
Deep Exploration via Bootstrapped DQN

Ian Osband1,2, Charles Blundell2, Alexander Pritzel2, Benjamin Van Roy1

1Stanford University, 2Google DeepMind
{iosband, cblundell, apritzel}@google.com, bvr@stanford.edu

Abstract

E�cient exploration remains a major challenge for reinforcement learning
(RL). Common dithering strategies for exploration, such as ‘-greedy, do
not carry out temporally-extended (or deep) exploration; this can lead
to exponentially larger data requirements. However, most algorithms for
statistically e�cient RL are not computationally tractable in complex en-
vironments. Randomized value functions o�er a promising approach to
e�cient exploration with generalization, but existing algorithms are not
compatible with nonlinearly parameterized value functions. As a first step
towards addressing such contexts we develop bootstrapped DQN. We demon-
strate that bootstrapped DQN can combine deep exploration with deep
neural networks for exponentially faster learning than any dithering strat-
egy. In the Arcade Learning Environment bootstrapped DQN substantially
improves learning speed and cumulative performance across most games.

1 Introduction

We study the reinforcement learning (RL) problem where an agent interacts with an unknown
environment. The agent takes a sequence of actions in order to maximize cumulative rewards.
Unlike standard planning problems, an RL agent does not begin with perfect knowledge
of the environment, but learns through experience. This leads to a fundamental trade-o�
of exploration versus exploitation; the agent may improve its future rewards by exploring
poorly understood states and actions, but this may require sacrificing immediate rewards. To
learn e�ciently an agent should explore only when there are valuable learning opportunities.
Further, since any action may have long term consequences, the agent should reason about
the informational value of possible observation sequences. Without this sort of temporally
extended (deep) exploration, learning times can worsen by an exponential factor.
The theoretical RL literature o�ers a variety of provably-e�cient approaches to deep explo-
ration [9]. However, most of these are designed for Markov decision processes (MDPs) with
small finite state spaces, while others require solving computationally intractable planning
tasks [8]. These algorithms are not practical in complex environments where an agent must
generalize to operate e�ectively. For this reason, large-scale applications of RL have relied
upon statistically ine�cient strategies for exploration [12] or even no exploration at all [23].
We review related literature in more detail in Section 4.
Common dithering strategies, such as ‘-greedy, approximate the value of an action by
a single number. Most of the time they pick the action with the highest estimate, but
sometimes they choose another action at random. In this paper, we consider an alternative
approach to e�cient exploration inspired by Thompson sampling. These algorithms have
some notion of uncertainty and instead maintain a distribution over possible values. They
explore by randomly select a policy according to the probability it is the optimal policy.
Recent work has shown that randomized value functions can implement something similar
to Thompson sampling without the need for an intractable exact posterior update. However,
this work is restricted to linearly-parameterized value functions [16]. We present a natural

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.



extension of this approach that enables use of complex non-linear generalization methods
such as deep neural networks. We show that the bootstrap with random initialization can
produce reasonable uncertainty estimates for neural networks at low computational cost.
Bootstrapped DQN leverages these uncertainty estimates for e�cient (and deep) exploration.
We demonstrate that these benefits can extend to large scale problems that are not designed
to highlight deep exploration. Bootstrapped DQN substantially reduces learning times and
improves performance across most games. This algorithm is computationally e�cient and
parallelizable; on a single machine our implementation runs roughly 20% slower than DQN.

