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Abstract

Linkages are essentially determined by similarity measures that may be derived
from multiple perspectives. For example, spatial linkages are usually generated
based on localities of heterogeneous data, whereas semantic linkages can come
from various properties, such as different physical meanings behind social rela-
tions. Many existing metric learning models focus on spatial linkages, but leave
the rich semantic factors unconsidered. Similarities based on these models are
usually overdetermined on linkages. We propose a Unified Multi-Metric Learn-
ing (UM2L) framework to exploit multiple types of metrics. In UM2L, a type of
combination operator is introduced for distance characterization from multiple per-
spectives, and thus can introduce flexibilities for representing and utilizing both
spatial and semantic linkages. Besides, we propose a uniform solver for UM2L
which is guaranteed to converge. Extensive experiments on diverse applications
exhibit the superior classification performance and comprehensibility of UM2L.
Visualization results also validate its ability on physical meanings discovery.

1 Introduction

Similarities measure the closeness of connections between objects and usually are reflected by dis-
tances. Distance Metric Learning (DML) aims to learn appropriate metric that can figure out the
underlying linkages or connections, thus can greatly improve the performance of similarity-based
classifiers, such as kNN.

Objects are linked with each other for different reasons. Global DML methods consider the deter-
ministic single metric which measures similarities between all object pairs. Recently, investigations
on local DML have considered locality specific approaches, and consequently multiple metrics are
learned. These metrics are either in charge of different spatial areas [15, 20] or responsible for each
specific instance [7, 22]. Both global and local DML methods emphasize the linkage constraints
(including must-link and cannot-link) in localities with univocal semantic meaning, e.g., the side
information of class. However, there can be many different reasons for two instances to be similar
in real world applications [3, 9].

Linkages between objects can be with multiple latent semantics. For example, in a social network,
friendship linkages may lie on different hobbies of users. Although a user has many friends, their
common hobbies could be different and as a consequence, one can be friends with others for differ-
ent reasons. Another concrete example is, for articles on “A. Feature Learning” which are closely
related to both “B. Feature Selection” and “C. Subspace Models”, their connections are different in
semantics. The linkage between A and B emphasizes “picking up some helpful features”, while the
common semantic between A and C is about “extracting subspaces” or “ feature transformation”.
These phenomena clearly indicate ambiguities rather than a single meaning in linkage generation.
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Hence, the distance/similarity measurements are overdetermined in these applications. As a conse-
quence, a new type of multi-metric learner which can describe the ambiguous linkages is desired.

In this paper, we propose a Unified Multi-Metric Learning (UM2L) approach which integrates the
consideration of linking semantic ambiguities and localities in one framework. In the training pro-
cess, more than one metric is learned to measure distances between instances and each of them
reflects a type of inherent spatial or semantic properties of objects. During the test, UM2L can auto-
matically pick up or integrate these measurements, since semantically/spatially similar data points
have small distances and otherwise they are pulled away from each other; such a mechanism en-
ables the adaptation to environment to some degree, which is important for the development of
learnwares [25]. Furthermore, the proposed framework can be easily adapted to different types of
ambiguous circumstances: by specifying the mechanism of metric integration, various types of link-
ages in applications can be considered; by incorporating sparse constraints, UM2L also turns out
good visualization results reflecting physical meanings of latent linkages between objects; besides,
by limiting the number of metrics or specifying the regularizer, the approach can be degenerated
to some popular DML methods, such as MMLMNN [20]. Benefitting from alternative strategy and
stochastic techniques, the general framework can be optimized steadily and efficiently.

Our main contributions are: (I) A Unified Multi-Metric Learning framework considering both data
localities and ambiguous semantics linkages. (II) A flexible framework adaptable for different tasks.
(III) Unified and efficient optimization solutions, superior and interpretable results.

The rest of this paper starts with some notations. Then the UM2L framework is presented in detail,
which is followed by a review of related work. The last are experiments and conclusion.

