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Abstract

We propose and analyze a regularization approach for structured prediction prob-
lems. We characterize a large class of loss functions that allows to naturally
embed structured outputs in a linear space. We exploit this fact to design learning
algorithms using a surrogate loss approach and regularization techniques. We
prove universal consistency and finite sample bounds characterizing the general-
ization properties of the proposed method. Experimental results are provided to
demonstrate the practical usefulness of the proposed approach.

1 Introduction

Many machine learning applications require dealing with data-sets having complex structures, e.g.
natural language processing, image segmentation, reconstruction or captioning, pose estimation,
protein folding prediction to name a few [1, 2, 3]. Structured prediction problems pose a challenge
for classic off-the-shelf learning algorithms for regression or binary classification. This has motivated
the extension of methods such as support vector machines to structured problems [4]. Dealing
with structured prediction problems is also a challenge for learning theory. While the theory of
empirical risk minimization provides a very general statistical framework, in practice it needs to be
complemented with an ad-hoc analysis for each specific setting. Indeed, in the last few years, an
effort has been made to analyze specific structured problems, such as multiclass classification [5],
multi-labeling [6], ranking [7] or quantile estimation [8]. A natural question is whether a unifying
learning framework can be developed to address a wide range of problems from theory to algorithms.

This paper takes a step in this direction, proposing and analyzing a general regularization approach
to structured prediction. Our starting observation is that for a large class of these problems, we can
define a natural embedding of the associated loss functions into a linear space. This allows to define
a (least squares) surrogate problem of the original structured one, that is cast within a multi-output
regularized learning framework [9, 10, 11]. We prove that by solving the surrogate, we are able to
recover the exact solution of the original structured problem. The corresponding algorithm essentially
generalizes approaches considered in [12, 13, 14, 15, 16]. We study the generalization properties of
the proposed approach, establishing universal consistency as well as finite sample bounds.

The rest of this paper is organized as follows: in Sec. 2 we introduce the structured prediction problem
in its generality and present our algorithm to approach it. In Sec. 3 we introduce and discuss a
surrogate framework for structured prediction, from which we derive our algorithm. In Sec. 4, we
analyze the theoretical properties of the proposed algorithm. In Sec. 5 we draw connections with
previous work in structured prediction. Sec. 6 reports promising experimental results on a variety of
structured prediction problems. Sec. 7 concludes the paper outlining relevant directions for future
research.
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2 A Regularization Approach to Structured prediction

The goal of supervised learning is to learn functional relations f : X → Y between two sets X ,Y ,
given a finite number of examples. In particular in this work we are interested to structured prediction,
namely the case where Y is a set of structured outputs (such as histograms, graphs, time sequences,
points on a manifold, etc.). Moreover, structure on Y can be implicitly induced by a suitable loss
4 : Y × Y → R (such as edit distance, ranking error, geodesic distance, indicator function of a
subset, etc.). Then, the problem of structured prediction becomes

minimize
f :X→Y

E(f), with E(f) =

∫
X×Y

4(f(x), y) dρ(x, y) (1)

and the goal is to find a good estimator for the minimizer of the above equation, given a finite number
of (training) points {(xi, yi)}ni=1 sampled from a unknown probability distribution ρ on X × Y . In
the following we introduce an estimator f̂ : X → Y to approach Eq. (1). The rest of this paper is
devoted to prove that f̂ it a consistent estimator for a minimizer of Eq. (1).

Our Algorithm for Structured Prediction. In this paper we propose and analyze the following
estimator

f̂(x) = argmin
y∈Y

n∑
i=1

αi(x)4 (y, yi) with α(x) = (K + nλI)−1Kx ∈ Rn (Alg. 1)

given a positive definite kernel k : X×X → R and training set {(xi, yi)}ni=1. In the above expression,
αi(x) is i-th entry in α(x), K ∈ Rn×n is the kernel matrix Ki,j = k(xi, xj), Kx ∈ Rn the vector
with entires (Kx)i = k(x, xi), λ > 0 a regularization parameter and I the identity matrix.