2 Uncertainty for neural networks

Deep neural networks (DNN) represent the state of the art in many supervised and re-
inforcement learning domains [12]. We want an exploration strategy that is statistically
computationally e�cient together with a DNN representation of the value function. To
explore e�ciently, the first step to quantify uncertainty in value estimates so that the agent
can judge potential benefits of exploratory actions. The neural network literature presents a
sizable body of work on uncertainty quantification founded on parametric Bayesian inference
[3, 7]. We actually found the simple non-parametric bootstrap with random initialization [5]
more e�ective in our experiments, but the main ideas of this paper would apply with any
other approach to uncertainty in DNNs.
The bootstrap principle is to approximate a population distribution by a sample distribution
[6]. In its most common form, the bootstrap takes as input a data set D and an estimator Â.
To generate a sample from the bootstrapped distribution, a data set D̃ of cardinality equal
to that of D is sampled uniformly with replacement from D. The bootstrap sample estimate
is then taken to be Â(D̃). The bootstrap is widely hailed as a great advance of 20th century
applied statistics and even comes with theoretical guarantees [2]. In Figure 1a we present
an e�cient and scalable method for generating bootstrap samples from a large and deep
neural network. The network consists of a shared architecture with K bootstrapped “heads”
branching o� independently. Each head is trained only on its bootstrapped sub-sample
of the data and represents a single bootstrap sample Â(D̃). The shared network learns a
joint feature representation across all the data, which can provide significant computational
advantages at the cost of lower diversity between heads. This type of bootstrap can be
trained e�ciently in a single forward/backward pass; it can be thought of as a data-dependent
dropout, where the dropout mask for each head is fixed for each data point [19].

(a) Shared network architecture (b) Gaussian process posterior (c) Bootstrapped neural nets

Figure 1: Bootstrapped neural nets can produce reasonable posterior estimates for regression.

Figure 1 presents an example of uncertainty estimates from bootstrapped neural networks on
a regression task with noisy data. We trained a fully-connected 2-layer neural networks with
50 rectified linear units (ReLU) in each layer on 50 bootstrapped samples from the data.
As is standard, we initialize these networks with random parameter values, this induces an
important initial diversity in the models. We were unable to generate e�ective uncertainty
estimates for this problem using the dropout approach in prior literature [7]. Further details
are provided in Appendix A.

3 Bootstrapped DQN

For a policy fi we define the value of an action a in state s Qfi(s, a) := Es,a,fi [
qŒ

t=1

“trt],
where “ œ (0, 1) is a discount factor that balances immediate versus future rewards rt. This
expectation indicates that the initial state is s, the initial action is a, and thereafter actions

2



are selected by the policy fi. The optimal value is Qú(s, a) := maxfi Qfi(s, a). To scale to
large problems, we learn a parameterized estimate of the Q-value function Q(s, a; ◊) rather
than a tabular encoding. We use a neural network to estimate this value.
The Q-learning update from state st, action at, reward rt and new state st+1

is given by
◊t+1

Ω ◊t + –(yQ
t ≠ Q(st, at; ◊t))Ò◊Q(st, at; ◊t) (1)

where – is the scalar learning rate and yQ
t is the target value rt + “ maxa Q(st+1

, a; ◊≠). ◊≠

are target network parameters fixed ◊≠ = ◊t.
Several important modifications to the Q-learning update improve stability for DQN [12].
First the algorithm learns from sampled transitions from an experience bu�er, rather than
learning fully online. Second the algorithm uses a target network with parameters ◊≠ that
are copied from the learning network ◊≠ Ω ◊t only every · time steps and then kept fixed in
between updates. Double DQN [25] modifies the target yQ

t and helps further1:

yQ
t Ω rt + “ max

a
Q

!
st+1

, arg max
a

Q(st+1

, a; ◊t); ◊≠"
. (2)

Bootstrapped DQN modifies DQN to approximate a distribution over Q-values via the
bootstrap. At the start of each episode, bootstrapped DQN samples a single Q-value function
from its approximate posterior. The agent then follows the policy which is optimal for
that sample for the duration of the episode. This is a natural adaptation of the Thompson
sampling heuristic to RL that allows for temporally extended (or deep) exploration [21, 13].
We implement this algorithm e�ciently by building up K œ N bootstrapped estimates
of the Q-value function in parallel as in Figure 1a. Importantly, each one of these value
function function heads Qk(s, a; ◊) is trained against its own target network Qk(s, a; ◊≠).
This means that each Q

1

, .., QK provide a temporally extended (and consistent) estimate
of the value uncertainty via TD estimates. In order to keep track of which data belongs to
which bootstrap head we store flags w

1

, .., wK œ {0, 1} indicating which heads are privy to
which data. We approximate a bootstrap sample by selecting k œ {1, .., K} uniformly at
random and following Qk for the duration of that episode. We present a detailed algorithm
for our implementation of bootstrapped DQN in Appendix B.