2 The Unified Multi-Metric Framework

Generally speaking, the supervision information for Distance Metric Learning (DML) is formed as
pairwise constraints or triplet sets. We restrict our discussion on the latter one, T = {xt,yt, zt}Tt=1,
since it provides more local information. In each triplet, target instance yt is more similar to xt

than imposter zt and {xt,yt, zt} ∈ Rd. Sd and S+
d are the set of symmetric and positive semi-

definite (PSD) matrix of size d × d, respectively. I is the identity matrix. Matrix Frobenius Norm
∥M∥F =

√
Tr(M⊤M). Let mi and mj denote the i-th row and j-th column of matrix M respec-

tively, and ℓ2,1-norm ∥M∥2,1 =
∑d

i ∥mi∥2. Operator [·]+ = max(·, 0) preserves the non-negative
part of the input value. DML aims at learning a metric M ∈ S+

d making similar instances have small
distances to each other and dissimilar ones far apart. The (squared) Mahalanobis distance between
pair (xt,yt) with metric M can be denoted as:

Dis2M (xt,yt) = (xt − yt)⊤M(xt − yt) = Tr(MAt
xy). (1)

At
xy = (xt − yt)(xt − yt)⊤ ∈ S+

d is the outer product of difference between instance xt and
yt. The distance in Eq.1 assumes that there is a single type of relationship between object features,
which uses univocal linkages between objects.

Multi-metric learning takes data heterogeneities into consideration. However, both single metric
learned by global DML and multiple metrics learned with local methods focus on exploiting locality
information, i.e., constraints or metrics are closely related to the localities. In particular, local DML
approaches mainly aim at learning a set of multiple metrics one for each local area. In this paper,
a general multi-metric configuration is investigated to deal with linkage ambiguities from both se-
mantic and locality perspectives. We denote the set of K multiple metrics to be learned as MK =
{M1,M2, . . . ,MK} and {Mk}Kk=1 ∈ S+

d . Similarity score between a pair of instances based on Mk,
w.l.o.g., can be set as the negative distance, i.e., fMk

(xt,yt) = −Dis2Mk
(xt,yt). In multi-metric

scenario, consequently, there will be a set of multiple similarity scores fMK
= {fMk

}Kk=1. Each
metric/score in the set reflects a particular semantic or spatial view of data. The overall similarity
score fv(xt,yt) = κv(fMK

(xt,yt)), v = {1, 2} and κv(·) is a functional operator closely related
to concrete applications, which maps the set of similarity scores w.r.t. all metrics to a single value.

With these discussions, the Unified Multi-Metric Learning (UM2L) framework can be denoted as:

min
MK

1

T

T∑
t=1

ℓ
(
f1(xt,yt)− f2(xt, zt)

)
+ λ

K∑
k=1

Ωk(Mk) . (2)
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The overall inter-instance similarity f1 and f2 are based on operators κ1 and κ2 respectively. ℓ(·) is
a convex loss function which encourages (xt,yt) to have larger overall similarity score than (xt, zt).
Note that although inter-instance similarities are defined on different metrics in MK , the convex loss
function ℓ(·) acts as a bridge and makes the similarities measured by different metrics comparable as
in [20]. The fact that triplet restrictions being provided without specifying concrete measurements
makes it reasonable to use flexible κs. For instance, in a social network, similar nodes only share
some common interests (features) rather than consistently possessing all interests. Tendency on
different types of hobbies can be reflected by various metrics. Therefore, the similarity scores may
be calculated with different measurements and operator κv is used for taking charge of “selecting”
or “integrating” the right base metric for measuring similarities. The choices of loss functions and
κs are substantial issues in this framework and will be described later. Convex regularizer Ωk(Mk)
can impose prior or structure information on base metric Mk. λ ≥ 0 is a balance parameter.

2.1 Choices for κ

UM2L takes both spatial and ambiguous semantic linkages into account based on the configurations
of κ, which integrates or selects base metrics. As an integrator, in applications where locality related
multiple metrics are needed, κ can be an RBF like function which decreases as the distance is in-
creasing. The locality determines the impact of each metric. When κ acts as a selector, UM2L should
automatically assign triplets to one of the metrics which can explain instance similarity/dissimilarity
best. Besides, from the aspect of loss function ℓ(·), the elected fs form a comparable set of simi-
larity measurements [17, 20]. In this case, we may implement the operator κ by choosing the most
remarkable base metric making the pair of instances xt and yt similar. Advantages of selection
mechanism are two folds. First, it reduces the impact of initial triplets construction in localities [19];
second, it stresses the most evident semantic and reflects the consideration of ambiguous semantics
in a linkage construction. Choices of κs heavily depend on concrete applications. It is actually a
combiner and can get inspiration from ensemble methods [24]. Here, we mainly consider 4 different
types of linkage based on various sets of κs as follows.