From a computational perspective, the procedure in Alg. 1 is divided in two steps: a learning step
where input-dependents weights αi(·) are computed (which essentially consists in solving a kernel
ridge regression problem) and a prediction step where the αi(x)-weighted linear combination in
Alg. 1 is optimized, leading to a prediction f̂(x) given an input x. The idea of a similar two-steps
strategy goes back to standard approaches for structured prediction and was originally proposed
in [17], where a “score” function F (x, y) was learned to estimate the “likelihood” of a pair (x, y)

sampled from ρ, and then used in f̂(x) = argminy∈Y −F (x, y), to predict the best f̂(x) ∈ Y given
x ∈ X . This strategy was extended in [4] for the popular SVMstruct and adopted also in a variety of
approaches for structured prediction [1, 12, 14].

Intuition. While providing a principled derivation of Alg. 1 for a large class of loss functions is a
main contribution of this work, it is useful to first consider the special case where4 is induced by a
reproducing kernel h : Y × Y → R on the output set, such that

4(y, y′) = h(y, y)− 2h(y, y′) + h(y′, y′). (2)
This choice of 4 was originally considered in Kernel Dependency Estimation (KDE) [18]. In
particular, for the special case of normalized kernels (i.e. h(y, y) = 1 ∀y ∈ Y), Alg. 1 essentially
reduces to [12, 13, 14] and recalling their derivation is insightful. Note that, since a kernel can be
written as h(y, y′) = 〈ψ(y), ψ(y′)〉HY , with ψ : Y → HY a non-linear map into a feature space
HY [19], then Eq. (2) can be rewritten as

4(f(x), y′) = ‖ψ(f(x))− ψ(y′)‖2HY
. (3)

Directly minimizing the equation above with respect to f is generally challenging due to the non
linearity ψ. A possibility is to replace ψ ◦ f by a function g : X → HY that is easier to optimize. We
can then consider the regularized problem

minimize
g∈G

1

n

n∑
i=1

‖g(xi)− ψ(yi)‖2HY
+ λ‖g‖2G (4)

with G a space of functions1 g : X → HY of the form g(x) =
∑
i=1 k(x, xi)ci with ci ∈ HY and k

a reproducing kernel. Indeed, in this case the solution to Eq. (4) is

ĝ(x) =

n∑
i=1

αi(x)ψ(yi) with α(x) = (K + nλI)−1Kx ∈ Rn (5)

1G is the reproducing kernel Hilbert space for vector-valued functions [9] with inner product
〈k(xi, ·)ci, k(xj , ·)cj〉G = k(xi, xj)〈ci, cj〉HY
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where the αi are the same as in Alg. 1. Since we replaced4(f(x), y) by ‖g(x)−ψ(y)‖2HY
, a natural

question is how to recover an estimator f̂ from ĝ. In [12] it was proposed to consider

f̂(x) = argmin
y∈Y

‖ψ(y)− ĝ(x)‖2HY
= argmin

y∈Y
h(y, y)− 2

n∑
i=1

αi(x)h(y, yi), (6)

which corresponds to Alg. 1 when h is a normalized kernel.

The discussion above provides an intuition on how Alg. 1 is derived but raises also a few questions.
First, it is not clear if and how the same strategy could be generalized to loss functions that do not
satisfy Eq. (2). Second, the above reasoning hinges on the idea of replacing f̂ with ĝ (and then
recovering f̂ by Eq. (6)), however it is not clear whether this approach can be justified theoretically.
Finally, we can ask what are the statistical properties of the resulting algorithm. We address the
first two questions in the next section, while the rest of the paper is devoted to establish universal
consistency and generalization bounds for algorithm Alg. 1.

3 Surrogate Framework and Derivation

To derive Alg. 1 we consider ideas from surrogate approaches [20, 21, 7] and in particular [5]. The
idea is to tackle Eq. (1) by substituting 4(f(x), y) with a “relaxation” L(g(x), y) on a space HY ,
that is easy to optimize. The corresponding surrogate problem is

minimize
g:X→HY

R(g), with R(g) =

∫
X×Y

L(g(x), y) dρ(x, y), (7)

and the question is how a solution g∗ for the above problem can be related to a minimizer f∗ of
Eq. (1). This is made possible by the requirement that there exists a decoding d : HY → Y , such that

Fisher Consistency: E(d ◦ g∗) = E(f∗), (8)
Comparison Inequality: E(d ◦ g)− E(f∗) ≤ ϕ(R(g)−R(g∗)), (9)

hold for all g : X → HY , where ϕ : R → R is such that ϕ(s) → 0 for s → 0. Indeed, given an
estimator ĝ for g∗, we can “decode” it considering f̂ = d ◦ ĝ and use the excess riskR(ĝ)−R(g∗)

to control E(f̂) − E(f∗) via the comparison inequality in Eq. (9). In particular, if ĝ is a data-
dependent predictor trained on n points and R(ĝ) → R(g∗) when n → +∞, we automatically
have E(f̂)→ E(f∗). Moreover, if ϕ in Eq. (9) is known explicitly, generalization bounds for ĝ are
automatically extended to f̂ .