4 Related work

The observation that temporally extended exploration is necessary for e�cient reinforcement
learning is not new. For any prior distribution over MDPs, the optimal exploration strategy
is available through dynamic programming in the Bayesian belief state space. However, the
exact solution is intractable even for very simple systems[8]. Many successful RL applications
focus on generalization and planning but address exploration only via ine�cient exploration
[12] or even none at all [23]. However, such exploration strategies can be highly ine�cient.
Many exploration strategies are guided by the principle of “optimism in the face of uncertainty”
(OFU). These algorithms add an exploration bonus to values of state-action pairs that
may lead to useful learning and select actions to maximize these adjusted values. This
approach was first proposed for finite-armed bandits [11], but the principle has been extended
successfully across bandits with generalization and tabular RL [9]. Except for particular
deterministic contexts [27], OFU methods that lead to e�cient RL in complex domains
have been computationally intractable. The work of [20] aims to add an e�ective bonus
through a variation of DQN. The resulting algorithm relies on a large number of hand-tuned
parameters and is only suitable for application to deterministic problems. We compare our
results on Atari to theirs in Appendix D and find that bootstrapped DQN o�ers a significant
improvement over previous methods.
Perhaps the oldest heuristic for balancing exploration with exploitation is given by Thompson
sampling [24]. This bandit algorithm takes a single sample from the posterior at every time
step and chooses the action which is optimal for that time step. To apply the Thompson
sampling principle to RL, an agent should sample a value function from its posterior. Naive
applications of Thompson sampling to RL which resample every timestep can be extremely

1In this paper we use the DDQN update for all DQN variants unless explicitly stated.

3



ine�cient. The agent must also commit to this sample for several time steps in order to
achieve deep exploration [21, 8]. The algorithm PSRL does exactly this, with state of the
art guarantees [13, 14]. However, this algorithm still requires solving a single known MDP,
which will usually be intractable for large systems.
Our new algorithm, bootstrapped DQN, approximates this approach to exploration via
randomized value functions sampled from an approximate posterior. Recently, authors have
proposed the RLSVI algorithm which accomplishes this for linearly parameterized value
functions. Surprisingly, RLSVI recovers state of the art guarantees in the setting with
tabular basis functions, but its performance is crucially dependent upon a suitable linear
representation of the value function [16]. We extend these ideas to produce an algorithm
that can simultaneously perform generalization and exploration with a flexible nonlinear
value function representation. Our method is simple, general and compatible with almost all
advances in deep RL at low computational cost and with few tuning parameters.

5 Deep Exploration

Uncertainty estimates allow an agent to direct its exploration at potentially informative states
and actions. In bandits, this choice of directed exploration rather than dithering generally
categorizes e�cient algorithms. The story in RL is not as simple, directed exploration is not
enough to guarantee e�ciency; the exploration must also be deep. Deep exploration means
exploration which is directed over multiple time steps; it can also be called “planning to
learn” or “far-sighted” exploration. Unlike bandit problems, which balance actions which
are immediately rewarding or immediately informative, RL settings require planning over
several time steps [10]. For exploitation, this means that an e�cient agent must consider the
future rewards over several time steps and not simply the myopic rewards. In exactly the
same way, e�cient exploration may require taking actions which are neither immediately
rewarding, nor immediately informative.
To illustrate this distinction, consider a simple deterministic chain {s≠3

, .., s
+3

} with three
step horizon starting from state s

0

. This MDP is known to the agent a priori, with
deterministic actions “left” and “right”. All states have zero reward, except for the leftmost
state s≠3

which has known reward ‘ > 0 and the rightmost state s
3

which is unknown. In
order to reach either a rewarding state or an informative state within three steps from s

0

the
agent must plan a consistent strategy over several time steps. Figure 2 depicts the planning
and look ahead trees for several algorithmic approaches in this example MDP. The action
“left” is gray, the action “right” is black. Rewarding states are depicted as red, informative
states as blue. Dashed lines indicate that the agent can plan ahead for either rewards or
information. Unlike bandit algorithms, an RL agent can plan to exploit future rewards. Only
an RL agent with deep exploration can plan to learn.

