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Abstract

Time series prediction problems are becoming increasingly high-dimensional in
modern applications, such as climatology and demand forecasting. For example,
in the latter problem, the number of items for which demand needs to be forecast
might be as large as 50,000. In addition, the data is generally noisy and full of
missing values. Thus, modern applications require methods that are highly scalable,
and can deal with noisy data in terms of corruptions or missing values. However,
classical time series methods usually fall short of handling these issues. In this
paper, we present a temporal regularized matrix factorization (TRMF) framework
which supports data-driven temporal learning and forecasting. We develop novel
regularization schemes and use scalable matrix factorization methods that are
eminently suited for high-dimensional time series data that has many missing values.
Our proposed TRMF is highly general, and subsumes many existing approaches
for time series analysis. We make interesting connections to graph regularization
methods in the context of learning the dependencies in an autoregressive framework.
Experimental results show the superiority of TRMF in terms of scalability and
prediction quality. In particular, TRMF is two orders of magnitude faster than
other methods on a problem of dimension 50,000, and generates better forecasts on
real-world datasets such as Wal-mart E-commerce datasets.

1 Introduction

Time series analysis is a central problem in many applications such as demand forecasting and
climatology. Often, such applications require methods that are highly scalable to handle a very large
number (n) of possibly inter-dependent one-dimensional time series and/or have a large time frame
(T). For example, climatology applications involve data collected from possibly thousands of sensors,
every hour (or less) over several years. Similarly, a store tracking its inventory would track thousands
of items every day for multiple years. Not only is the scale of such problems huge, but they might
also involve missing values, due to sensor malfunctions, occlusions or simple human errors. Thus,
modern time series applications present two challenges to practitioners: scalability to handle large n
and 7" and the flexibility to handle missing values.

Most approaches in the traditional time series literature such as autoregressive (AR) models or
dynamic linear models (DLM)[7, 21] focus on low-dimensional time-series data and fall short of
handling the two aforementioned issues. For example, an AR model of order L requires O(T L?n* +
L3n5) time to estimate O(Ln?) parameters, which is prohibitive even for moderate values of n.
Similarly, Kalman filter based DLM approaches need O(kn>T + k3T') computation cost to update
parameters, where k is the latent dimensionality, which is usually chosen to be larger than n in many
situations [13]. As a specific example, the maximum likelihood estimator implementation in the
widely used R-DLM package [12], which relies on a general optimization solver, cannot scale beyond
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n in the tens. (See Appendix D for details). On the other hand, for models such as AR, the flexibility
to handle missing values can also be very challenging even for one-dimensional time series [1], let
alone the difficulty to handle high dimensional time series.

A natural way to model high-dimensional time series data is in the form of a matrix, with rows
corresponding to each one-dimensional time series and columns corresponding to time points. In light
of the observation that n time series are usually highly correlated with each other, there have been
some attempts to apply low-rank matrix factorization (MF) or matrix completion (MC) techniques
to analyze high-dimensional time series [2, 14, 16, 23, 26]. Unlike the AR and DLM models above,
state-of-the-art MF methods scale linearly in n, and hence can handle large datasets. Let Y € R*T
be the matrix for the observed n-dimensional time series with Y;; being the observation at the ¢-th
time point of the ¢-th time series. Under the standard MF approach, Y;; is estimated by the inner
product f," z;, where f; € R” is a k-dimensional latent embedding for the i-th time series, and
x; € R is a k-dimensional latent temporal embedding for the ¢-th time point. We can stack the xs
into the columns into a matrix X € R**T and f," into the rows of F € R"** (Figure 1) to get
Y ~ F'X. We can then solve:

. 2
min Y (Yi— fil@)” + ARy (F) + AR (X), ()
(i,t)eQ
where () is the set of the observed entries. R ;(F'), Time Time- dependent variables