Provided with this perspective on surrogate approaches, here we revisit the discussion of Sec. 2 for
the case of a loss function induced by a kernel h. Indeed, by assuming the surrogate L(g(x), y) =
‖g(x) − ψ(y)‖2HY

, Eq. (4) becomes the empirical version of the surrogate problem at Eq. (7)
and leads to an estimator ĝ of g∗ as in Eq. (5). Therefore, the approach in [12, 14] to recover
f̂(x) = argminy L(g(x), y) can be interpreted as the result f̂(x) = d ◦ ĝ(x) of a suitable decoding
of ĝ(x). An immediate question is whether the above framework satisfies Eq. (8) and (9). Moreover,
we can ask if the same idea could be applied to more general loss functions.

In this work we identify conditions on4 that are satisfied by a large family of functions and moreover
allow to design a surrogate framework for which we prove Eq. (8) and (9). The first step in this
direction is to introduce the following assumption.
Assumption 1. There exists a separable Hilbert spaceHY with inner product 〈·, ·〉HY , a continuous
embedding ψ : Y → HY and a bounded linear operator V : HY → HY , such that

4(y, y′) = 〈ψ(y), V ψ(y′)〉HY ∀y, y′ ∈ Y (10)

Asm. 1 is similar to Eq. (3) and in particular to the definition of a reproducing kernel. Note however
that by not requiring V to be positive semidefinite (or even symmetric), we allow for a surprisingly
wide range of functions beyond kernel functions. Indeed, below we give some examples of functions
that satisfy Asm. 1 (see supplementary material Sec. C for more details):
Example 1. The following functions of the form4 : Y × Y → R satisfy Asm. 1:
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1. Any loss on Y of finite cardinality. Several problems belong to this setting, such as Multi-
Class Classification, Multi-labeling, Ranking, predicting Graphs (e.g. protein foldings).

2. Regression and Classification Loss Functions. Least-squares, Logistic, Hinge, ε-insensitive,
τ -Pinball.

3. Robust Loss Functions. Most loss functions used for robust estimation [22] such as the
absolute value, Huber, Cauchy, German-McLure, “Fair” and L2 − L1. See [22] or the
supplementary material for their explicit formulation.

4. KDE. Loss functions4 induced by a kernel such as in Eq. (2).

5. Distances on Histograms/Probabilities. The χ2 and the Hellinger distances.

6. Diffusion distances on Manifolds. The squared diffusion distance induced by the heat kernel
(at time t > 0) on a compact Reimannian manifold without boundary [23].

The Least Squares Loss Surrogate Framework. Asm. 1 implicitly defines the spaceHY similarly
to Eq. (3). The following result motivates the choice of the least squares surrogate and moreover
suggests a possible choice for the decoding.
Lemma 1. Let4 : Y × Y → R satisfy Asm. 1 with ψ : Y → HY bounded. Then the expected risk
in Eq. (1) can be written as

E(f) =

∫
X
〈ψ(f(x)), V g∗(x)〉HY dρX (x) (11)

for all f : X → Y , where g∗ : X → HY minimizes

R(g) =

∫
X×Y

‖g(x)− ψ(y)‖2HY
dρ(x, y). (12)

Lemma 1 shows how Eq. (12) arises naturally as surrogate problem. In particular, Eq. (11) suggests
to choose the decoding

d(h) = argmin
y∈Y

〈 ψ(y) , V h 〉HY ∀h ∈ HY , (13)

since d ◦ g∗(x) = arg miny∈Y〈ψ(y), V g∗(x)〉 and therefore E(d ◦ g∗) ≤ E(f) for any measurable
f : X → Y , leading to Fisher Consistency. We formalize this in the following result.

Theorem 2. Let4 : Y × Y → R satisfy Asm. 1 with Y a compact set. Then, for every measurable
g : X → HY and d : HY → Y satisfying Eq. (13), the following holds

E(d ◦ g∗) = E(f∗) (14)

E(d ◦ g)− E(f∗) ≤ c4
√
R(g)−R(g∗). (15)

with c4 = ‖V ‖maxy∈Y ‖ψ(y)‖HY .

