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Abstract

Several works have shown that deep CNNs can be easily transferred across datasets,
e.g. the transfer from object recognition on ImageNet to object detection on Pascal
VOC. Less clear, however, is the ability of CNNs to transfer knowledge across tasks.
A common example of such transfer is the problem of scene classification, that
should leverage localized object detections to recognize holistic visual concepts.
While this problems is currently addressed with Fisher vector representations, these
are now shown ineffective for the high-dimensional and highly non-linear features
extracted by modern CNNs. It is argued that this is mostly due to the reliance on
a model, the Gaussian mixture of diagonal covariances, which has a very limited
ability to capture the second order statistics of CNN features. This problem is
addressed by the adoption of a better model, the mixture of factor analyzers (MFA),
which approximates the non-linear data manifold by a collection of local sub-spaces.
The Fisher score with respect to the MFA (MFA-FS) is derived and proposed as an
image representation for holistic image classifiers. Extensive experiments show
that the MFA-FS has state of the art performance for object-to-scene transfer and
this transfer actually outperforms the training of a scene CNN from a large scene
dataset. The two representations are also shown to be complementary, in the sense
that their combination outperforms each of the representations by itself. When
combined, they produce a state-of-the-art scene classifier.

1 Introduction

In recent years, convolutional neural networks (CNNs) trained on large scale datasets have achieved
remarkable performance on traditional vision problems such as image classification [8, 18, 26], object
detection and localization [5, 16] and others. The success of CNNs can be attributed to their ability
to learn highly discriminative, non-linear, visual transformations with the help of supervised back-
propagation [9]. Beyond the impressive, sometimes even superhuman, results on certain datasets,
a remarkable property of these classifiers is the solution of the dataset bias problem [20] that has
plagued computer vision for decades. It has now been shown many times that a network trained to
solve a task on a certain dataset (e.g. object recognition on ImageNet) can be very easily fine-tuned to
solve a related problem on another dataset (e.g. object detection on the Pascal VOC or MS-COCO).
Less clear, however, is the robustness of current CNNs to the problem of task bias, i.e. their ability to
generalize accross tasks. Given the large number of possible vision tasks, it is impossible to train a
CNN from scratch for each. In fact, it is likely not even feasible to collect the large number of images
needed to train effective deep CNNs for every task. Hence, there is a need to investigate the problem
of task transfer.

In this work, we consider a very common class of such problems, where a classifier trained on a class
of instances is to be transferred to a second class of instances, which are loose combinations of the
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original ones. In particular, we consider the problem where the original instances are objects and
the target instances are scene-level concepts that somehow depend on those objects. Examples of
this problem include the transfer of object classifiers to tasks such as scene classification [6, 11, 2] or
image captioning [23]. In all these cases, the goal is to predict holistic scene tags from the scores (or
features) from an object CNN classifier. The dependence of the holistic descriptions on these objects
could range from very explicit to very subtle. For example, on the explicit end of the spectrum, an
image captioning system could produce sentence such as “a person is sitting on a stool and feeding a
zebra.” On the other hand, on the subtle end of the spectrum, a scene classification system would
leverage the recognition of certain rocks, tree stumps, bushes and a particular lizard species to label
an image with the tag “Joshua Tree National Park”. While it is obviously possible 1) to collect a large
dataset of images, and 2) use them to train a CNN to directly solve each of these tasks, this approach
has two main limitations. First, it is extremely time consuming. Second, the “directly learned” CNN
will typically not accommodate explicit relations between the holistic descriptions and the objects in
the scene. This has, for example, been documented in the scene classification literature, where the
performance of the best “directly learned” CNNs [26], can be substantially improved by fusion with
object recognition CNNs [6, 11, 2].

So far, the transfer from object CNNs to holistic scene description has been most extensively studied
in the area of scene classification, where state of the art results have been obtained with the bag of
semantics representation of [2]. This consists of feeding image patches through an object recognition
CNN, collecting a bag vectors of object recognition scores, and embedding this bag into a fixed
dimensional vector space with recourse to a Fisher vector [7]. While there are variations of detail,
all other competitive methods are based on a similar architecture [6, 11]. This observation is, in
principle, applicable to other tasks. For example, the state of the art in image captioning is to use a
CNN as an image encoder that extracts a feature vector from the image. This feature vector is the fed
to a natural language decoder (typically an LSTM) that produces sentences. While there has not yet
been an extensive investigation of the best image encoder, it is likely that the best representations for
scene classification should also be effective encodings for language generation. For these reasons,
we restrict our attention to the scene classifcation problem in the remainder of this work, focusing
on the question of how to address possible limitations of the Fisher vector embedding. We note,
in particular, that while Fisher vectors have been classically defined using gradients of image log-
likelihood with respect to the means and variances of a Gaussian mixture model (GMM) [13], this
definition has not been applied universally in the CNN transfer context, where variance statistics are
often disregarded [6, 2].

