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Abstract

Experiments reveal that in the dorsal medial superior temporal (MSTd) and the
ventral intraparietal (VIP) areas, where visual and vestibular cues are integrated
to infer heading direction, there are two types of neurons with roughly the same
number. One is “congruent” cells, whose preferred heading directions are similar in
response to visual and vestibular cues; and the other is “opposite" cells, whose pre-
ferred heading directions are nearly “opposite” (with an offset of 180°) in response
to visual vs. vestibular cues. Congruent neurons are known to be responsible for
cue integration, but the computational role of opposite neurons remains largely
unknown. Here, we propose that opposite neurons may serve to encode the dispar-
ity information between cues necessary for multisensory segregation. We build
a computational model composed of two reciprocally coupled modules, MSTd
and VIP, and each module consists of groups of congruent and opposite neurons.
In the model, congruent neurons in two modules are reciprocally connected with
each other in the congruent manner, whereas opposite neurons are reciprocally
connected in the opposite manner. Mimicking the experimental protocol, our model
reproduces the characteristics of congruent and opposite neurons, and demonstrates
that in each module, the sisters of congruent and opposite neurons can jointly
achieve optimal multisensory information integration and segregation. This study
sheds light on our understanding of how the brain implements optimal multisensory
integration and segregation concurrently in a distributed manner.

1 Introduction

Our brain perceives the external world with multiple sensory modalities, including vision, audition,
olfaction, tactile, vestibular perception and so on. These sensory systems extract information
about the environment via different physical means, and they generate complementary cues (neural
representations) about external objects to the multisensory areas. Over the past years, a large volume
of experimental and theoretical studies have focused on investigating how the brain integrates multiple
sensory cues originated from the same object in order to perceive the object reliably in an ambiguous
environment, the so-called multisensory integration. They found that the brain can integrate multiple
cues optimally in a manner close to Bayesian inference, e.g., integrating visual and vestibular cues to
infer heading direction [1]] and so on [2-4]. Neural circuit models underlying optimal multisensory
integration have been proposed, including a centralized model in which a dedicated processor receives
and integrates all sensory cues [5.16], and a decentralized model in which multiple local processors
exchange cue information via reciprocal connections, so that optimal cue integration is achieved at
each local processor [7]].
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Figure 1: Congruent and opposite neurons in MSTd. Similar results were found in VIP [12]. (A-B)
Tuning curves of a congruent neuron (A) and an opposite neuron (B). The preferred visual and
vestibular directions are similar in (A) but are nearly opposite by 180° in (B). (C) The histogram of
neurons according to their difference between preferred visual and vestibular directions. Congruent
and opposite neurons are comparable in numbers. (A-B) adapted from [1]], (C) from [13]].

However, multisensory integration is only half of the story of multisensory information processing,
which works well when the sensory cues are originated from the same object. In cases where the
sensory cues originate from different objects, the brain should segregate, rather than integrate, the
cues. In a noisy environment, however, the brain is unable to differentiate the two situations at
first sight. The brain faces a “chicken vs. egg" dilemma in multisensory integration: without first
integrating multiple cues to eliminate uncertainty, the brain is unable to estimate the objects reliably to
differentiate whether the cues are from the same or different objects; but once the cues are integrated,
the disparity information between the cues is lost, and the brain can no longer discriminate objects
clearly when the cues actually come from different objects. To solve this dilemma, here we argue that
the brain needs to carry out multisensory integration and segregation concurrently in the early stage
of information processing, that is, a group of neurons integrates sensory cues while another group of
neurons extracts the cue disparity information, and the interplay between two networks determines
the final action: integration vs. segregation. Concurrent processing has the advantage of achieving
rapid object perception if the cues are indeed from the same object, and avoiding information loss if
the cues are from different objects. Psychophysical data tends to support this idea, which shows that
the brain can still sense the difference between cues in multisensory integration [8} [9]].