Thm. 2 shows that for all 4 satisfying Asm. 1, the corresponding surrogate framework identified
by the surrogate in Eq. (12) and decoding Eq. (13) satisfies Fisher consistency Eq. (14) and the
comparison inequality in Eq. (15). We recall that a finite set Y is always compact, and moreover,
assuming the discrete topology on Y , we have that any ψ : Y → HY is continuous. Therefore,
Thm. 2 applies in particular to any structured prediction problem on Y with finite cardinality.

Thm. 2 suggest to approach structured prediction by first learning ĝ and then decoding it to recover
f̂ = d ◦ ĝ. A natural question is how to choose ĝ in order to compute f̂ in practice. In the rest of this
section we propose an approach to this problem.

Derivation for Alg. 1. MinimizingR in Eq. (12) corresponds to a vector-valued regression problem
[9, 10, 11]. In this work we adopt an empirical risk minimization approach to learn ĝ as in Eq. (4).
The following result shows that combining ĝ with the decoding in Eq. (13) leads to the f̂ in Alg. 1.
Lemma 3. Let 4 : Y × Y → R satisfy Asm. 1 with Y a compact set. Let ĝ : X → HY be the
minimizer of Eq. (4). Then, for all x ∈ X

d ◦ ĝ(x) = argmin
y∈Y

n∑
i=1

αi(x)4 (y, yi) α(x) = (K + nλI)−1Kx ∈ Rn (16)
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Lemma 3 concludes the derivation of Alg. 1. An interesting observation is that computing f̂ does not
require explicit knowledge of the embedding ψ and the operator V , which are implicitly encoded
within the loss4 by Asm. 1. In analogy to the kernel trick [24] we informally refer to such assumption
as the “loss trick”. We illustrate this effect with an example.
Example 2 (Ranking). In ranking problems the goal is to predict ordered sequences of a fixed number
` of labels. For these problems, Y corresponds to the set of all ordered sequences of ` labels and has
cardinality |Y| = `!, which is typically dramatically larger than the number n of training examples
(e.g. for ` = 15, `! ' 1012). Therefore, given an input x ∈ X , directly computing ĝ(x) ∈ R|Y| is
impractical. On the opposite, the loss trick allows to express d ◦ ĝ(x) only in terms of the n weights
αi(x) in Alg. 1, making the computation of the argmin easier to approach in general. For details on
the rank loss4rank and the corresponding optimization over Y , we refer to the empirical analysis of
Sec. 6.

In this section we have shown a derivation for the structured prediction algorithm proposed in this
work. In Thm. 2 we have shown how the expected risk of the proposed estimator f̂ is related to an
estimator ĝ via a comparison inequality. In the following we will make use of these results to prove
consistency and generalization bounds for Alg. 1.

4 Statistical Analysis

In this section we study the statistical properties of Alg. 1 exploiting of the relation between the
structured and surrogate problems characterized be the comparison inequality in Thm. 2. We begin
our analysis by proving that Alg. 1 is universally consistent.
Theorem 4 (Universal Consistency). Let4 : Y × Y → R satisfy Asm. 1, X and Y be compact sets
and k : X ×X → R a continuous universal reproducing kernel2. For any n ∈ N and any distribution
ρ on X × Y let f̂n : X → Y be obtained by Alg. 1 with {(xi, yi)}ni=1 training points independently
sampled from ρ and λn = n−1/4. Then,

lim
n→+∞

E(f̂n) = E(f∗) with probability 1 (17)

Thm. 4 shows that, when the 4 satisfies Asm. 1, Alg. 1 approximates a solution f∗ to Eq. (1)
arbitrarily well, given a sufficient number of training examples. To the best of our knowledge this is
the first consistency result for structured prediction in the general setting considered in this work and
characterized by Asm. 1, in particular for the case of Y with infinite cardinality (dense or discrete).