In this work we make several contributions to the use of Fisher vector type of representations for
object to scene transfer. The first is to show that, for object recognition scores produced by a CNN [2],
variance statistics are much less informative of scene class distributions than the mean gradients, and
can even degrade scene classification performance. We then argue that this is due to the inability of the
standard GMM of diagonal covariances to provide a good approximation to the non-linear manifold
of CNN responses. This leads to the adoption of a richer generative model, the mixture of factor
analyzers (MFA) [4, 22], which locally approximates the scene class manifold by low-dimensional
linear spaces. Our second contribution is to show that, by locally projecting the feature data into
these spaces, the MFA can efficiently model its local covariance structure. For this, we derive the
Fisher score of the MFA model, denoted the MFA Fisher score (MFA-FS), a representation similar to
the GMM Fisher vector of [13, 17]. We show that, for high dimensional CNN features, the MFA-FS
captures highly discriminative covariance statistics, which were previously unavailable in [6, 2],
producing significantly improved scene classification over the conventional GMM Fisher vector. The
third contribution is a detailed experimental investigation of the MFA-FS. Since this can be seen
as a second order pooling mechanism, we compare it to a number of recent methods for second
order pooling of CNN features [21, 3]. Although these methods describe global covariance structure,
they lack the ability of the MFA-FS to capture that information along locally linear approximations
of the highly non-linear CNN feature manifold. This is shown to be important, as the MFA-FS is
shown to outperform all these representations by non-trivial margins. Finally, we show that the
MFA-FS enables effective task transfer, by showing that MFA-FS vectors extracted from deep CNNs
trained for ImageNet object recognition [8, 18], achieve state-of-the-art results on challenging scene
recognition benchmarks, such as SUN [25] and MIT Indoor Scenes [14].
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2 Fisher scores

In computer vision, an image I is frequently interpreted as a set of descriptors D = {x1, . . . , xn}
sampled from some generative model p(x; θ). Since most classifiers require fixed-length inputs, it
is common to map the set D into a fixed-length vector. A popular mapping consists of computing
the gradient (with respect to θ) of the log-likelihood∇θL(θ) = ∂

∂θ log p(D; θ) for a model θb. This
is known as the Fisher score of θ. This gradient vector is often normalized by the square root
of the Fisher information matrix F , according to F−

1
2∇θL(θ). This is referred to as the Fisher

vector (FV) [7] representation of I. While the Fisher vector is frequently used with a Gaussian
mixture model (GMM) [13, 17], any generative model p(x; θ) can be used. However, the information
matrix is not always easy to compute. When this is case, it is common to rely on the simpler
representation of I by the score∇θL(θ). This is, for example, the case with the sparse coded gradient
vectors in [11]. We next show that, for models with hidden variables, the Fisher score can be obtained
trivially from the steps of the expectation maximization (EM) algorithm commonly used to learn
such models.

2.1 Fisher Scores from EM

Consider the log-likelihood of D under a latent-variable model log p(D; θ) = log
∫
p(D, z; θ)dz of

hidden variable z. Since the left-hand side does not depend on the hidden variable, this can be written
in an alternate form, which is widely used in the EM literature,

log p(D; θ) =

∫
q(z) log p(D, z; θ)dz −

∫
q(z) log q(z)dz +

∫
q(z) log

q(z)

p(z|D; θ)
dz

= Q(q; θ) +H(q) +KL(q||p; θ) (1)

whereQ(q; θ) is the “Q” function, q(z) a general probability distribution,H(q) its differential entropy
and KL(q||p; θ) the Kullback Liebler divergence between the posterior p(z|D; θ) and q(z). Hence,

∂

∂θ
log p(D; θ) =

∂

∂θ
Q(q; θ) +

∂

∂θ
KL(q||p; θ) (2)

where

∂

∂θ
KL(q||p; θ) = −

∫
q(z)

p(z|D; θ)