Apical Dominance Similarity (ADS): which is named after the phenomenon in auxanology of
plants, where the most important term dominates the evaluation. In this case, κ1 = κ2 = max(·),
i.e., maximum similarity among all similarities calculated with MK on similar pair (xt,yt) should
be larger than the maximum similarity of (xt, zt). This corresponds to similar pairs being close
to each other under at least one measurement, meanwhile dissimilar pairs are disconnected by all
different measurements. This type of linkage generation often occurs in social network applications,
e.g., nodes are linked together for a portion of similar orientations while nodes are unlinked because
there are no common interests. By explicitly modeling each node in a social network as an instance,
each of the base metrics {Mk}Kk=1 can represent parts of semantics in linkages. Then the dissimilar
pair in a triplet, e.g., the non-friendship relationship, should be with small similarity scores over
MK ; while for the similar pair, there should be at least one base similarity score with high value,
which reflects their common interests [3, 11].

One Vote Similarity (OVS): which indicates the existence of potential key metric in MK , i.e.,
either similar or dissimilar pair is judged by at least one key metric respectively, while remaining
metrics with other semantic meanings are ignored. In this case, κ1 = max(·) and κ2 = min(·). This
type of similarity should usually be applied as an “interpreter” in domains like image, video which
are with complicated semantics. The learned metrics reveal different latent concepts in objects. Note
that simply applying OVS in UM2L with impropriate regularizer Ω will lead to a trivial solution, i.e.,
Mk = 0, which satisfies all similar pair restrictions yet has no generalization ability. Therefore, we
need to set Ωk(Mk) = ∥Mk − I∥2F or restrict the trace of Mk to equal to 1.

Rank Grouping Similarity (RGS): which groups the pairs and makes the similar pairs with higher
ranks than dissimilar ones. This is the most rigorous similarity and we also refer it as One-Vote
Veto Similarity (OV2S). In this case, κ1 = min(·) while κ2 = max(·), which regards the pairs as
dissimilar even when there is only one metric denying the linkage. This case is usually applied to
applications where latent multiple views exist and different views are measured by different metrics
in MK . In these applications, it is obviously required that all potential views obtain consistencies,
and weak conflict detected by one metric should also be punished by RGS (OV2S) loss.

Average Case Similarity (ACS): which treats all metrics in MK equally, i.e., κ1 = κ2 =
∑

(·).
This is the general case when there is no prior knowledge on applications.
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There are many derivatives of similarity where κv is configured as min(·), max(·) and
∑

(·). Fur-
thermore, κv in fact can be with richer forms, and we will leave the discussions of choosing different
κs later in section 3. Besides, in the framework, multiple choices of the regularizer Ωk(·) can be
made. As most DML methods [14], Ωk(Mk) can be set as ∥Mk∥2F . Yet it also can be incorporated
with more structural information, e.g., we can configure Ω(Mk) = ∥Mk∥2,1, where the row/column
sparsity filters influential features for composing linkages in a network; or Ωk(Mk) = Tr(Mk),
which guarantees the low rank property for all metrics. Due to the high applicability of the proposed
framework, we name it as UM2L (Unified Multi-Metric Learning).

2.2 General Solutions for UM2L

UM2L can be solved alternatively between metrics MK and affiliation portion of each instance,
when κ is a piecewise linear operator such as max(·) and min(·). For example, in the case
of ADS, the metric used to measure the similarity of pair (xt,yt) is decided by: ktv,∗ =

argmaxk fMk
(xt,yt), which is the index of the metric Mk that has the largest similarity value

over the pair. Once the dominating key metric of each instance is found, the whole optimization
problem is convex w.r.t. each Mk, which can be easily optimized. On account of the convexity of
each sub-problem in the alternating approach, the whole objective is ensured to decrease in itera-
tions so as to converge eventually. It is notable that when dealing with a single triplet in a stochastic
approach, the convergence can be guaranteed as well in Theorem 1, which will be introduced later.