R (X) are regularizers for ' and X, which usu-

ally( pl)ay a role to avoid overfitting and/or to en- =.
courage some specific temporal structures among ¢ ,

the embeddings. It is clear that the common choice
of the regularizer R,(X) = || X/ is no longer e
appropriate for time series applications, as it does
not take into account the ordering among the tem-
poral embeddings {x;}. Most existing MF ap-
proaches [2, 14, 16, 23, 26] adapt graph-based ap-
proaches to handle temporal dependencies. Specif-
ically, the dependencies are described by a weighted similarity graph and incorporated through
a Laplacian regularizer [18]. However, graph-based regularization fails in cases where there are
negative correlations between two time points. Furthermore, unlike scenarios where explicit graph
information is available with the data (such as a social network or product co-purchasing graph
for recommender systems), explicit temporal dependency structure is usually unavailable and has
to be inferred or approximated, which causes practitioners to either perform a separate procedure
to estimate the dependencies or consider very short-term dependencies with simple fixed weights.
Moreover, existing MF approaches, while yielding good estimations for missing values in past points,
are poor in terms of forecasting future values, which is the problem of interest in time series analysis.
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Figure 1: Matrix Factorization model for mul-
tiple time series. F’ captures features for each
time series in the matrix Y, and X captures
the latent and time-varying variables.

In this paper, we propose a novel temporal regularized matrix factorization framework (TRMF) for
high-dimensional time series analysis. In TRMF, we consider a principled approach to describe the
structure of temporal dependencies among latent temporal embeddings {x;} and design a temporal
regularizer to incorporate this temporal structure into the standard MF formulation. Unlike most
existing MF approaches, our TRMF method supports data-driven temporal dependency learning
and also brings the ability to forecast future values to a matrix factorization approach. In addition,
inherited from the property of MF approaches, TRMF can easily handle high-dimensional time series
data even in the presence of many missing values. As a specific example, we demonstrate a novel
autoregressive temporal regularizer which encourages AR structure among temporal embeddings
{x;}. We also make connections between the proposed regularization framework and graph-based
approaches [18], where even negative correlations can be accounted for. This connection not only
leads to better understanding about the dependency structure incorporated by our framework but also
brings the benefit of using off-the-shelf efficient solvers such as GRALS [15] directly to solve TRMF.

Paper Organization. In Section 2, we review the existing approaches and their limitations on data
with temporal dependencies. We present the proposed TRMF framework in Section 3, and show that
the method is highly general and can be used for a variety of time series applications. We introduce
anovel AR temporal regularizer in Section 4, and make connections to graph-based regularization
approaches. We demonstrate the superiority of the proposed approach via extensive experimental
results in Section 5 and conclude the paper in Section 6.



2 Motivations: Existing Approaches and Limitations

2.1 Classical Time-Series Models

Models such as AR and DLM are not suitable for modern multiple high-dimensional time series data
(i.e., both n and T are large) due to their inherent computational inefficiency (see Section 1). To avoid
overfitting in AR models, there have been studies with various structured transition matrices such
as low rank and sparse matrices [5, 10, 11]. The focus of this research has been on obtaining better
statistical guarantees. The scalability issue of AR models remains open. On the other hand, it is also
challenging for many classic time-series models to deal with data that has many missing values [1].

In many situations where the model parameters are either given or designed by practitioners, the
Kalman filter approach is used to perform forecasting, while the Kalman smoothing approach is
used to impute missing entries. When model parameters are unknown, EM algorithms are applied to
estimate both the model parameters and latent embeddings for DLM [3, 8, 9, 17, 19]. As most EM
approaches for DLM contain the Kalman filter as a building block, they cannot scale to very high
dimensional time series data. Indeed, as shown in Section 5, the popular R package for DLM’s does
not scale beyond data with tens of dimensions.