∂

∂θ
p(z|D; θ)dz. (3)

In each iteration of the EM algorithm the q distribution is chosen as q(z) = p(z|D; θb), where θb is a
reference parameter vector (the parameter estimates from the previous EM iteration) and

Q(q; θ) =

∫
p(z|D; θb) log p(D, z; θ)dz = Ez|D;θb [log p(D, z; θ)]. (4)

It follows that

∂

∂θ
KL(q||p; θ)

∣∣∣∣
θ=θb

= −
∫
p(z|D; θb)

p(z|D; θb)

∂

∂θ
p(z|D; θ)

∣∣∣∣
θ=θb

dz = − ∂

∂θ

∫
p(z|D; θ)

∣∣∣∣
θ=θb

dz = 0

and

∂

∂θ
log p(D; θ)

∣∣∣∣
θ=θb

=
∂

∂θ
Q(p(z|D; θb); θ)

∣∣∣∣
θ=θb

. (5)

In summary, the Fisher score∇θL(θ)|{θ=θb} of background model θb is the gradient of the Q-function
of EM evaluated at reference model θb. The computation of the score thus simplifies into the two
steps of EM. First, the E step computes the Q function Q(p(z|x; θb); θ) at the reference θb. Second,
the M-step evaluates the gradient of the Q function with respect to θ at θ = θb. This interpretation
of the Fisher score is particularly helpful when efficient implementations of the EM algorithm are
available, e.g. the recursive Baum-Welch computations commonly used to learn hidden Markov
models [15]. For more tractable distributions, such as the GMM, it enables the simple reuse of the
EM equations, which are always required to learn the reference model θb, to compute the Fisher
score.
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2.2 Bag of features

Fisher scores are usually combined with the bag-of-features representation, where an image is
described as an orderless collection of localized descriptors D = {x1, x2, . . . xn}. These were tradi-
tionally SIFT descriptors, but have more recently been replaced with responses of object recognition
CNNs [6, 1, 2]. In this work we use the semantic features proposed in [2], which are obtained by
transforming softmax probability vectors pi, obtained for image patches, into their natural parameter
form. These features were shown to perform better than activations of other CNN layers [2].

2.3 Gaussian Mixture Fisher Vectors

A GMM is a model with a discrete hidden variable that determines the mixture component which
explains the observed data. The generative process is as follows. A mixture component zi is first
sampled from a multinomial distribution p(z = k) = wk. An observation xi is then sampled from
the Gaussian component p(x|z = k) ∼ G(x, µk, σk) of mean µk and variance σk. Both the hidden
and observed variables are sampled independently, and the Q function simplifies to

Q(p(z|D; θb); θ) =
∑

i
Ezi|xi;θb

[∑
k
I(zi, k) log p(xi, k; θ)

]
=

∑
i,k
hik log p(xi|zi = k; θ)wk (6)

where I(.) is the indicator function and hik is the posterior probability p(k|xi; θb). The probability
vectors hi are the only quantities computed in the E-step.

In the Fisher vector literature [13, 17], the GMM is assumed to have diagonal covariances. This is
denoted as the variance-GMM. Substituting the expressions of p(xi|zi = k; θ) and differentiating the
Q function with respect to parameters θ = {µk, σk} leads to the two components of the Fisher score

Gµd
k
(I) =

∂

∂µdk
L(θ) =

∑
i
p(k|xi)

(
xdi − µdk
(σdk)2

)
(7)

Gσd
k
(I) =

∂

∂σdk
L(θ) =

∑
i
p(k|xi)

[
(xdi − µdk)2

(σdk)3
− 1

σdk

]
. (8)

These quantities are evaluated using a reference model θb = {µbk, σbk} learned (with EM) from all
training data. To compute the Fisher vectors, scores in (7) and (8) are often scaled by an approximate
Fisher information matrix, as detailed in [17]. When used with SIFT descriptors, these mean
and variance scores usually capture complimentary discriminative information, useful for image
classification [13]. Yet, FVs computed from CNN features only use the mean gradients similar
to (7), ignoring second-order statistics [6, 2]. In the experimental section, we show that the variance
statistics of CNN features perform poorly compared to the mean gradients. This is perhaps due to the
inability of the variance-GMM to accurately model data in high dimensions. We test this hypothesis
by considering a model better suited for this task.