In batch case, for facilitating the discussion, we can implement ℓ(·) as the smooth hinge loss, i.e.,
ℓ(x) = [ 12 − x]+ if x ≥ 1 or x ≤ 0 and equals to 1

2 (1 − x)2 otherwise. If trace norm Ωk(Mk) =
Tr(Mk) is used, MK can be solved with accelerated projected gradient descent method. If the
whole objective in Eq. 2 is denoted as LMK

, the gradient w.r.t. one metric Mk can be computed as:

∂LMK

∂Mk
=

1

T

∑
t∈T̂k

∂ℓ(Tr(Mkt
2,∗

At
xz)− Tr(Mkt

1,∗
At

xy))

∂Mk
+ λI =

1

T

∑
t∈T̂k

∇t
Mk

(at) + λI , (3)

where the first part is a sum of gradients over the triplets subset T̂k whose membership indexes
containing k, i.e., T̂k = {t | k = kt1,∗ or k = kt2,∗}. The separated gradient ∇t

Mk
(at), with

at = Tr(Mkt
2,∗

At
xz)− Tr(Mkt

1,∗
At

xy), for triplet t ∈ T̂k is:

∇t
Mk

(at) =

{
0 if at ≥ 1
δ(k = kt

1,∗)A
t
xy − δ(k = kt

2,∗)A
t
xz if at ≤ 0

δ(k = kt
1,∗)(1− at)At

xy − δ(k = kt
2,∗)(1− at)At

xz otherwise
.

δ(·) is the Kronecker delta function, which contributes to the computation of the gradient when κv is
optimized by Mk. After accelerated gradient descent, a projection step is conducted to maintain the
PSD property of each solution. If structured sparsity is stressed, ℓ2,1-norm is used as a regularizer,
i.e., Ωk(Mk) = ∥Mk∥2,1. FISTA [2] can be used to optimize the non-smooth regularizer efficiently:
after a gradient descent with step size γ on the smooth loss to get an intermediate solution Vk =
Mk−γ 1

T

∑
t∈T̂k

∇t
Mk

(at), the following proximal sub-problem is conducted to get a further update:

M ′
k = argmin

M∈Sd

1

2
∥M − Vk∥2F + λ∥M∥2,1 . (4)

The PSD property of Mk can be ensured by a projection in each iteration, or can often be preserved
by last step projection [14]. Hence, in Eq. 4, only symmetric constraint of Mk is imposed. Since
ℓ2,1-norm considers only one-side (row-wise) property of a matrix, Lim et al. [12] uses iterative
symmetric projection to get a solution, which has heavy computational cost in some cases. In a
reweighted way, the proximal subproblem can be tackled by the following lemma efficiently.

Lemma 1 The proximal problem in Eq. 4 can be solved by updating diagonal matrixes D1 and D2

and symmetric matrix M alternatively:

{D1,ii =
1

2∥mi∥2
, D2,ii =

1

2∥mi∥2
}di=1 ; vec(M) = (I ⊗ (I +

λ

2
D1)+ (

λ

2
D2 ⊗ I))−1vec(Vk) ,

where vec(·) is the vector form of a matrix and ⊗ means the Kronecker product. Due to the diagonal
property of each term, the update of M can be further simplified.1

1Detailed derivation and efficiency comparison are in the supplementary material.
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The update of M in Lemma 1 takes row-wise and column-wise ℓ2-norm into consideration simulta-
neously, and usually gets converged in about 5 ∼ 10 iterations.

The batch solution for UM2L can benefit from the acceleration strategy [2]. The computational cost
of a full gradient, however, sometimes becomes the dominant expense owing to the huge number
of triplets. Inspired by [6], we propose a stochastic solution, which manipulates one triplet in each
iteration. In the s-th iteration, we sample a triplet (xs,ys, zs) uniformly and update current solution
set Ms

K = {Ms
k}Kk=1. The whole objective of s-th iteration with Ms

K is:

Ls
Ms

K
= ℓ(f1(xs,ys)− f2(xs, zs)) + λ

K∑
k=1

Ωk(M
s
k). (5)