2.2 Existing Matrix Factorization Approaches for Data with Temporal Dependencies

In standard MF (1), the squared Frobenius norm R, (X) = || X||% = S./_, |j@|” is usually the
regularizer of choice for X. Because squared Frobenius norm assumes no dependencies among {x; },
standard MF formulation is invariant to column permutation and not applicable to data with temporal
dependencies. Hence most existing temporal MF approaches turn to the framework of graph-based
regularization [18] for temporally dependent {x; }, with a graph encoding the temporal dependencies.
An exception is the work in [22], where the authors use specially designed regularizers to encourage
a log-normal structure on the temporal coefficients.

Graph regularization for temporal dependencies:The framework of graph-based regularization is
an approach to describe and incorporate general dependencies among variables. Let G be a graph
over {x;} and Gy, be the edge weight between the ¢-th node and s-th node. A popular regularizer to
include as part of an objective function is the following'

Re(X) = G(X | G,n) == Zetmwt — |+ ”antu @)

trs
where ¢t ~ s denotes an edge between ¢-th node and i
s-th node, and the second summation term is used to m
guarantee strong convexity. A large G will ensure "~ e e g e ‘ e
that x; and x, are close to each other in Euclidean

distance, when (2) is minimized. Note that to guaran-
tee the convexity of G(X | G,n), we need G5 > 0.

To apply graph-based regularizers to temporal dependencies, we need to specify the (repeating)
dependency pattern by a lag set £ and a weight vector w such that all the edges ¢ ~ s of distance
[ (i.e., |s — t| =I) share the same weight G;s = w;. See Figure 2 for an example with £ = {1,4}.
Given £ and w, the corresponding graph regularizer becomes

GX |Goy=3 35 wilwe — i z>+"2||w|| 3

lEll t:it>1

Figure 2: Graph-based regularization for tem-
poral dependencies.

This direct use of graph-based approach, while intuitive, has two issues: a) there might be negatively
correlated dependencies between two time points; b) unlike many applications where such regularizers
are used, the explicit temporal dependency structure is usually not available and has to be inferred.
As a result, most existing approaches consider only very simple temporal dependencies such as a
small size of L (e.g., £ = {1}) and/or uniform weights (e.g., w; = 1, VI € L£). For example, a
simple chain graph is considered to design the smoothing regularizer in TCF [23]. This leads to poor
forecasting abilities of existing MF methods for large-scale time series applications.

2.3 Challenges to Learn Temporal Dependencies
One could try to learn the weights w; automatically, by using the same regularizer as in (3) but with
the weights unknown. This would lead to the following optimization problem:

i S (Y= £ ) ARy (F +*Z > i — )+ 2n§t:||rctll27 )

=7 (it)eq lEL t:t—1>0
where 0 is the zero vector, and w > 0 is the constraint imposed by graph regularization.




It is not hard to see that the above optimization yields the trivial all-zero solution for w*, meaning
the objective function is minimized when no temporal dependencies exist! To avoid the all zero
solution, one might want to impose a simplex constraint on w (i.e., Ezec w; = 1). Again, it
is not hard to see that this will result in w* being a 1-sparse vector, with w;« being 1, where
I* = argminges .o, || — x4—||*. Thus, looking to learn the weights automatically by simply
plugging in the regularizer in the MF formulation is not a viable option.

3 Temporal Regularized Matrix Factorization

In order to resolve the limitations mentioned in Sections 2.2 and 2.3, we propose the Temporal
Regularized Matrix Factorization (TRMF) framework, which is a novel approach to incorporate
temporal dependencies into matrix factorization models. Unlike the aforementioned graph-based
approaches, we propose to use well-studied time series models to describe temporal dependencies
among {x; } explicitly. Such models take the form:

Ty = M@({azt,l 1l e £}) + €, (5)
where €, is a Gaussian noise vector, and Mg is the time-series model parameterized by £ and ©. £
is a set containing the lag indices I, denoting a dependency between ¢-th and (¢ — [)-th time points,
while © captures the weighting information of temporal dependencies (such as the transition matrix
in AR models). To incorporate the temporal dependency into the standard MF formulation (1), we
propose to design a new regularizer Ty (X | ©) which encourages the structure induced by Meg.