The No Free Lunch Theorem [25] states that it is not possible to prove uniform convergence rates for
Eq. (17). However, by imposing suitable assumptions on the regularity of g∗ it is possible to prove
generalization bounds for ĝ and then, using Thm. 2, extend them to f̂ . To show this, it is sufficient
to require that g∗ belongs to G the reproducing kernel Hilbert space used in the ridge regression of
Eq. (4). Note that in the proofs of Thm. 4 and Thm. 5, our analysis on ĝ borrows ideas from [10] and
extends their result to our setting for the case of HY infinite dimensional (i.e. when Y has infinite
cardinality). Indeed, note that in this case [10] cannot be applied to the estimator ĝ considered in this
work (see supplementary material Sec. B.3, Lemma 18 for details).
Theorem 5 (Generalization Bound). Let4 : Y × Y → R satisfy Asm. 1, Y be a compact set and
k : X × X → R a bounded continuous reproducing kernel. Let f̂n denote the solution of Alg. 1 with
n training points and λ = n−1/2. If the surrogate risk R defined in Eq. (12) admits a minimizer
g∗ ∈ G, then

E(f̂n)− E(f∗) ≤ cτ2 n− 1
4 (18)

holds with probability 1− 8e−τ for any τ > 0, with c a constant not depending on n and τ .

The bound in Thm. 5 is of the same order of the generalization bounds available for the least squares
binary classifier [26]. Indeed, in Sec. 5 we show that in classification settings Alg. 1 reduces to least
squares classification. This opens the way to possible improvements, as we discuss in the following.

2This is a standard assumption for universal consistency (see [21]). An example of continuous universal
kernel is the Gaussian k(x, x′) = exp(−γ‖x− x′‖2), with γ > 0.
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Remark 1 (Better Comparison Inequality). The generalization bounds for the least squares classifier
can be improved by imposing regularity conditions on ρ via the Tsybakov condition [26]. This was
observed in [26] for binary classification with the least squares surrogate, where a tighter comparison
inequality than the one in Thm. 2 was proved. Therefore, a natural question is whether the inequality
of Thm. 2 could be similarly improved, consequently leading to better rates for Thm. 5. Promising
results in this direction can be found in [5], where the Tsybakov condition was generalized to the
multi-class setting and led to a tight comparison inequality analogous to the one for the binary setting.
However, this question deserves further investigation. Indeed, it is not clear how the approach in [5]
could be further generalized to the case where Y has infinite cardinality.
Remark 2 (Other Surrogate Frameworks). In this paper we focused on a least squares surrogate
loss function and corresponding framework. A natural question is to ask whether other loss functions
could be considered to approach the structured prediction problem, sharing the same or possibly even
better properties. This question is related also to Remark 1, since different surrogate frameworks
could lead to sharper comparison inequalities. This seems an interesting direction for future work.

5 Connection with Previous Work

Binary and Multi-class Classification. It is interesting to note that in classification settings, Alg. 1
corresponds to the least squares classifier [26]. Indeed, let Y = {1, . . . , `} be a set of labels and
consider the misclassification loss 4(y, y′) = 1 for y 6= y′ and 0 otherwise. Then 4(y, y′) =
e>y V ey′ with ei ∈ R` the i-the element of the canonical basis of R` and V = 1− I , where I is the
`× ` identity matrix and 1 the matrix with all entries equal to 1. In the notation of surrogate methods
adopted in this work,HY = R` and ψ(y) = ey. Note that both Least squares classification and our
approach solve the surrogate problem at Eq. (4)

1

n

n∑
i=1

‖g(xi)− eyi‖2R` + λ ‖g‖2G (19)

to obtain a vector-valued predictor ĝ : X → R` as in Eq. (5). Then, the least squares classifier ĉ and
the decoding f̂ = d ◦ ĝ are respectively obtained by

ĉ(x) = argmax
i=1,...,`

ĝ(x) f̂(x) = argmin
i=1,...,`

V ĝ(x). (20)

However, since V = 1− I , it is easy to see that ĉ(x) = f̂(x) for all x ∈ X .

Kernel Dependency Estimation. In Sec. 2 we discussed the relation between KDE [18, 12] and
Alg. 1. In particular, we have observed that if4 is induced by a kernel h : Y × Y → R as in Eq. (2)
and h is normalized, i.e. h(y, y) = κ ∀y ∈ Y , with κ > 0, then algorithm Eq. (6) proposed in [12]
leads to the same predictor as Alg. 1. Therefore, we can apply Thm. 4 and 5 to prove universal
consistency and generalization bounds for methods such as [12, 14]. Some theoretical properties of
KDE have been previously studied in [15] from a PAC Bayesian perspective. However, the obtained
bounds do not allow to control the excess risk or establish consistency of the method. Moreover, note
that when the kernel h is not normalized, the “decoding” in Eq. (6) is not equivalent to Alg. 1. In
particular, given the surrogate solution g∗, applying Eq. (6) leads to predictors that do not minimize
Eq. (1). As a consequence, approaches in [12, 13, 14] are not consistent in the general case.

