a proximal step is used to replace the projection step.

In Algorithm 1, the extrapolation-smoothing scheme (i.e., the (y, z)-step) is critical to the acceleration
of convergence. The acceleration is due to the fast running estimation of the unknown quantity
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Algorithm 1 Accelerated Stochastic Compositional Proximal Gradient (ASC-PG)
Require: x

1

2 <n, y
0

2 <m, SO, K, stepsize sequences {↵
k

}K
k=1

, and {�
k

}K
k=1

.
Ensure: {x

k

}K
k=1

1: Initialize z

1

= x

1

.
2: for k = 1, · · · ,K do
3: Query the SO and obtain gradient samples rf

vk(yk

), rg
wk(zk).

4: Update the main iterate by

x

k+1

= prox
↵kR(·)

�
x

k

� ↵
k

rg>
wk

(x

k

)rf
vk(yk

)

�
.

5: Update auxillary iterates by an extrapolation-smoothing scheme:

z

k+1

=

✓
1� 1

�
k

◆
x

k

+

1

�
k

x

k+1

,

y

k+1

= (1� �
k

)y

k

+ �
k

g
wk+1(zk+1

),

where the sample g
wk+1(zk+1

) is obtained via querying the SO.
6: end for

g(x
k

) := E
w

[g
w

(x

k

)]. At iteration k, the running estimate y
k

of g(x
k

) is obtained using a weighted
smoothing scheme, corresponding to the y-step; while the new query point z

k+1

is obtained through
extrapolation, corresponding to the z-step. The updates are constructed in a way such that y

k

is a
nearly unbiased estimate of g(x

k

). To see how the extrapolation-smoothing scheme works, we let the
weights be

⇠(k)
t

=

(
�
t

Q
k

i=t+1

(1� �
i

), if k > t � 0

�
k

, if k = t � 0.
(3)

Then we can verify the following important relations:

x

k+1

=

kX

t=0

⇠(k)
t

z

t+1

, y

k+1

=

kX

t=0

⇠(k)
t

g
wt+1(zt+1

),

which essentially say that x
k+1

is a damped weighted average of {z
t+1

}k+1

0

and y

k+1

is a damped
weighted average of {g

wt+1(zt+1

)}k+1

0

.

An Analytical Example of the Extrapolation-Smooth Scheme Now consider the special case
where g

w

(·) is always a linear mapping g
w

(z) = A
w

z + b
z

and �
k

= 1/(k + 1). We can verify that
⇠(k)
t

= 1/(k + 1) for all t. Then we have

g(x
k+1

) =

1

k + 1

kX

t=0

E[A
w

]z

t+1

+E[b
w

], y

k+1

=

1

k + 1

kX

t=0

A
wt+1zt+1

+

1

k + 1

kX

t=0

b

wt+1 .

In this way, we can see that the scaled error

k(y
k+1

� g(x
k+1

)) =

kX

t=0

(A
wt+1 � E[A

w

])z

t+1

+

kX

t=0

(b

wt+1 � E[b
w

])

is a zero-mean and zero-drift martingale. Under additional technical assumptions, we have

E[ky
k+1

� g(x
k+1

)k2]  O (1/k) .

Note that the zero-drift property of the error martingale is the key to the fast convergence rate. The
zero-drift property comes from the near-unbiasedness of y

k

, which is due to the special construction
of the extrapolation-smoothing scheme. In the more general case where g

w

is not necessarily linear,
we can use a similar argument to show that y

k

is a nearly unbiased estimate of g(x
k

). As a result, the
extrapolation-smoothing (y, z)-step ensures that y

k

tracks the unknown quantity g(x
k

) efficiently.
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3 Main Results

We present our main theoretical results in this section. Let us begin by stating our assumptions. Note
that all assumptions involving random realizations of v, w hold with probability 1.
Assumption 1. The samples generated by the SO are unbiased in the following sense:

1. E{wk,vk}(rg>
wk

(x)rf
vk(y)) = rg>(x)rf(y) 8k = 1, 2, · · · ,K, 8x, 8y.