(a) Bandit algorithm (b) RL+dithering (c) RL+shallow explore (d) RL+deep explore

Figure 2: Planning, learning and exploration in RL.

4



5.1 Testing for deep exploration
We now present a series of didactic computational experiments designed to highlight the
need for deep exploration. These environments can be described by chains of length N > 3
in Figure 3. Each episode of interaction lasts N + 9 steps after which point the agent resets
to the initial state s

2

. These are toy problems intended to be expository rather than entirely
realistic. Balancing a well known and mildly successful strategy versus an unknown, but
potentially more rewarding, approach can emerge in many practical applications.

Figure 3: Scalable environments that requires deep exploration.

These environments may be described by a finite tabular MDP. However, we consider
algorithms which interact with the MDP only through raw pixel features. We consider
two feature mappings „

1hot

(st) := (1{x = st}) and „
therm

(st) := (1{x Æ st}) in {0, 1}N .
We present results for „

therm

, which worked better for all DQN variants due to better
generalization, but the di�erence was relatively small - see Appendix C. Thompson DQN
is the same as bootstrapped DQN, but resamples every timestep. Ensemble DQN uses the
same architecture as bootstrapped DQN, but with an ensemble policy.
We say that the algorithm has successfully learned the optimal policy when it has successfully
completed one hundred episodes with optimal reward of 10. For each chain length, we ran
each learning algorithm for 2000 episodes across three seeds. We plot the median time to learn
in Figure 4, together with a conservative lower bound of 99 + 2N≠11 on the expected time to
learn for any shallow exploration strategy [16]. Only bootstrapped DQN demonstrates a
graceful scaling to long chains which require deep exploration.

Figure 4: Only Bootstrapped DQN demonstrates deep exploration.

5.2 How does bootstrapped DQN drive deep exploration?
Bootstrapped DQN explores in a manner similar to the provably-e�cient algorithm PSRL
[13] but it uses a bootstrapped neural network to approximate a posterior sample for the value.
Unlike PSRL, bootstrapped DQN directly samples a value function and so does not require
further planning steps. This algorithm is similar to RLSVI, which is also provably-e�cient
[16], but with a neural network instead of linear value function and bootstrap instead of
Gaussian sampling. The analysis for the linear setting suggests that this nonlinear approach
will work well so long as the distribution {Q1, .., QK} remains stochastically optimistic [16],
or at least as spread out as the “correct” posterior.
Bootstrapped DQN relies upon random initialization of the network weights as a prior
to induce diversity. Surprisingly, we found this initial diversity was enough to maintain
diverse generalization to new and unseen states for large and deep neural networks. This
is e�ective for our experimental setting, but will not work in all situations. In general it
may be necessary to maintain some more rigorous notion of “prior”, potentially through
the use of artificial prior data to maintain diversity [15]. One potential explanation for the
e�cacy of simple random initialization is that unlike supervised learning or bandits, where
all networks fit the same data, each of our Qk heads has a unique target network. This,
together with stochastic minibatch and flexible nonlinear representations, means that even
small di�erences at initialization may become bigger as they refit to unique TD errors.

5



Bootstrapped DQN does not require that any single network Qk is initialized to the correct
policy of “right” at every step, which would be exponentially unlikely for large chains N . For
the algorithm to be successful in this example we only require that the networks generalize in
a diverse way to the actions they have never chosen in the states they have not visited very
often. Imagine that, in the example above, the network has made it as far as state Ñ < N ,
but never observed the action right a = 2. As long as one head k imagines Q(Ñ , 2) > Q(Ñ , 2)
then TD bootstrapping can propagate this signal back to s = 1 through the target network
to drive deep exploration. The expected time for these estimates at n to propagate to
at least one head grows gracefully in n, even for relatively small K, as our experiments
show. We expand upon this intuition with a video designed to highlight how bootstrapped
DQN demonstrates deep exploration https://youtu.be/e3KuV_d0EMk. We present further
evaluation on a di�cult stochastic MDP in Appendix C.