What are the neural substrates of the brain to implement concurrent multisensory integration and
segregation? In the experiments of integrating visual and vestibular cues to infer heading direction, it
was found that in the dorsal medial superior temporal area (MSTd) and the ventral intraparietal area
(VIP) which primarily receive visual and vestibular cues respectively, there exist two types of neurons
displaying different cue integrative behaviors [1,[10]]. One of them is called “congruent” cells, since
their preferred heading directions are similar in response to either a visual or a vestibular cue (Fig.[T]A);
and the other type is called “opposite" cells, since their preferred visual and vestibular directions are
nearly “opposite” (with an offset of 180°, half of the period of direction, Fig.[IB). Data analyses and
modelling studies revealed that congruent neurons are responsible for cue integration [1} 10} 16} [7]].
However, the computational role of opposite neurons remains largely unknown, despite the fact that
congruent and opposite neurons are comparably numerous in MSTd and VIP (Fig. [T[C). Notably,
the responses of opposite neurons hardly vary when a single cue is replaced by two congruent cues
(i.e., no cue integration behavior), whereas their responses increase significantly when the disparity
between visual and vestibular cues increases [11]], indicating that opposite neurons may serve to
extract the cue disparity information necessary for multisensory segregation. Motivated by the above
experimental findings, we explore how multisensory integration and segregation are concurrently
implemented in a neural system via sisters of congruent and opposite cells.

2 Probabilistic Model of Multisensory Information Processing

In reality, because of noise, the brain estimates stimulus information relying on ambiguous cues in a
probabilistic manner. Thus, we formulate multisensory information processing in the framework of
probabilistic inference. The present study mainly focuses on information processing at MSTd and
VIP, where visual and vestibular cues are integrated/segregated to infer heading direction. However,
the main results of this work are applicable to the processing of cues of other modalities.



2.1 The von Mises distribution for circular variables

Because heading direction is a circular variable whose values are in range (—, 7], we adopt the
von Mises distribution [14] (Supplementary Information Sec. 1). Compared with the Gaussian
distribution, the von Mises distribution is more suitable and also more accurate to describe the
probabilistic inference of circular variables, and furthermore, it gives a clear geometrical interpretation
of multisensory information processing (see below).

Suppose there are two stimuli s; and so, each of which generates a sensory cue z,,, for m = 1,2
(visual or vestibular), independently. We call z,,, the direct cue of s,,, and x; (I # m) the indirect
cue to S,,,. Denote as p(z,,|s,,) the likelihood function, whose form in von Mises distribution is

1

p(Tm|sm) = Snlo(on) exp [Km c08(Zm — $m )] = M(Zm — Sm, Bm )s (1)
where Iy(k) = (27) 7! fo% e <03(9) dg is the modified Bessel function of the first kind and order zero.
Sm 1s the mean of the von Mises distribution, i.e., the mean value of x,,. k,, is a positive number
characterizing the concentration of the distribution, which is analogous to the inverse of the variance
(0~?) of Gaussian distribution. In the limit of large ., a von Mises distribution M [z, — Sy, K]
approaches to a Gaussian distribution N[z, — 8., k)] (SI Sec. 1.2). For small £,,, the von Mises
distribution deviates from the Gaussian one (Fig.2A).

2.2 Multisensory integration

We introduce first a probabilistic model of Bayes-optimal multisensory integration. Experimental data
revealed that our brain integrates sensory cues optimally in a manner close to Bayesian inference [2].
Assuming that noises in different channels are independent, the posterior distribution of two stimuli
can be written according to Bayes’ theorem as

p(s1, s2|T1,22) o< p(z1|s1)p(w2]s2)p(s1, 52), )

where p(s1, $2) is the prior of the stimuli, which specifies the concurrence probability of a stimulus
pair. As an example in the present study, we choose the prior to be

1 1
p(s1,82) = 271_/\/1(81 S2,Ks) = (27210 (rs)
This form of prior favors the tendency for two stimuli to have similar values. Such a tendency has
been modeled in multisensory integration [7, [I5H17]]. x4 determines the correlation between two
stimuli, i.e., how informative one cue is about the other, and it regulates the extent to which two cues
should be integrated. The fully integrated case, in which the prior becomes a delta function in the
limit ks — o0, has been modeled in e.g., [4,15].

exp [k cos(s1 — s2)] . (3)

Since the results for two stimuli are exchangeable, hereafter, we will only present the result for
s1, unless stated specifically. Noting that p(s,,) = p(z,,) = 1/27 are uniform distributions, the
posterior distribution of s; given two cues becomes

p(si|w1, 22) o< p(w1]s1) /p($2|52)p(32|51)ds2 o p(s1|z1)p(s1|ea). “4)