Similar to proximal gradient solution, after doing (sub-) gradient descent on the loss function
in Eq. 5, proximal operator can be utilized to update base metrics {Ms

k}Kk=1. The stochas-
tic strategy is guaranteed to converge theoretically. By denoting M∗

K = (M∗
1 , . . . ,M

∗
K) ∈

argmin
∑S

s=1 Ls(Ms
1 , . . . ,M

s
K) as the optimal solution, given totally S iterations, we have:

Theorem 1 Suppose in UM2L framework, the loss ℓ(·) is a convex one and selection operator κv

is in piecewise linear form. If each training instance ∥x∥2 ≤ 1, the sub-gradient set of Ωk(·) is
bounded by R, i.e., ∥∂Ωk(Mk)∥2F ≤ R2 and sub-gradient of loss ℓ(·) is bounded by C. When for
each base metric2 ∥Mk −M∗

k∥F ≤ D, it holds that:3

S∑
s=1

Ls
Ms

K
− Ls

M∗
K
≤ 2GD +B

√
S

with G2 = max(C2, R2) and B = (D
2

2 + 8G2). Given hinge loss, C2 = 16.

3 Related Work and Discussions

Global DML approaches devote to finding a single metric for all instances [5, 20] while local DML
approaches further take spatial data heterogeneities into consideration. Recently, different types of
local metric approaches are proposed, either assigning cluster-specific metric to instance based on
locality [20] or constructing local metrics generatively [13] or discriminatively [15, 18]. Further-
more, instance specific metric learning methods [7, 22] extend the locality properties of linkages to
extreme and gain improved classification performance. However, these DML methods, either global
or local, take univocal semantic from label, namely, the side information.

Richness of semantics is noticed and exploited by machine learning researchers [3, 11]. In DML
community, PSD [9] and SCA [4] are proposed. PSD works as collective classification which is
less related to UM2L. SCA, a multi-metric learning method based on pairwise constraints, focuses
on learning metrics under one specific type of ambiguities, i.e., linkages are with competitive se-
mantic meanings. UM2L is a more general multi-metric learning framework which considers triplet
constraints and various kinds of ambiguous linkages from both localities and semantic views.

UM2L maintains good compatibilities and can degenerate to several state-of-the-art DML methods.
For example, by considering univocal semantic (K = 1), we can get a global metric learning model
used in [14]. If we further choose the hinge loss and set the regularizer Ω(M) = tr(MB) with B
an intra-class similar pair covariance matrix, UM2L degrades to LMNN [20]. With trace norm on
M , [10] is recovered. For multi-metric approaches, if we set κv as the indicator of classes for the
second instance in a similar or dissimilar pair, UM2L can be transformed to MMLMNN [20].

4 Experiments on Different Types of Applications

Due to different choices of κs in UM2L, we test the framework in diverse real applications, namely
social linkages/feature pattern discovering, classification, physical semantic meaning distinguishing
and visualization on multi-view semantic detection. To simplify the discussion, we use alternative
batch solver, smooth hinge loss and set regularizer Ωk(Mk) = ∥Mk∥2,1 if without further statement.
Triplets are constructed with 3 targets and 10 impostors with Euclidean nearest neighbors.

2This condition generally holds according to the norm regularizer in the objective function.
3Detailed proof can be found in the supplementary material.
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4.1 Comparisons on Social Linkage/Feature Pattern Discovering

ADS configuration is designed for social linkage and pattern discovering. To validate the effective-
ness of UM2LADS , we test it on social network data and synthetic data to show its grouping ability
on linkages and features, respectively.

Social linkages come from 6 real world Facebook network datasets from [11]. Given friendship
circles of an ego user and users’ binary features, the goal of ego-user linkages discovering is to utilize
the overall linkage and figure out how users are grouped. We form instances by taking absolute value
of differences between features of ego and the others. After circles with < 5 nodes are removed,
K is configured as the number of circles remained. Pairwise distance is computed by each metric
in MK , and a threshold is tuned on the training set to filter out irrelevant users. Thus, users with
different common hobbies are grouped together. MAC detects group assignments based on binary
features [8]; SCA constructs user linkages in a probabilistic way, and EGO [11] can directly output
user circles. KMeans (KM) and Spectral Clustering (SC) directly group users based on their features
without using linkages. Performance is measured by Balanced Error Rate (BER) [11], the lower the
better. Results are listed in Table 1, which shows UM2LADS performs the best on most datasets.