2.4 Fisher Scores for the Mixture of Factor Analyzers

A factor analyzer (FA) is a type of a Gaussian distribution that models high dimensional observations
x ∈ RD in terms of latent variables or “factors” z ∈ RR defined on a low-dimensional subspace
R << D [4]. The process can be written as x = Λz + ε, where Λ is known as the factor loading
matrix and ε models the additive noise in dimensions of x. Factors z are assumed distributed as
G(z, 0, I) and the noise is assumed to be G(ε, 0, ψ), where ψ is a diagonal matrix. It can be shown
that x has full covariance S = ΛΛT + ψ, making the FA better suited for high dimensional modeling
than a Gaussian of diagonal covariance.

A mixture of factor analyzers (MFA) is an extension of the FA that allows a piece-wise linear
approximation of a non-linear data manifold. Unlike the GMM, it has two hidden variables: a discrete
variable s, p(s = k) = wk, which determines the mixture assignments and a continuous latent
variable z ∈ RR, p(z|s = k) = G(z, 0, I), which is a low dimensional projection of the observation
variable x ∈ RD, p(x|z, s = k) = G(x,Λkz + µk, ψ). Hence, the kth MFA component is a FA of
mean µk and subspace defined by Λk. Overall, the MFA components approximate the distribution of
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the observations x by a set of sub-spaces in observation space. The Q function is

Q(p(s, z|D; θb); θ) =
∑

i
Ezi,si|xi;θb

[∑
k
I(si, k) log p(xi, zi, si = k; θ)

]
(9)

=
∑

i,k
hikEzi|xi;θb [logG(xi,Λkzi + µk, ψ) + logG(zi, 0, I) + logwk] . (10)

where hik = p(si = k|xi; θb). After some simplifications, the E step reduces to computing

hik = p(k|xi; θb) ∝ wbkN (xi, µ
b
k, S

b
k) (11)

Ezi|xi;θb [zi] = βbk(xi − µbk) (12)

Ezi|xi;θb [ziz
T
i ] =

(
I − βbkΛbk + βbk(xi − µbk)(xi − µbk)Tβb

T

k

)
(13)

with Sbk = ΛbkΛb
T

k + ψb and βbk = Λb
T

k

(
Sbk
)−1

. The M-step then evaluates the Fisher score of
θ = {µbk,Λbk}. With some algebraic manipulations, this can be shown to have components

Gµk
(I) =

∑
i
p(k|xi; θb)ψb

−1 (
I − Λbkβ

b
k

) (
xi − µbk

)
(14)

GΛk
(I) =

∑
i
p(k|xi; θb)ψb

−1

(Λbkβ
b
k − I)

[
(xi − µbk)(xi − µbk)Tβb

T

k − Λbk

]
. (15)

For a detailed discussion of the Q function, the reader is referred to the EM derivation in [4]. Note
that the scores with respect to the means are functionally similar to the first order residuals in (7).
However, the scores with respect to the factor loading matrices Λk account for covariance statistics of
the observations xi, not just variances. We refer to the representations (14) and (15) as MFA Fisher
scores (MFA-FS). Note that these are not FVs due to the absence of normalization by the Fisher
information, which is more complex to compute than for the variance-GMM.

3 Related work

The most popular approach to transfer object scores (usually from an ImageNet CNN) into a feature
vector for scene classification is to rely on FV-style pooling. Although most classifiers default to the
GMM-FV embedding [6, 1, 2, 24], some recent works have explored different encoding [11] and
pooling schemes [21, 3] with promising results. Liu et al. [11] derived an FV like representation from
sparse coding. Their model can be described as a factor analyzer with Gaussian observations p(x|z) ∼
N (Λz, σ2I) conditioned on Laplace factors p(z) ∝

∏
r exp(−|zr|). While the sparse FA marginal

p(x) is intractable, it can be approximated by an evidence lower bound p(x) ≥
∫
q(z)p(x,z)q(z) dz

derived from a suitable variational posterior q(z). In [11], q is a point posterior δ(z − z∗) and the
MAP inference simplifies into sparse coding. The image representation is obtained using gradients
of the sparse coding objective evaluated at the MAP factors z∗, with respect to the factor loadings
Λ. [21] proposed an alternative bilinear pooling mechanism

∑
i xix

T
i . Similar to the MFA-FS, this

captures second order statistics of CNN feature space, albeit globally. Due to its simplicity, this
mechanism supports fine-tuning of the object CNN to scene classes. Gao et al. [3] have recently
shown that this representation can be compressed with minimal performance loss.