6 Arcade Learning Environment

We now evaluate our algorithm across 49 Atari games on the Arcade Learning Environment
[1]. Importantly, and unlike the experiments in Section 5, these domains are not specifically
designed to showcase our algorithm. In fact, many Atari games are structured so that
small rewards always indicate part of an optimal policy. This may be crucial for the strong
performance observed by dithering strategies2. We find that exploration via bootstrapped
DQN produces significant gains versus ‘-greedy in this setting. Bootstrapped DQN reaches
peak performance roughly similar to DQN. However, our improved exploration mean we reach
human performance on average 30% faster across all games. This translates to significantly
improved cumulative rewards through learning.
We follow the setup of [25] for our network architecture and benchmark our performance
against their algorithm. Our network structure is identical to the convolutional structure
of DQN [12] except we split 10 separate bootstrap heads after the convolutional layer
as per Figure 1a. Recently, several authors have provided architectural and algorithmic
improvements to DDQN [26, 18]. We do not compare our results to these since their advances
are orthogonal to our concern and could easily be incorporated to our bootstrapped DQN
design. Full details of our experimental set up are available in Appendix D.

6.1 Implementing bootstrapped DQN at scale
We now examine how to generate online bootstrap samples for DQN in a computationally
e�cient manner. We focus on three key questions: how many heads do we need, how should
we pass gradients to the shared network and how should we bootstrap data online? We make
significant compromises in order to maintain computational cost comparable to DQN.
Figure 5a presents the cumulative reward of bootstrapped DQN on the game Breakout, for
di�erent number of heads K. More heads leads to faster learning, but even a small number
of heads captures most of the benefits of bootstrapped DQN. We choose K = 10.

(a) Number of bootstrap heads K. (b) Probability of data sharing p.
Figure 5: Examining the sensitivities of bootstrapped DQN.

The shared network architecture allows us to train this combined network via backpropagation.
Feeding K network heads to the shared convolutional network e�ectively increases the learning
rate for this portion of the network. In some games, this leads to premature and sub-optimal
convergence. We found the best final scores by normalizing the gradients by 1/K, but this
also leads to slower early learning. See Appendix D for more details.

2By contrast, imagine that the agent received a small immediate reward for dying; dithering
strategies would be hopeless at solving this problem, just like Section 5.

6

https://youtu.be/e3KuV_d0EMk


To implement an online bootstrap we use an independent Bernoulli mask w
1

,..,wK≥Ber(p)
for each head in each episode3. These flags are stored in the memory replay bu�er and
identify which heads are trained on which data. However, when trained using a shared
minibatch the algorithm will also require an e�ective 1/p more iterations; this is undesirable
computationally. Surprisingly, we found the algorithm performed similarly irrespective of
p and all outperformed DQN, as shown in Figure 5b. This is strange and we discuss this
phenomenon in Appendix D. However, in light of this empirical observation for Atari, we
chose p=1 to save on minibatch passes. As a result bootstrapped DQN runs at similar
computational speed to vanilla DQN on identical hardware4.

6.2 E�cient exploration in Atari

We find that Bootstrapped DQN drives e�cient exploration in several Atari games. For
the same amount of game experience, bootstrapped DQN generally outperforms DQN with
‘-greedy exploration. Figure 6 demonstrates this e�ect for a diverse selection of games.

Figure 6: Bootstrapped DQN drives more e�cient exploration.

On games where DQN performs well, bootstrapped DQN typically performs better. Boot-
strapped DQN does not reach human performance on Amidar (DQN does) but does on Beam
Rider and Battle Zone (DQN does not). To summarize this improvement in learning time we
consider the number of frames required to reach human performance. If bootstrapped DQN
reaches human performance in 1/x frames of DQN we say it has improved by x. Figure 7
shows that Bootstrapped DQN typically reaches human performance significantly faster.