Table 1: BER of the linkage discovering compar-
isons on Facebook datasets: UM2LADS vs. others

BER↓ KM SP MAC SCA EGO UM2L

Facebook_348 .669 .669 .730 .847 .426 .405
Facebook_414 .721 .721 .699 .870 .449 .420
Facebook_686 .637 .637 .681 .772 .446 .391
Facebook_698 .661 .661 .640 .729 .392 .420
Facebook_1684 .807 .807 .767 .844 .491 .465
Facebook_3980 .708 .708 .541 .667 .538 .402

Table 2: BER of feature pattern discovery compar-
isons on synthetic datasets: UM2LADS vs. others

BER↓ KM SP SCA EGO UM2L

syn1 .382 .382 .392 .467 .355
syn2 .564 .564 .399 .428 .323
ad .670 .670 .400 .583 .381
ccd .244 .244 .250 .225 .071
my_movie .370 .370 .249 .347 .155
reuters .704 .704 .400 .609 .398

Similarly, we test feature pattern discovering ability of UM2LADS on 4 transformed multi-view
datasets. For each dataset, we first extract principal components of each view, and construct sub-
linkage candidates between instances with random thresholds on each single view. Thus, these
candidates are various among different views. After that, the overall linkage is further generated
from these candidates using “or” operation. With features on each view and the overall linkage, the
goal of feature pattern discovering is to reveal responsible features for each sub-linkage. Zero-value
rows/columns of learned metrics indicate irrelevant features in the corresponding group. Syn1 and
syn2 are purely synthetic datasets with features sampled from Uniform, Beta, Binomial, Gamma and
Normal distributions using different parameters. BER results are listed in Table 2 and UM2LADS

achieves the best on all datasets. These assessments indicate UM2LADS can figure out reasonable
linkages or patterns hidden behind observations, and even better than domain specific methods.

4.2 Comparisons on Classification Performance

To test classification generalization performance, our framework is compared with 8 state-of-the-art
metric learning methods on 10 benchmark datasets and 8 large scale datasets (results of 8 large scale
data are in the supplementary material). In detail, global DML methods: ITML [5], LMNN [20]
and EIG [21]; local and instance specific DML methods: PLML [18], SCML (local version) [15];
MMLMNN [20], ISD [22] and SCA [4].

In UM2L, distance values from different metrics are comparable. Therefore in the test phase, we first
compute 3 nearest neighbors for testing instance x̃ using each base metric Mk. Then 3×K distance
values are collected adaptively and the smallest 3 ones (3 instances with the highest similarity scores)
form neighbor candidates. Majority voting over them is used for prediction.

Evaluations on classification are repeated for 30 times. In each trial, 70% of instances are used
for training, and the remaining part is for test. Cross-validation is employed for parameters tun-
ing. Generalization errors (mean±std.) based on 3NN are listed in Table 3 where Euclidean dis-
tance results (EUCLID) are also listed as a baseline. Considering the abilities of multi-semantic
description of ADS and the rigorous restrictions of RGS, UM2LADS/RGS are implemented in this
comparison. Number of metrics K is configured as the number of classes. Table 3 clearly shows
that UM2LADS/RGS perform well on most datasets. Especially, UM2LRGS achieves best on more
datasets according to t-tests and this can be attributed to the rigorous restrictions of RGS.
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Table 3: Comparisons of classification performance (test errors, mean ± std.) based on 3NN. UM2LADS and
UM2LRGS are compared. The best performance on each dataset is in bold. Last two rows list the Win/Tie/Lose
counts of UM2LADS/RGS against other methods on all datasets with t-test at significance level 95%.