The indirect cue zo is informative to s; via the prior p(s1, s2). By using Egs. (1)3) and under
reasonable approximations (SI Sec. 1.4), we obtain

p(31|x2) 08 /p(x2|52)p(52|51)d52 ~ M (81 — X2, /flz), )

where A(r12) = A(k2)A(k) with A(k) = [T _cos(f)ems0df/ [ ercos0dp.
Finally, utilizing Egs. (I5), Eq. @) is written as

p(si|xr,xe) o M(s1 — 1, k1) M(s1 — T2, k12) = M(s1 — &1, /1), (6)
where the mean and concentration of the posterior given two cues are (SI Sec. 1.3)

$1 = atan2(kqsinzy + K12 sin e, K1 COST1 + K12 COS T3), @)

)2, (8)

2 2
— [nl + Kl + 2K1K12 cos(x] — o



where atan? is the arctangent function of two arguments (SI Eq.[ST7).

Eqgs. (7li8) are the results of Bayesian integration in the form of von Mises distribution, and they are
the criteria for us to judge whether optimal cue integration is achieved in a neural system.

To understand these optimality criteria intuitively, it is helpful to see their equivalence of the Gaussian
distribution in the limit of large «1, k2 and x4. Under the condition x1 ~ x2, Eq. is approximated
to be k1 &~ K1 + K12 (SI Sec. 2). Since k = 1/ o2 when von Mises distribution is approximated as
Gaussian one, Eq. (8) becomes 1/63 ~ 1/0? + 1/0?,, which is the Bayesian prediction on Gaussian
variance conventionally used in the literature [4]]. Similarly, Eq. (7) is associated with the Bayesian
prediction on the Gaussian mean [4].

2.3 Multisensory segregation

We introduce next the probabilistic model of multisensory segregation. Inspired by the observation
in multisensory integration that the posterior of a stimulus given combined cues is the product of
the posteriors given each cue (EqH), we propose that in multisensory segregation, the disparity
D(s1]z1; s1|z2) between two cues is measured by the ratio of the posteriors given each cue, that is,

D(s1|w1;s1]w2) = p(si|zy)/p(s1]w2), )

By taking the expectation of log D over the distribution p(s1|z1), we get the Kullback-Leibler
divergence between the two posteriors given each cue. This disparity measure was also used to
discriminate alternative moving directions in [18]].

Interestingly, by utilizing the property of von Mises distributions and the condition cos(s1 +7—x3) =
— cos(s1 — x2), Eq. (9) can be rewritten as

D(s1|z1;s1|w2) o< p(si|z1)p(s1 + 7|z2), (10

that is, the disparity information between two cues is proportional to the product of the posterior
given the direct cue and the posterior given the indirect cue but with the stimulus value shifted by .

By utilizing Eqs. (T][5), we obtain
D(s1]x1;81|me) x M(s1 — 21, k1) M(81 + T — T2, k12) = M (51 — Ad1, ARq), (11)
where the mean and concentration of the von Mises distribution are
A§ = atan2(kysinxi — K12 sinxo, K1 COS T, — K12 COSTa), (12)
AR, = [nf + an — 2K1K12 cos(zy — xg)] 1/2 . (13)

The above equations are the criteria for us to judge whether the disparity information between two
cues is optimally encoded in a neural system.

3 Geometrical Interpretation of Multisensory Information Processing

A benefit of using the von Mises distribution is that it gives us a clear geometrical interpretation of
multisensory information processing. A von Mises distribution M (s — x, k) can be interpreted as
a vector in a two-dimensional space with its mean x and concentration  representing respectively
the angle and length of the vector (Fig.[2B-C). This fits well with the circular property of heading
direction. When the posterior of a stimulus is interpreted as a vector, the vector length represents the
confidence of inference. Interestingly, under such a geometrical interpretation, the product of two von
Mises distributions equals summation of their corresponding vectors, and the ratio of two von Mises
distributions equals subtraction of the two vectors. Thus, from Eq. (@), we see that multisensory
integration is equivalent to vector summation, with each vector representing the posterior of the
stimulus given a single cue, and from Eq. (9), multisensory segregation is equivalent to vector
subtraction (see Fig.[2D).