4 Experiments

The MFA-FS was evaluated on the scene classification problem, using the 67 class MIT Indoor scenes
dataset [14] and the 397 class MIT SUN dataset [25]. For Indoor scenes, a single training set of 80
images per class is provided by the authors. The test set consists of 20 images per class. Results are
reported as average per class classification accuracy. The authors of SUN provide multiple train/test
splits, each test set containing 50 images per class. Results are reported as mean average per class
classification accuracy over splits. Three object recognition CNNs, pre-trained on ImageNet, were
used to extract features: the 8 layer network of [8] (denoted as AlexNet) and the deeper 16 and 19
layer networks of [18] (denoted VGG-16 and VGG-19, respectively). These CNNs assign 1000
dimensional object recognition probabilities to P × P patches (sampled on a grid of fixed spacing)
of the scene images, with P ∈ {128, 160, 96}. Patch probability vectors were converted into their
natural parameter form and PCA-reduced to 500 dimensions as in [2]. Each image was mapped into a
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Table 1: Classification accu-
racy (K = 50, R = 10).

MIT Indoor
GMM FV (µ) 66.08
GMM FV (σ) 53.86
MFA FS (µ) 67.68
MFA FS (Λ) 71.11

SUN
GMM FV (µ) 50.01
GMM FV (σ) 37.71
MFA FS (µ) 51.43
MFA FS (Λ) 53.38
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Figure 1: Classification accuracy vs. descriptor size for MFA-FS(Λ) of K = 50
components and R factor dimensions and GMM-FV(σ) of K components. Left:
MIT Indoor. Right: SUN.

GMM-FV [13] using a background GMM, and an MFA-FS, using (14), (15) and a background MFA.
As usual in the FV literature, these vectors were power normalized, L2 normalized, and classified
with a cross-validated linear SVM. These classifiers were compared to scene CNNs, trained on the
large scale Places dataset. In this case, the features from the penultimate CNN layer were used as a
holistic scene representation and classified with a linear SVM, as in [26]. We used the places CNNs
with the AlexNet and VGG-16 architectures provided by the authors.

4.1 Impact of Covariance Modeling

We begin with an experiment to compare the modeling power of MFAs to variance-GMMs. This was
based on AlexNet features, mixtures of K = 50 components, and an MFA latent space dimension of
R = 10. Table 1 presents the classification accuracy of a GMM-FV that only considers the mean
- GMM-FV(µ) - or variance - GMM-FV(σ) - parameters and a MFA-FS that only considers the
mean - MFA-FS(µ) - or covariance - MFA-FS(Λ) - parameters. The most interesting observation
is the complete failure of the GMM-FV (σ), which under-performs the GMM-FV(µ) by more than
10%. The difference between the two components of the GMM-FV is not as startling for lower
dimensional SIFT features [13]. However, for CNN features, the discriminative power of variance
statistics is exceptionally low. This explains why previous FV representations for CNNs [6, 2] only
consider gradients with respect to the means. A second observation of importance is that the improved
modeling of covariances by the MFA eliminates this problem. In fact, MFA-FS(Λ) is significantly
better than both GMM-FVs. It could be argued that a fair comparison requires an increase in the
GMM modeling capacity. Fig. 1 tests this hypothesis by comparing GMM-FVs(σ) and MFA-FS
(Λ) for various numbers of GMM components (K ∈ {50, . . . , 500}) and MFA hidden sub-spaces
dimensions (R ∈ {1, . . . , 10}). For comparable vector dimensions, the covariance based scores
always significantly outperforms the variance statistics on both datasets. A final observation is that,
due to covariance modeling in MFAs, the MFA-FS(µ) performs better the GMM-FV(µ). The first
order residuals pooled to obtain the MFA-FS(µ) (14) are scaled by covariance matrices instead of
variances. This local de-correlation provides a non-trivial improvement for the MFA-FS(µ) over the
GMM-FV(µ)(∼ 1.5% points). Covariance modeling was previously used in [19] to obtain FVs w.r.t.
Gaussian means and local subspace variances (eigen-values of covariance). Their subspace variance
FV, derived with our MFAs, performs much better than the variance GMM-FV (σ), due to a better
underlying model (60.7% v 53.86% on Indoor). It is, however, still inferior to the MFA-FS(Λ) which
captures full covariance within local subspaces.