UM2LADS UM2LRGS PLML SCML MMLMNN ISD SCA ITML LMNN EIG EUCLID

Autompg .201±.034 .225±.031 .265±.048 .253±.026 .256±.032 .288±.033 .286±.037 .292±.032 .259±.037 .266±.031 .260±.036
Clean1 .070±.018 .086±.020 .098±.027 .100±.027 .097±.022 .143±.023 .306±.072 .141±.024 .084±.021 .127±.021 .139±.023
German .281±.019 .284±.030 .280±.016 .302±.021 .289±.019 .297±.017 .292±.023 .288±.021 .292±.021 .284±.014 .296±.021
Glass .312±.043 .293±.047 .389±.050 .328±.054 .296±.047 .334±.050 .529±.053 .311±.038 .315±.049 .314±.050 .307±.042
Hayes-r .276±.044 .307±.068 .436±.201 .296±.053 .282±.062 .378±.093 .379±.068 .342±.080 .314±.072 .289±.067 .398±.046
Heart-s .190±.035 .194±.063 .365±.127 .205±.040 .191±.037 .192±.036 .203±.039 .186±.032 .200±.026 .189±.034 .190±.030
House-v .051±.015 .048±.013 .121±.240 .066±.019 .055±.017 .072±.024 .174±.075 .063±.023 .061±.017 .080±.024 .083±.025
Liver-d .363±.045 .342±.047 .361±.055 .371±.042 .372±.045 .364±.042 .408±.011 .377±.052 .373±.045 .380±.037 .384±.040
Segment .023±.038 .029±.034 .041±.031 .041±.008 .036±.006 .063±.009 .324±.043 .050±.012 .039±.006 .059±.016 .050±.007
Sonar .136±.032 .132±.036 .171±.048 .193±.045 .157±.038 .182±.038 .220±.040 .174±.039 .145±.032 .159±.042 .168±.036

W / T / L UM2LADS vs. others 6 / 4 / 0 7 / 3 / 0 4 / 6 / 0 7 / 3 / 0 8 / 2 / 0 6 / 4 / 0 5 / 5 / 0 6 / 4 / 0 8 / 2 / 0
W / T / L UM2LRGS vs. others 6 / 4 / 0 8 / 2 / 0 5 / 5 / 0 9 / 1 / 0 8 / 2 / 0 8 / 2 / 0 8 / 2 / 0 7 / 3 / 0 8 / 2 / 0

(a) LMNN (b) PLML 1 (c) PLML 2 (d) MMLMNN 1 (e) MMLMNN 2 (f) MMLMNN 3

(g) UM2L 1 (h) UM2L 2 (i) UM2L 3 (j) UM2L 4 (k) UM2L 5 (l) UM2L 6

Figure 1: Word clouds generated from the results of compared DML methods. The size of word depends on the
importance weight of each word (feature). The weight is calculated by decomposing each metric Mk = LkL

⊤
k ,

and calculate the ℓ2-norm of each row in Lk, where each row corresponds to a specific word. Each subplot
gives a word cloud for a base metric learned from DML approaches.

4.3 Comparisons of Latent Semantic Discovering

UM2L is proposed for DML with both localities and semantic linkages considered. Hence, to inves-
tigate the ability of latent semantics discovering, two assessments in real applications are performed,
i.e., Academic Paper Linkages Explanation (APLE) and Image Weak Label Discovering (IWLD).
In APLE, data are collected from 2012-2015 ICML papers, which can be connected with each other
by more than one topic, yet only the session ID is captured to form explicit linkages. 3 main di-
rections of sessions are picked up in this assessment, i.e., “feature learning”, “online learning” and
“deep learning”. No sub-fields and additional labels/topics are provided. Simplest TF-IDF is used
to extract features, which forms a corpus of 220 papers and 1622 words in total. Aiming at finding
the hidden linkages together with their causes, both UM2LADS and UM2LOVS are invoked. To avoid
trivial solutions, regularizer for each metric is configured as Ωk(Mk) = ∥Mk − I∥2F for UM2LOVS.
All feature (word) weights and correlations can be provided by learned metrics, i.e., with decompo-
sition Mk = LkL

⊤
k , the ℓ2-norm value of each row in Lk can be regarded as the weight for each

feature (word). The importance of feature (word) weights is demonstrated in word clouds in Fig. 1,
where the size of fonts reflects the weights of each word. Due to the page limits, supplementary
materials represent full evaluations.