2. E
wk(gwk(x)) = g(x) 8x.

Note that w
k

and v
k

are not necessarily independent.
Assumption 2. The sample gradients and values generated by the SO satisfy

E
w

(kg
w

(x)� g(x)k2)  �2 8x.
Assumption 3. The sample gradients generated by the SO are uniformly bounded, and the penalty
function R has bounded gradients.

krf
v

(x)k ⇥(1), krg
w

(x)k ⇥(1), k@R(x)k ⇥(1) 8x, 8w, 8v
Assumption 4. There exist L

F

, L
f

, L
g

> 0 such that

1. F (z)� F (x)  hrF (x), z� xi+ LF
2

kz� xk2 8x 8z.

2. krf
v

(y)�rf
v

(w)k L
f

ky �wk 8y 8w 8v.

3. kg(x)� g(z)�rg(z)>(x� z)k Lg

2

kx� zk2 8x 8z.

Our first main result concerns with general optimization problems which are not necessarily convex.
Theorem 1 (Smooth (Nonconvex) Optimization). Let Assumptions 1, 2, 3, and 4 hold. Denote
by F (x) := (E

v

(f
v

) � E
w

(g
w

))(x) for short and suppose that R(x) = 0 in (1) and E(F (x

k

))

is bounded from above. Choose ↵
k

= k�a and �
k

= 2k�b where a 2 (0, 1) and b 2 (0, 1) in
Algorithm 1. Then we have

P
K

k=1

E(krF (x

k

)k2)
K

 O(Ka�1

+ L2

f

L
g

K4b�4a

I

logK

4a�4b=1

+ L2

f

K�b

+K�a

). (4)

If L
g

6= 0 and L
f

6= 0, choose a = 5/9 and b = 4/9, yielding

1

K

KX

k=1

E(krF (x

k

)k2)  O(K�4/9

). (5)

If L
g

= 0 or L
f

= 0, choose a = b = 1/2, yielding

1

K

KX

k=1

E(krF (x

k

)k2)  O(K�1/2

). (6)

The result of Theorem 1 strictly improves the best-known results given by Wang et al. [2016]. First
the result of (5) improves the finite-sample error bound from O(k�2/7

) to O(k�4/9

) for general
convex and nonconvex optimization. This improves the best known convergence rate and provides a
new benchmark for the stochastic composition problem. Note that it is possible to relax the condition
“E(F (x

k

)) is bounded from above" in Theorem 1. However, it would make the analysis more
cumbersome and yield an additional term logK in the error bound.

Our second main result concerns strongly convex objective functions. We say that the objective
function H is optimally strongly convex with parameter � > 0 if

H(x)�H(P
X

⇤
(x)) � �kx� P

X

⇤
(x)k2 8x. (7)

(see Liu and Wright [2015]). Note that any strongly convex function is optimally strongly convex, but
the reverse does not hold. For example, the objective function (2) in on-policy reinforcement learning
is always optimally strongly convex (even if E(A) is a rank deficient matrix), but not necessarily
strongly convex.
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Theorem 2. (Strongly Convex Optimization) Suppose that the objective function H(x) in (1) is
optimally strongly convex with parameter � > 0 defined in (7). Set ↵

k

= C
a

k�a and �
k

= C
b

k�b

where C
a

> 4�, C
b

> 2, a 2 (0, 1], and b 2 (0, 1] in Algorithm 1. Under Assumptions 1, 2, 3, and 4,
we have

E(kx
K

� P
X

⇤
(x

K

)k2)  O
�
K�a

+ L2

f

L
g

K�4a+4b

+ L2

f

K�b

�
. (8)

If L
g

6= 0 and L
f

6= 0, choose a = 1 and b = 4/5, yielding

E(kx
K

� P
X

⇤
(x

K

)k2)  O(K�4/5

). (9)
If L

g

= 0 or L
f

= 0, choose a = 1 and b = 1, yielding

E(kx
K

� P
X

⇤
(x

K

)k2)  O(K�1

). (10)