Figure 7: Bootstrapped DQN reaches human performance faster than DQN.

On most games where DQN does not reach human performance, bootstrapped DQN does
not solve the problem by itself. On some challenging Atari games where deep exploration is
conjectured to be important [25] our results are not entirely successful, but still promising.
In Frostbite, bootstrapped DQN reaches the second level much faster than DQN but network
instabilities cause the performance to crash. In Montezuma’s Revenge, bootstrapped DQN
reaches the first key after 20m frames (DQN never observes a reward even after 200m
frames) but does not properly learn from this experience5. Our results suggest that improved
exploration may help to solve these remaining games, but also highlight the importance of
other problems like network instability, reward clipping and temporally extended rewards.

3p=0.5 is double-or-nothing bootstrap [17], p=1 is ensemble with no bootstrapping at all.
4Our implementation K=10, p=1 ran with less than a 20% increase on wall-time versus DQN.
5An improved training method, such as prioritized replay [18] may help solve this problem.

7



6.3 Overall performance
Bootstrapped DQN is able to learn much faster than DQN. Figure 8 shows that bootstrapped
DQN also improves upon the final score across most games. However, the real benefits to
e�cient exploration mean that bootstrapped DQN outperforms DQN by orders of magnitude
in terms of the cumulative rewards through learning (Figure 9. In both figures we normalize
performance relative to a fully random policy. The most similar work to ours presents
several other approaches to improved exploration in Atari [20] they optimize for AUC-20, a
normalized version of the cumulative returns after 20m frames. According to their metric,
averaged across the 14 games they consider, we improve upon both base DQN (0.29) and
their best method (0.37) to obtain 0.62 via bootstrapped DQN. We present these results
together with results tables across all 49 games in Appendix D.4.

Figure 8: Bootstrapped DQN typically improves upon the best policy.

Figure 9: Bootstrapped DQN improves cumulative rewards by orders of magnitude.

6.4 Visualizing bootstrapped DQN
We now present some more insight to how bootstrapped DQN drives deep exploration in Atari.
In each game, although each head Q1, .., Q10 learns a high scoring policy, the policies they
find are quite distinct. In the video https://youtu.be/Zm2KoT82O_M we show the evolution
of these policies simultaneously for several games. Although each head performs well, they
each follow a unique policy. By contrast, ‘-greedy strategies are almost indistinguishable for
small values of ‘ and totally ine�ectual for larger values. We believe that this deep exploration
is key to improved learning, since diverse experiences allow for better generalization.
Disregarding exploration, bootstrapped DQN may be beneficial as a purely exploitative
policy. We can combine all the heads into a single ensemble policy, for example by choosing
the action with the most votes across heads. This approach might have several benefits.
First, we find that the ensemble policy can often outperform any individual policy. Second,
the distribution of votes across heads to give a measure of the uncertainty in the optimal
policy. Unlike vanilla DQN, bootstrapped DQN can know what it doesn’t know. In an
application where executing a poorly-understood action is dangerous this could be crucial. In
the video https://youtu.be/0jvEcC5JvGY we visualize this ensemble policy across several
games. We find that the uncertainty in this policy is surprisingly interpretable: all heads
agree at clearly crucial decision points, but remain diverse at other less important steps.

7 Closing remarks

In this paper we present bootstrapped DQN as an algorithm for e�cient reinforcement
learning in complex environments. We demonstrate that the bootstrap can produce useful
uncertainty estimates for deep neural networks. Bootstrapped DQN is computationally
tractable and also naturally scalable to massive parallel systems. We believe that, beyond
our specific implementation, randomized value functions represent a promising alternative to
dithering for exploration. Bootstrapped DQN practically combines e�cient generalization
with exploration for complex nonlinear value functions.