Fig. 1 shows the results of LMNN [20] (a), PLML [18] (b, c), MMLMNN [20] (d, e, f) and UM2LOVS

(g ∼ l) with K = 6, respectively. Global method LMNN returns one subplot. The metric learned by
LMNN perhaps has discriminative ability but the weights of words cannot distinguish subfields in 3
selective domains. For multi-metric learning approaches PLML and MMLMNN, though they can pro-
vide more than one base metric and consequently have multiple word clouds, the words presented in
subplots are not with legible physical semantic meanings. Especially, PLML outputs multiple met-
rics which are similar to each other (tends to global learner’s behavior) and only focus on first part
of the alphabet, while MMLMNN by default only learns multiple metrics with the number of base
metrics equaling to the number of classes. However, results of UM2LOVS clearly demonstrate all 3
fields. On session “online learning”, it can discover different sub-fields such as “online convex opti-
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(a) (sea, mountains) (b) (mountains, sea) (c) (sea, sunset)

Figure 2: Results of visual semantic discovery on im-
ages. The first annotation in the bracket is the provided
weak label. The second one is one of the latent semantic
labels discovered by UM2L.

(a) ADS subspace 1 (b) ADS subspace 2 (c) RGS subspace

Figure 3: Subspaces discovered by UM2LADS (a,b)
and UM2LRGS (c). Instances possess 2 semantic
properties, i.e., color and shape. Blue dot-lines give
the decision boundary.

mization” (g and h), and “online (multi-) armed bandit problem” (j); for session “feature learning”,
it has “feature score” (i) and “PCA projection” (l); and for “deep learning”, the word cloud returns
popular words like “network layer”, “autoencoder” and “layer”(k).

Besides APLE, the second application is about weak label discovering in images from [23], where
the most obvious label for each image is used for triplets constraints generation. UM2LOVS can
obtain multiple metrics, each of which is with a certain visual semantic. By computing similarities
based on different metrics, latent semantics can be discovered, i.e., if we assume images connected
with high similarities share the same label, missing labels can be completed as in Fig. 2. More weak
label results can be found in the supplementary material.

4.4 Investigations of Latent Multi-View Detection

Another direct application of UM2L is hidden multi-view detection, where data can be described by
multiple views from different channels yet feature partitions are not clearly provided [16]. Data with
multi-view goes consistent with the assumption of ADS or RGS configuration. ADS emphasizes the
existence of relevant views and aims at decomposing helpful aspects or views; while RGS requires
full accordance among views. Trace norm regularizes the approach in this part to get low dimen-
sional projection. UM2L framework facilitates the understanding of data by decomposing each base
metric to low dimensional subspace, i.e., for each base metric Mk, 2 eigen-vectors Lk ∈ Rd×2

corresponding to the largest 2 eigen-values are picked as orthogonal bases.

The hidden multi-view data [1] are composed of 200 instances and each instance has two hidden
views, namely color and shape. We perform UM2LADS/RGS on this dataset with K = 2. Results of
other methods such as SCA can be found in the supplementary material. Fig. 3 (a) (b) give the 2-D
visualization results by plotting the projected instances in subspaces corresponding to metric M1

and M2 of UM2LADS. It clearly shows that M1 captures the semantic view of color, and M2 reflects
the meaning of shape. While for UM2LRGS, the visualization result of one of the obtained metrics
is showed in Fig. 3 (c). It can be clearly found that both UM2LADS and UM2LRGS can capture the
two different semantic views hidden in data. Moreover, since UM2LRGS requires more accordance,
it can capture these physical meanings with a single metric.

5 Conclusion

In this paper, we propose the Unified Multi-Metric Learning (UM2L) framework which can exploit
side information from multiple aspects such as locality and semantics linkage constraints. It is no-
table that both types of constraints can be absorbed in the multi-metric loss functions with a type of
flexible function operator κ in UM2L. By implementing κ in different forms, UM2L can be used for
local metric learning in classification, latent semantic linkage discovering, etc., or degrade to state-
of-the-art DML approaches. The regularizer in UM2L is flexible for different purposes. UM2L can be
solved by various optimization techniques such as proximal gradient and accelerated stochastic ap-
proaches, and theoretical guarantee on the convergence is proved. Experiments show the superiority
of UM2L in classification performance and hidden semantics discovery. Automatic determination of
the number of base metrics is an interesting future work.
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