Let us discuss the results of Theorem 2. In the general case where L
f

6= 0 and L
g

6= 0, the
convergence rate in (9) is consistent with the result of Wang et al. [2016]. Now consider the special
case where L

g

= 0, i.e., the inner mapping is linear. This result finds an immediate application to
Bellman error minimization problem (2) which arises from reinforcement learning problem in (and
with `

1

norm regularization). The proposed ASC-PG algorithm is able to achieve the optimal rate
O(1/K) without any extra assumption on the outer function f

v

. To the best of our knowledge, this is
the best (also optimal) sample-error complexity for on-policy reinforcement learning.
Remarks Theorems 1 and 2 give important implications about the special cases where L

f

= 0

or L
g

= 0. In these cases, we argue that our convergence rate (10) is “optimal" with respect to the
sample size K. To see this, it is worth pointing out the O(1/K) rate of convergence is optimal for
strongly convex expectation minimization problem. Because the expectation minimization problem
is a special case of the problem (1), the O(1/K) convergence rate must be optimal for the stochastic
composition problem too.

• Consider the case where L
f

= 0, which means that the outer function f
v

(·) is linear with
probability 1. Then the stochastic composition problem (1) reduces to an expectation minimization
problem since (E

v

f
v

�E
w

g
w

)(x) = E
v

(f
v

(E
w

g
w

(x))) = E
v

E
w

(f
v

�g
w

)(x). Therefore, it makes
a perfect sense to obtain the optimal convergence rate.

• Consider the case where L
g

= 0, which means that the inner function g(·) is a linear mapping.
The result is quite surprising. Note that even g(·) is a linear mapping, it does not reduce problem
(1) to an expectation minimization problem. However, the ASC-PG still achieves the optimal
convergence rate. This suggests that, when inner linearity holds, the stochastic composition
problem (1) is not fundamentally more difficult than the expectation minimization problem.

The convergence rate results unveiled in Theorems 1 and 2 are the best known results for the
composition problem. We believe that they provide important new result which provides insights into
the complexity of the stochastic composition problem.

4 Application to Reinforcement Learning

In this section, we apply the proposed ASC-PG algorithm to conduct policy value evaluation in
reinforcement learning through attacking Bellman equations. Suppose that there are in total S states.
Let the policy of interest be ⇡. Denote the value function of states by V ⇡ 2 <S , where V ⇡

(s) denotes
the value of being at state s under policy ⇡. The Bellman equation of the problem is

V ⇡

(s
1

) = E
⇡

{r
s1,s2 + � · V ⇡

(s
2

)|s
1

} for all s
1

, s
2

2 {1, ..., S},
where r

s1,s2 denotes the reward of moving from state s
1

to s
2

, and the expectation is taken over all
possible future state s

2

conditioned on current state s
1

and the policy ⇡. We have that the solution
V ⇤ 2 <S to the above equation satisfies that V ⇤

= V ⇡ . Here a moderately large S will make solving
the Bellman equation directly impractical. To resolve the curse of dimensionality, in many practical
applications, we approximate the value of each state by some linear map of its feature �

s

2 <m,
where d < S to reduce the dimension. In particular, we assume that V ⇡

(s) ⇡ �T

s

w

⇤ for some
w

⇤ 2 <m.

To compute w

⇤, we formulate the problem as a Bellman residual minimization problem that

min

w

SX

s=1

(�T

s

w � q
⇡,s

0
(w))

2,
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Figure 1: Empirical convergence rate of the ASC-PG algorithm and the GTD2-MP algorithm under
Experiment 1 averaged over 100 runs, where w

k

denotes the solution at the k-th iteration.

where q
⇡,s

0
(w) = E

⇡

{r
s,s

0
+ � · �

s

0
w} =

P
s

0 P⇡

ss

0({r
s,s

0
+ � · �

s

0
w); � < 1 is a discount factor,

and r
s,s

0 is the random reward of transition from state s to state s0. It is clearly seen that the proposed
ASC-PG algorithm could be directly applied to solve this problem where we take

g(w) = (�T

1

w, q
⇡,1

(w), ...,�T

S

w, q
⇡,S

(w)) 2 <2S ,

f
⇣
(�T

1

w, q
⇡,1

(w), ...,�T

S

w, q
⇡,S

(w))

⌘
=

SX

s=1

(�
s

w � q
⇡,s

0
(w))

2 2 <.