Overall, multisensory integration and segregation transform the original two vectors, the posteriors
given each cue, into two new vectors, the posterior given combined cues and the disparity between
the two cues. The original two vectors can be recovered from their linear combinations. Hence,
there is no information loss. The geometrical interpretation also helps us to understand multisensory
information processing intuitively. For instance, if two vectors have a small intersection angle, i.e., the
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Figure 2: Geometrical interpretation of multisensory information processing in von Mises distribution.
(A) The difference between von Mises and Gaussian distributions. For large concentration &, their
difference becomes small. (B) A von Mises distribution in the polar coordinate. (C) A von Mises
distribution M (s — x, k) can be represented as a vector in a 2D space with its angle given by
x and length by . (D) Geometrical interpretations of multisensory integration and segregation.
The posteriors of s; given each cue are represented by two vectors (blue). Inverse of a posterior
corresponds to rotating it by 180°. Multisensory integration corresponds to the summation of two
vectors (green), and multisensory segregation the subtraction of two vectors (red).

posteriors given each cue tend to support each other, the length of summed vector is long, implying
that the posterior of cue integration has strong confidence; and the length of subtracting vector is short,
implying that the disparity between two cues is small. If the two vectors have a large intersection
angle, the interpretation becomes the opposite.

4 Neural Implementation of Multisensory Information Processing

4.1 The model Structure

We adopt a decentralized architecture to model multisensory information processing in the brain [7,
19]. Compared with the centralized architecture in which a dedicated processor carries out all
computations, the decentralized architecture considers a number of local processors communicating
with each other via reciprocal connections, so that optimal information processing is achieved at
each local processor distributively [7]. This architecture was supported by a number of experimental
findings, including the involvement of multiple, rather than a single, brain areas in visual-vestibular
integration [[1, [10], the existence of intensive reciprocal connections between MTSd and VIP [20} 21],
and the robustness of multisensory integration against the inactivation of a single module [22]. In a
previous work [7], Zhang et al. studied a decentralized model for multisensory integration at MSTd
and VIP, and demonstrated that optimal integration can be achieved at both areas simultaneously,
agreeing with the experimental data. In their model, MSTd and VIP are congruently connected, i.e.,
neurons in one module are strongly connected to those having the similar preferred heading directions
in the other module. This congruent connection pattern naturally gives rise to congruent neurons.

Since the number of opposite neurons is comparable with that of congruent neurons in MSTd and VIP,
it is plausible that they also have a computational role. It is instructive to compare the probabilistic
models of multisensory integration and segregation, i.e., Eqs. (@) and (I0). They have the same form,
except that in segregation the stimulus value in the posterior given the indirect cue is shifted by .
Furthermore, since congruent reciprocal connections lead to congruent neurons, we hypothesize that
opposite neurons are due to opposite reciprocal connections, and their computational role is to encode
the disparity information between two cues. The decentralized model for concurrent multisensory
integration and segregation in MSTd and VIP is shown in Fig.3.
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Figure 3: The model structure. (A) The model is composed of two modules, representing MSTd and
VIP respectively. Each module receives the direct cue via feedforward input. In each module, there
are two nets of excitatory neurons, each connected recurrently. Net c (blue) consists of congruent
neurons. Congruent neurons between modules are connected reciprocally in the congruent manner
(blue lines). On the other hand, net o (red) consists of opposite neurons, and opposite neurons between
modules are connected in the opposite manner (brown lines). Moreover, to implement competition
between information integration and segregation, all neurons in a module are connected to a common
inhibitory neuron pool (purple, only shown in module 1). (B) The recurrent, congruent, and opposite
connection patterns between neurons. (C) Network’s peak firing rate reflects its estimation reliability.

4.2 The model dynamics

Denote as ty, ,(#) and r,, ,, () respectively the synaptic input and firing rate of a n-type neuron in
module m whose preferred heading direction with respect to the direct cue m is 6. n = ¢, o represents
the congruent and opposite cells respectively, and m = 1, 2 represents respectively MSTd and VIP.
For simplicity, we assume that the two modules are symmetric, and only present the dynamics of

module 1.