8

https://youtu.be/Zm2KoT82O_M
https://youtu.be/0jvEcC5JvGY


References

[1] Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning
environment: An evaluation platform for general agents. arXiv preprint arXiv:1207.4708, 2012.

[2] Peter J Bickel and David A Freedman. Some asymptotic theory for the bootstrap. The Annals
of Statistics, pages 1196–1217, 1981.

[3] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty
in neural networks. ICML, 2015.

[4] Christoph Dann and Emma Brunskill. Sample complexity of episodic fixed-horizon reinforcement
learning. In Advances in Neural Information Processing Systems, pages 2800–2808, 2015.

[5] Bradley Efron. The jackknife, the bootstrap and other resampling plans, volume 38. SIAM,
1982.

[6] Bradley Efron and Robert J Tibshirani. An introduction to the bootstrap. CRC press, 1994.
[7] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model

uncertainty in deep learning. arXiv preprint arXiv:1506.02142, 2015.
[8] Arthur Guez, David Silver, and Peter Dayan. E�cient bayes-adaptive reinforcement learning

using sample-based search. In Advances in Neural Information Processing Systems, pages
1025–1033, 2012.

[9] Thomas Jaksch, Ronald Ortner, and Peter Auer. Near-optimal regret bounds for reinforcement
learning. Journal of Machine Learning Research, 11:1563–1600, 2010.

[10] Sham Kakade. On the Sample Complexity of Reinforcement Learning. PhD thesis, University
College London, 2003.

[11] Tze Leung Lai and Herbert Robbins. Asymptotically e�cient adaptive allocation rules. Advances
in applied mathematics, 6(1):4–22, 1985.

[12] Volodymyr et al. Mnih. Human-level control through deep reinforcement learning. Nature,
518(7540):529–533, 2015.

[13] Ian Osband, Daniel Russo, and Benjamin Van Roy. (More) e�cient reinforcement learning via
posterior sampling. In NIPS, pages 3003–3011. Curran Associates, Inc., 2013.

[14] Ian Osband and Benjamin Van Roy. Model-based reinforcement learning and the eluder
dimension. In Advances in Neural Information Processing Systems, pages 1466–1474, 2014.

[15] Ian Osband and Benjamin Van Roy. Bootstrapped thompson sampling and deep exploration.
arXiv preprint arXiv:1507.00300, 2015.

[16] Ian Osband, Benjamin Van Roy, and Zheng Wen. Generalization and exploration via randomized
value functions. arXiv preprint arXiv:1402.0635, 2014.

[17] Art B Owen, Dean Eckles, et al. Bootstrapping data arrays of arbitrary order. The Annals of
Applied Statistics, 6(3):895–927, 2012.

[18] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay.
arXiv preprint arXiv:1511.05952, 2015.

[19] Nitish Srivastava, Geo�rey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: A simple way to prevent neural networks from overfitting. The Journal of Machine
Learning Research, 15(1):1929–1958, 2014.

[20] Bradly C Stadie, Sergey Levine, and Pieter Abbeel. Incentivizing exploration in reinforcement
learning with deep predictive models. arXiv preprint arXiv:1507.00814, 2015.

[21] Malcolm J. A. Strens. A bayesian framework for reinforcement learning. In ICML, pages
943–950, 2000.

[22] Richard Sutton and Andrew Barto. Reinforcement Learning: An Introduction. MIT Press,
March 1998.

[23] Gerald Tesauro. Temporal di�erence learning and td-gammon. Communications of the ACM,
38(3):58–68, 1995.

[24] W.R. Thompson. On the likelihood that one unknown probability exceeds another in view of
the evidence of two samples. Biometrika, 25(3/4):285–294, 1933.

[25] Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double
q-learning. arXiv preprint arXiv:1509.06461, 2015.

[26] Ziyu Wang, Nando de Freitas, and Marc Lanctot. Dueling network architectures for deep
reinforcement learning. arXiv preprint arXiv:1511.06581, 2015.

[27] Zheng Wen and Benjamin Van Roy. E�cient exploration and value function generalization in
deterministic systems. In NIPS, pages 3021–3029, 2013.

9