We point out that the g(·) function here is a linear map. By our theoretical analysis, we expect to
achieve a faster O(1/k) rate, which is justified empirically in our later simulation study.

We consider three experiments, where in the first two experiments, we compare our proposed
accelerated ASC-PG algorithm with SCGD algorithm [Wang et al., 2016] and the recently proposed
GTD2-MP algorithm [Liu et al., 2015]. Also, in the first two experiments, we do not add any
regularization term, i.e. R(·) = 0. In the third experiment, we add an `

1

-penalization term �kwk
1

.
In all cases, we choose the step sizes via comparison studies as in Dann et al. [2014]:

• Experiment 1: We use the Baird’s example [Baird et al., 1995], which is a well-known example to
test the off-policy convergent algorithms. This example contains S = 6 states, and two actions at
each state. We refer the readers to Baird et al. [1995] for more detailed information of the example.

• Experiment 2: We generate a Markov decision problem (MDP) using similar setup as in White and
White [2016]. In each instance, we randomly generate an MDP which contains S = 100 states,
and three actions at each state. The dimension of the Given one state and one action, the agent can
move to one of four next possible states. In our simulation, we generate the transition probabilities
for each MDP instance uniformly from [0, 1] and normalize the sum of transitions to one, and we
generate the reward for each transition also uniformly in [0, 1].

• Experiment 3: We generate the data same as Experiment 2 except that we have a larger d = 100

dimensional feature space, where only the first 4 components of w⇤ are non-zeros. We add an
`
1

-regularization term, �kwk
1

, to the objective function.

Denote by w

k

the solution at the k-th iteration. For the first two experiments, we report the empirical
convergence performance kw

k

�w

⇤k and k�w

k

��w

⇤k, where � = (�
1

, ...,�
S

)

T 2 <S⇥d and
�w

⇤
= V , and all w

k

’s are averaged over 100 runs, in the first two subfigures of Figures 1 and 2. It is
seen that the ASC-PG algorithm achieves the fastest convergence rate empirically in both experiments.
To further evaluate our theoretical results, we plot log(t) vs. log(kw

k

�w

⇤k) (or log(k�w

k

��

⇤k)
averaged over 100 runs for the first two experiments in the second two subfigures of Figures 1 and
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Figure 2: Empirical convergence rate of the ASC-PG algorithm and the GTD2-MP algorithm under
Experiment 2 averaged over 100 runs, where w

k

denotes the solution at the k-th iteration.

2. The empirical results further support our theoretical analysis that kw
k

�w

⇤k2= O(1/k) for the
ASC-PG algorithm when g(·) is a linear mapping.

For Experiment 3, as the optimal solution is unknown, we run the ASC-PG algorithm for one million
iterations and take the corresponding solution as the optimal solution ˆ

w

⇤, and we report kw
k

� ˆ

w

⇤k
and k�w

k

��

ˆ

w

⇤k averaged over 100 runs in Figure 3. It is seen the the ASC-PG algorithm achieves
fast empirical convergence rate.

k ×10
4

0 2 4 6 8

∥w
t
−
ŵ
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Figure 3: Empirical convergence rate of the ASC-PG algorithm with the `
1

-regularization term �kwk
1

under Experiment 3 averaged over 100 runs, where w

k

denotes the solution at the t-th iteration.

5 Conclusion
We develop a proximal gradient method for the penalized stochastic composition problem. The
algorithm updates by interacting with a stochastic first-order oracle. Convergence rates are established
under a variety of assumptions, which provide new rate benchmarks. Application of the ASC-
PG to reinforcement learning leads to a new on-policy learning algorithm, which achieves faster
convergence than the best known algorithms. For future research, it remains open whether or under
what circumstances the current O(K�4/9

) can be further improved. Another direction is to customize
and adapt the algorithm and analysis to more specific problems arising from reinforcement learning
and risk-averse optimization, in order to fully exploit the potential of the proposed method.
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