The dynamics of a congruent neuron in module 1 is given by

aulyc(G,t) il il
ot = —uy o (0,1) 4-9_2_ W, (0,0 )r1..(0/,1) 4-9_2_ We(0,0)r0.(0',1) 4+ 11.0(6,1), (14)

where I .(0,t) is the feedforward input to the neuron. W,.(0, §’) is the recurrent connection between
neurons in the same module, which is set to be W,.(6,6') = J,.(v2ma) " exp [—(0 — 0')? /(2a?)]
with periodic condition imposed, where a controls the tuning width of the congruent neurons.
W.(0,8) is the reciprocal connection between congruent cells in two modules, which is set to be
We(0,0") = Jo(v2ma) "' exp [—(0 — 6)%/(2a?)]. The reciprocal connection strength .J, controls
the extent to which cues are integrated between modules and is associated with the correlation
parameter x4 in the stimulus prior (see SI Sec. 3.3).

The dynamics of an opposite neuron in module 1 is given by

Ouy (0, u a ,
T% = —uro(0,) + > Wol0,0)r1o(0'8) + > Wol0,0)ra,0(0,1) + I1,0(0,1). (15)

0/'=—m 0'=—m

It has the same form as that of a congruent neuron except that the pattern of reciprocal connections are
given by W,(0,0") = J.(vV2ma)"texp [—(0 + 7 — 0')%/(2a*)] = W.(6 + =, ¢'), that is, opposite
neurons between modules are oppositely connected by an offset of 7. We choose the strength and
width of the connection pattern IV, to be the same as that of W,. This is based on the finding that
the tuning functions of congruent and opposite neurons have similar tuning width and strength [12].
Note that all connections are imposed with periodic conditions.

In the model, we include the effect of inhibitory neurons through a divisive normalization to the
responses of excitatory neurons [23]], given by

1
r1a(0,t) = = [urn(0,1)]7 (16)

u
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Figure 4: Bayes-optimal multisensory integration and segregation with congruent and opposite
neurons. (A-B) Tuning curves of an example congruent neuron and an example opposite neuron in
module 1. The preferred direction of the congruent neuron in response to two single cues are the same
at —90°, but the preferred direction of the opposite neuron under two single cues are opposite by 180°.
(C-E) The neuronal population activities at module 1 under three cuing conditions: only the direct
cue 1 (C), only the indirect cue 2 (D), and combination of the two cues (E). (F) The activity levels
of the congruent and opposite neuronal networks (measured by the corresponding bump heights)
vs. the cue disparity. (G-H). Comparing the mean and concentration of the stimulus posterior given
two cues estimated by the congruent neuronal network with that predicted by Bayesian inference,
Egs. (7[8). Each dot is a result obtained under a parameter set. (I-J). Comparing the mean and
concentration of the cue disparity information estimated by the opposite neuronal network with that
predicted by probabilistic inference, Egs. . Parameters: J,. = 0.4J, J. = J, € [0.1,0.5]J,.,
a; = € [0.8,1.6)UY, I, =1, F = 0.5. (G-J) x1 = 0°, 75 € [0°,180°].

where D, = 14w, . oS g [ug (0, t)]i [z]+ = max(z, 0), and the parameter w controls
the magnitude of divisive normalization.

The feedforward input conveys the direct cue information to a module (e.g., the feedforward input to
MSTd is from area MT which extracts the heading direction from optical flow), which is set to be

(0—$1)2 (0—$1)2
4a? 8a?

where « is the signal strength, I, the mean of background input, and F' the Fano factor. £;(6,¢) and
€1.n(0,t) are Gaussian white noises of zero mean with variance satisfying (£, (0,t)& (6',¢)) =
Omm 0(8—0")0(t—1"), (€mn(0,t)€ms ns (6", ') = s O 6(0—6")0(t—1t'). The signal-associated
noises &1 (0, t) to congruent and opposite neurons are exactly the same, while the background noises
€1.n,(0,t) to congruent and opposite neurons are independent of each other. At the steady state, the
signal drives the network state to center at the cue value x;, whereas noises induce fluctuations of the
network state. Since we consider multiplicative noise with a constant Fano factor, the signal strength
Q. controls the reliability of cue m [5]. The exact form of the feedforward input is not crucial, as
long as it has a uni-modal shape.