While a combination of the MFA-FS(µ) and MFA-FS(Λ) produces a small improvement (∼ 1%), we
restrict to using the latter in the remainder of this work.

4.2 Multi-scale learning and Deep CNNs

Recent works have demonstrated value in combining deep CNN features extracted at multiple-scales.
Table 2 presents the classification accuracies of the MFA-FS (Λ) based on AlexNet, and 16 and 19
layer VGG features extracted from 96x96, 128x128 and 160x160 pixel image patches, as well as
their concatenation (3 scales), as suggested by [2]. These results confirm the benefits of multi-scale
feature combination, which achieves the best performance for all CNNs and datasets.
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Table 2: MFA-FS classification ac-
curacy as a function of patch scale.

MIT SUN
Indoor

AlexNet
160x160 69.83 52.36
128x128 71.11 53.38

96x96 70.51 53.54
3 scales 73.58 55.95

VGG-16
160x160 77.26 59.77
128x128 77.28 60.99

96x96 79.57 61.71
3 scales 80.1 63.31

VGG-19
160x160 77.21 -
128x128 79.39 -

96x96 79.9 -
3 scales 81.43 -

Table 3: Performance of scene classification methods. *-
combination of patch scales (128, 96, 160).

Method MIT Indoor SUN
MFA-FS + Places (VGG) 87.23 71.06

MFA-FS + Places (AlexNet) 79.86 63.16
MFA-FS (VGG) 81.43 63.31

MFA-FS (AlexNet) 73.58 55.95
Full BN (VGG) [3] 77.55 -

Compact BN (VGG) [3] 76.17 -
H-Sparse (VGG) [12] 79.5 -

Sparse Coding (VGG) [12] 77.6 -
Sparse Coding (AlexNet) [11] 68.2

MetaClass (AlexNet) + Places [24] 78.9 58.11
FV (AlexNet)(4 scales) + Places [2] 79.0 61.72
FV (AlexNet)(3 scales) + Places [2] 78.5∗ -

FV (AlexNet) (4 scales) [2] 72.86 54.4
FV (Alexnet)(3 scales) [2] 71.24 53.0

VLAD (AlexNet) [6] 68.88 51.98
FV+FC (VGG) [1] 81.0 -

Mid Level [10] 70.46 -

4.3 Comparison with ImageNet based Classifiers

We next compared the MFA-FS to state of the art scene classifiers also based on transfer from
ImageNet CNN features [11, 1–3]. Since all these methods only report results for MIT Indoor, we
limited the comparison to this dataset, with the results of Table 4. The GMM-FV of [2] operates
on AlexNet CNN semantics extracted from image patches of multiple sizes (96, 128, 160, 80). The
FV in [1] is computed using convolutional features from AlexNet or VGG-16 extracted in a large
multi-scale setting. Liu et al. proposed a gradient representation based on sparse codes. Their initial
results were reported on a single patch scale of 128x128 using AlexNet features [11]. More recently,
they have proposed an improved H-Sparse representation, combined multiple patch scales and used
VGG features in [12]. The recently proposed bilinear (BN) descriptor pooling of [21] is similar to
the MFA-FS in the sense that it captures global second order descriptor statistics. The simplicity of
these descriptors enables the fine-tuning of the CNN layers to the scene classification task. However,
their results, reproduced in [3] for VGG-16 features, are clearly inferior to those of the MFA-FS
without fine-tuning. Gao et al. [3] propose a way to compress these bilinear statistics with trainable
transformations. For a compact image representation of size 8K, their accuracy is inferior to a
representation of 5K dimensions obtained by combining the MFA-FS with a simple PCA.

These experiments show that the MFA-FS is a state of the art procedure for task transfer from object
recognition (on ImageNet) to scene classification (e.g. on MIT Indoor or SUN). Its closest competitor
is the classifier of [1], which combines CNN features in a massive multiscale setting ( 10 image sizes).
While MFA-FS outperforms [1] with only 3 image scales, its performance improves even further with
addition of more scales (82% with VGG, 4 patch sizes).

4.4 Task transfer performance

The next question is how object-to-scene transfer compares to the much more intensive process,
pursued by [26], of collecting a large scale labeled dataset and training a deep CNN from it. Their
scene dataset, known as Places, consists of 2.4M images, from which both AlexNet and VGG Net
CNNs were trained for scene classification. The fully connected features from the networks are used
as scene representations and classified with linear SVMs on Indoor scenes and SUN. The Places
CNN features are a direct alternatives to the MFA-FS. While the use of the former is an example of
dataset transfer (features trained on scenes to classify scenes) the use of the latter is an example of
task transfer (features trained on objects to classify scenes).