Support Vector Machines for Structured Output. A popular approach to structured prediction
is the Support Vector Machine for Structured Outputs (SVMstruct) [4] that extends ideas from the
well-known SVM algorithm to the structured setting. One of the main advantages of SVMstruct is
that it can be applied to a variety of problems since it does not impose strong assumptions on the loss.
In this view, our approach shares similar properties, and in particular allows to consider Y of infinite
cardinality. Moreover, we note that generalization studies for SVMstruct are available [3] (Ch. 11).
However, it seems that these latter results do not allow to derive universal consistency of the method.

6 Experiments

In this section we report on preliminary experiments showing the performance of the proposed
approach on simulated as well as real structured prediction problems.
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Rank Loss

Linear [7] 0.430± 0.004
Hinge [27] 0.432± 0.008

Logistic [28] 0.432± 0.012
SVM Struct [4] 0.451± 0.008

Alg. 1 0.396± 0.003

Table 1: Normalized4rank for ranking
methods on the MovieLens dataset [29].

Loss
KDE [18]
(Gaussian)

Alg. 1
(Hellinger)

4G 0.149± 0.013 0.172± 0.011
4H 0.736± 0.032 0.647± 0.017
4R 0.294± 0.012 0.193± 0.015

Table 2: Digit reconstruction using Gaussian
(KDE [18]) and Hellinger loss.

Ranking Movies. We considered the problem of ranking movies in the MovieLens dataset [29]
(ratings (from 1 to 5) of 1682 movies by 943 users). The goal was to predict preferences of a given
user, i.e. an ordering of the 1682 movies, according to the user’s partial ratings. We applied Alg. 1 to
the ranking problem using the rank loss [7]

4rank(y, y′) =
1

2

M∑
i,j=1

γ(y′)ij (1− sign(yi − yj)), (21)

where M is the number of movies, y is a re-ordering of the sequence 1, . . . ,M . The scalar γ(y)ij
denotes the costs (or reward) of having movie j ranked higher than movie i. Similarly to [7], we set
γ(y)ij equal to the difference of ratings provided by user associated to y (from 1 to 5). We chose as k
in Alg. 1, a linear kernel on features similar to those proposed in [7], which were computed based on
users’ profession, age, similarity of previous ratings, etc. Since solving Alg. 1 for4rank is NP-hard
(see [7]) we adopted the Feedback Arc Set approximation (FAS) proposed in [30] to approximate the
f̂(x) of Alg. 1. Results are reported in Tab. 1 comparing Alg. 1 (Ours) with surrogate ranking methods
using a Linear [7], Hinge [27] or Logistic [28] loss and Struct SVM [4]. We randomly sampled
n = 643 users for training and tested on the remaining 300. We performed 5-fold cross-validation for
model selection. We report the normalized4rank, averaged over 10 trials to account for statistical
variability. Interestingly, our approach appears to outperform all competitors, suggesting that Alg. 1
is a viable approach to ranking.

Image Reconstruction with Hellinger Distance. We considered the USPS digits reconstruction
experiment originally proposed in [18]. The goal is to predict the lower half of an image depicting a
digit, given the upper half of the same image in input. The standard approach is to use a Gaussian
kernel kG on images in input and adopt KDE methods such as [18, 12, 14] with loss4G(y, y′) =
1− kG(y, y′). Here we take a different approach and, following [31], we interpret an image depicting
a digit as an histogram and normalize it to sum up to 1. Therefore, Y is the unit simplex in R128

(16× 16 images) and we adopt the Hellinger distance4H

4H(y, y′) =

M∑
i=1

|(yi)1/2 − (y′i)
1/2| for y = (yi)