I, (6,t) =ai exp {— ]—i— Fayexp {— ] &(0,8)+Iy++/ Flper n(6,1), (17)

4.3 Results

We first verify that our model reproduces the characteristics of congruent and opposite neurons.
Figs. @JA&B show the tuning curves of a congruent and an opposite neuron with respect to either
visual or vestibular cues, which demonstrate that neurons in our model indeed exhibit the congruent
or opposite direction selectivity similar to Fig. 1.

We then investigate the mean population activities of our model under different cuing conditions.
When only cue x; is applied to module 1, both the congruent and opposite neuronal networks in



module 1 receive the feedforward input and generate bumps at =1 (Fig. BIC). When only cue z
is applied to module 2, the congruent neuronal network at module 1 receives a reciprocal input
and generates a bump at xo, whereas the opposite neuronal network receives an offset reciprocal
input and generates a bump at 2o + 7 (Fig. @D). For the indirect cue x, the neural activities it
induces at module 1 is lower than that induced by the direct cue z; (Fig.[d[C). When both cues are
presented, the congruent neuronal network integrates the feedforward and reciprocal inputs, whereas
the opposite neuronal network computes their disparity by integrating the feedforward inputs and the
offset reciprocal inputs shifted by 7 (Fig.dE). The two networks compete with each other via divisive
normalization. Fig. 4FF shows that when the disparity between cues is small, the activity of congruent
neurons is higher than that of opposite neurons. With the increase of cue disparity, the activity of the
congruent neuronal network decreases, whereas the activity of the opposite neurons increases. These
complementary changes in activities of congruent and opposite neurons provide a clue for other parts
of the brain to evaluate whether the cues are from the same or different objects [24]].

Finally, to verify whether Bayes-optimal multisensory information processing is achieved in our
model, we check the validity of Egs. (7H8]) for multisensory integration p(s,, |z1,x2) by congruent
neurons in module m, and Eqs. (12H13) for multisensory segregation D (s, |Tm; sm|z1) (I # m) by
opposite neurons in module m. Take the verification of the congruent neuronal network in module m
as an example. When a pair of cues are simultaneously applied, the actual mean and concentration
of the networks’s estimates (bump position) are measured through population vector [25]] (SI Sec.
4.2). To obtain the Bayesian predictions for the network’s estimate under combined cue condition
(details in SI Sec. 4.3), the mean and concentration of that network’s estimates under either single
cue conditions are also measured, and then are substituted into Eqs. (7H8). Comparisons between
the measured mean and concentration of congruent networks in two modules and the corresponding
theoretical predictions are shown in Fig. dJG&H, indicating an excellent fit, where each dot is the
result under a particular set of parameters. Similarly, comparisons between the measured mean
and concentration of opposite networks and the theoretical predictions (SI Sec. 4.3) are shown in
Fig. fl&]J, indicating opposite neurons indeed implement multisensory segregation.

5 Conclusion and Discussion

Over the past years, multisensory integration has received large attention in modelling studies, but
the equally important issue of multisensory segregation has been rarely explored. The present study
proposes that opposite neurons, which is widely observed at MSTd and VIP, encode the disparity
information between sensory cues. We built a computational model composed of reciprocally
coupled MSTd and VIP, and demonstrated that the characteristics of congruent and opposite cells
naturally emerge from the congruent and opposite connection patterns between modules, respectively.
Using the von Mises distribution, we derived the optimal criteria for integration and segregation
of circular variables and found they have clear geometrical meanings: integration corresponds to
vector summation while segregation corresponds to vector subtraction. We further showed that such a
decentralized system can realize optimal cue integration and segregation at each module distributively.
To our best knowledge, this work is the first modelling study unveiling the functional role of opposite
cells. It has a far-reaching implication on multisensory information processing, that is, the brain
can exploit sisters of congruent and opposite neurons to implement cue integration and segregation
concurrently.

For simplicity, only perfectly congruent or perfectly opposite neurons are considered, but in reality,
there are some portions of neurons whose differences of preferred visual and vestibular heading
directions are in between 0° and 180° (Fig.[IIC). We checked that those neurons can arise from adding
noises in the reciprocal connections. As long as the distribution in Fig. [I[C is peaked at 0° and 180°,
the model can implement concurrent integration and segregation. Also, we have only pointed out
that the competition between congruent and opposite neurons provides a clue for the brain to judge
whether the cues are likely to originate from the same or different objects, without exploring how the
brain actually does this. These issues will be investigated in our future work.
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