A comparison between the two transfer approaches is shown in table 5. Somewhat surprisingly,
task transfer with the MFA-FS outperformed dataset transfer with the Places CNN, on both MIT
Indoors and SUN and for both the AlexNet and VGG architectures. This supports the hypothesis that
the variability of configurations of most scenes makes scene classification much harder than object
recognition, to the point where CNN architectures that have close-to or above human performance for
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Table 4: Comparison to task transfer methods (Ima-
geNet CNNs) on MIT Indoor.

Method 1 scale mscale
AlexNet

MFA-FS 71.11 73.58
GMM FV [2] 68.5 72.86
FV+FC [1] - 71.6

Sparse Coding [11] 68.2 -
VGG

MFA-FS 79.9 81.43
Sparse Coding [12] - 77.6

H-Sparse [12] - 79.5
BN [3] 77.55 -

FV+FC [1] - 81.0
VGG + dim. reduction

MFA-FS + PCA (5k) 79.3 -
BN (8k) [3] 76.17 -

Table 5: Comparison with the Places trained Scene
CNNs.

Method SUN Indoor
AlexNet

MFA-FS 55.95 73.58
Places 54.3 68.24

Combined 63.16 79.86
VGG

MFA-FS 63.31 81.43
Places 61.32 79.47

Combined 71.06 87.23
AlexNet + VGG

Places (VGG + Alex) 65.91 81.29
MFA-FS(Alex) + Places(VGG) 68.8 85.6
MFA-FS(VGG) + Places(Alex) 67.34 82.82

object recognition are much less effective for scenes. It is, instead, preferable to pool object detections
across the scene image, using a pooling mechanism such as the MFA-FS. This observation is in line
with an interesting result of [2], showing that the object-based and scene-based representations are
complementary, by concatenating ImageNet- and Places-based feature vectors. By replacing the
the GMM-FV of [2] with the MFA-FS now proposed, we improve upon these results. For both the
AlexNet and VGG CNNs, the combination of the ImageNet-based MFA-FS and the Places CNN
feature vector outperformed both the MFA-FS and the Places CNN features by themselves, in both
SUN and MIT Indoor. To the best of our knowledge, no method using these or deeper CNNs has
reported better results than the combined MFA-FS and Places VGG features of Table 5.

It could be argued that this improvement is just an effect of the often observed benefits of fusing
different classifiers. Many works even resort to “bagging” of multiple CNNs to achieve performance
improvements [18]. To test this hypothesis we also implemented a classifier that combines two Places
CNNs with the AlexNet and VGG architectures. This is shown as Places (VGG+AlexNet) in the last
section of Table 5. While improving on the performance of both MFA-FS and Places, its performance
is not as good as that of the combination of the object-based and scene-based representations (MFA-
FS + Places). As shown in the remainder of the last section of the table, any combination of an object
CNN with MFA-FS based transfer and a scene CNN outperforms this classifier.

Finally, table 3 compares results to the best recent scene classification methods in the literature.
This comparison shows that MFA-FS + Places combination is a state-of-the-art classifier with
substantial gains over all other proposals. The results of 71.06% on SUN and 87.23% on Indoor
scenes substantially outperform the previous best results of 61.7% and 81.7%, respectively.

5 Conclusion

It is now well established that deep CNNs can be transferred across datasets that address similar
tasks. It is less clear, however, whether they are robust to transfer across tasks. In this work, we have
considered a class of problems that involve this type of transfer, namely problems that benefit from
transferring object detections into holistic scene level inference, eg. scene classification. While such
problems have been addressed with FV-like representations in the past, we have shown that these are
not very effective for the high-dimensional CNN features. The reason is their reliance on a model, the
variance-GMM, with a limited flexibility. We have addressed this problem by adopting a better model,
the MFA, which approximates the non-linear data manifold by a set of local sub-spaces. We then
introduced the Fisher score with respect to this model, denoted as the MFA-FS. Through extensive
experiments, we have shown that the MFA-FS has state of the art performance for object-to-scene
transfer and this transfer actually outperforms a scene CNN trained on a large scene dataset. These
results are significant given that 1) MFA training takes only a few hours versus training a CNN, and
2) transfer requires a much smaller scene dataset.
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