M
i=1 (22)

to measure distances on Y . We used the kernel kG on the input space and compared Alg. 1 using
respectively4H and4G. For4G Alg. 1 correpsponds to [12]. We performed digit reconstruction
experiments by training on 1000 examples evenly distributed among the 10 digits of USPS and
tested on 5000 images. We performed 5-fold cross-validation for model selection. Tab. 2 reports
the performance of Alg. 1 and the KDE methods averaged over 10 runs. Performance are reported
according to the Gaussian loss 4G and Hellinger loss 4H . Unsurprisingly, methods trained with
respect to a specific loss perform better than the competitor with respect to such loss. Therefore, as a
further measure of performance we also introduced the “Recognition” loss4R. This loss has to be
intended as a measure of how “well” a predictor was able to correctly reconstruct an image for digit
recognition purposes. To this end, we trained an automatic digit classifier and defined4R to be the
misclassification error of such classifier when tested on images reconstructed by the two prediction
algorithms. This automatic classifier was trained using a standard SVM [24] on a separate subset of
USPS images and achieved an average 0.04% error rate on the true 5000 test sets. In this case a clear
difference in performance can be observed between using two different loss functions, suggesting
that4H is more suited for the reconstruction problem.
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−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−2

0

2

4

Alg. 1
RNW
KRLS

n Alg. 1 RNW KRR

50 0.39 ± 0.17 0.45 ± 0.18 0.62 ± 0.13
100 0.21 ± 0.04 0.29 ± 0.04 0.47 ± 0.09
200 0.12 ± 0.02 0.24 ± 0.03 0.33 ± 0.04
500 0.08 ± 0.01 0.22 ± 0.02 0.31 ± 0.03

1000 0.07 ± 0.01 0.21 ± 0.02 0.19 ± 0.02

Figure 1: Robust estimation on the regression problem in Sec. 6 by minimizing the Cauchy loss with
Alg. 1 (Ours) or Nadaraya-Watson (Nad). KRLS as a baseline predictor. Left. Example of one run of
the algorithms. Right. Average distance of the predictors to the actual function (without noise and
outliers) over 100 runs with respect to training sets of increasing dimension.

Robust Estimation. We considered a regression problem with many outliers and evaluated Alg. 1
using the Cauchy loss (see Example 1 - (3)) for robust estimation. Indeed, in this setting, Y =
[−M,M ] ⊂ R is not structured, but the non-convexity of 4 can be an obstacle to the learning
process. We generated a dataset according to the model y = sin(6πx) + ε+ ζ , where x was sampled
uniformly on [−1, 1] and ε according to a zero-mean Gaussian with variance 0.1. ζ modeled the
outliers and was sampled according to a zero-mean random variable that was 0 with probability
0.90 and a value uniformly at random in [−3, 3] with probability 0.1. We compared Alg. 1 with the
Nadaraya-Watson robust estimator (RNW) [32] and kernel ridge regression (KRR) with a Gaussian
kernel as baseline. To train Alg. 1 we used a Gaussian kernel on the input and performed predictions
(i.e. solved Eq. (16)) using Matlab FMINUNC function for unconstrained minimization. Experiments
were performed with training sets of increasing dimension (100 repetitions each) and test set of 1000
examples. 5-fold cross-validation for model selection. Results are reported in Fig. 1, showing that
our estimator significantly outperforms the others. Moreover, our method appears to greatly benefit
from training sets of increasing size.

7 Conclusions and Future Work

In this work we considered the problem of structured prediction from a Statistical Learning Theory
perspective. We proposed a learning algorithm for structured prediction that is split into a learning
and prediction step similarly to previous methods in the literature. We studied the statistical properties
of the proposed algorithm by adopting a strategy inspired to surrogate methods. In particular, we
identified a large family of loss functions for which it is natural to identify a corresponding surrogate
problem. This perspective allows to prove a derivation of the algorithm proposed in this work.
Moreover, by exploiting a comparison inequality relating the original and surrogate problems we
were able to prove universal consistency and generalization bounds under mild assumption. In
particular, the bounds proved in this work recover those already known for least squares classification,
of which our approach can be seen as a generalization. We supported our theoretical analysis with
experiments showing promising results on a variety of structured prediction problems.

A few questions were left opened. First, we ask whether the comparison inequality can be improved
(under suitable hypotheses) to obtain faster generalization bounds for our algorithm. Second, the
surrogate problem in our work consists of a vector-valued regression (in a possibly infinite dimensional
Hilbert space), we solved this problem by plain kernel ridge regression but it is natural to ask whether
approaches from the multi-task learning literature could lead to substantial improvements in this
setting. Finally, an interesting question is whether alternative surrogate frameworks could be derived
for the setting considered in this work, possibly leading to tighter comparison inequalities. We will
investigate these questions in the future.
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