Taking a standard approach to model time series, we set Ty (X | ©) be the negative log likelihood of
observing a particular realization of the {x;} for a given model Mg:

When © is given, we can use R, (X) = Tu(X | ©) in the MF formulation (1) to encourage {x;} to
follow the temporal dependency induced by Mg. When the © is unknown, we can treat © as another
set of variables and include another regularizer Ry (©) into (1):

. - T 2
min (%én(m Fil @) + AN Re(F) + AaTu(X | ©) + XoRo(O), @)
which be solved by an alternating minimization procedure over F', X, and ©.

Data-driven Temporal Dependency Learning in TRMF:Recall that in Section 2.3, we showed
that directly using graph based regularizers to incorporate temporal dependencies leads to trivial
solutions for the weights. TRMF circumvents this issue. When F' and X are fixed, (7) is reduced to:

Hgn )\mTM(X ‘ @) + )\97?,9(@), (8)

which is a maximume-a-posterior (MAP) estimation problem (in the Bayesian sense) to estimate the
best © for a given {x;} under the Mg model. There are well-developed algorithms to solve (8) and
obtain non-trivial ©. Thus, unlike most existing temporal matrix factorization approaches where the
strength of dependencies is fixed, © in TRMF can be learned automatically from data.

Time Series Analysis with TRMF:We can see that TRMF (7) lends itself seamlessly to handle a

variety of commonly encountered tasks in analyzing data with temporal dependency:

e Time-series Forecasting: Once we have Mg for latent embeddings {x; : 1,...,T}, we can
use it to predict future latent embeddings {x; : ¢ > T} and have the ability to obtain non-trivial
forecasting results for y, = Fa; fort > T.

e Missing-value Imputation: In some time-series applications, some entries in Y might be unob-
served, for example, due to faulty sensors in electricity usage monitoring or occlusions in the
case of motion recognition in video. We can use f,’ x; to impute these missing entries, much like
standard matrix completion, and is useful in recommender systems [23] and sensor networks [26].

Extensions to Incorporate Extra Information:Like matrix factorization, TRMF (7) can be ex-

tended to incorporate additional information. For example, pairwise relationships between the time

series can be incorporated using structural regularizers on F'. Furthermore, when features are known
for the time series, we can make use of interaction models such as those in [6, 24, 25]. Also, TRMF

can be extended to tensors. More details on these extensions can be found in Appendix B.

4 A Novel Autoregressive Temporal Regularizer

In Section 3, we described the TRMF framework in a very general sense, with the regularizer
Tm(X | ©) incorporating dependencies specified by the time series model Mg. In this section,
we specialize this to the case of AR models, which are parameterized by a lag set £ and weights
W = {W(l) e Rk € E}. Assume that x; is a noisy linear combination of some previous



points; that is, x; = Zz cr Wz, |+ €;, where €, is a Gaussian noise vector. For simplicity, we
assume that the €; ~ N(0, 0%1},), where I, is the k x k identity matrix!. The temporal regularizer
Tm(X | ©) corresponding to this AR model can be written as:

T 2
1
Tar(X LW ) =5 |2 — lezﬁw%_l +3 ;nwtn% )

2
where m := 1+ L, L := max(L), and n > 0 to guarantee the strong convexity of (9).

t=m
TRMF allows us to learn the weights {W(l)} when they are unknown. Since each W) € R**¥,
there will be |£|k? variables to learn, which may lead to overfitting. To prevent this and to yield
more interpretable results, we consider diagonal W), reducing the number of parameters to |L|k.
To simplify notation, we use W to denote the k£ x L matrix where the [-th column constitutes

the diagonal elements of W® . Note that for [ ¢ L, the I-th column of W is a zero vector. Let
& =[ -, X, ] bethe r-throw of X and w,” = [--+, Wy, - -] be the r-th row of W. Then

T

(9) can be written as Tar (X |£, W, n) = Z’:Zl Tar(Zr |L, w;, 1), where we define

2
1 T
Tar(Z L, w,n) = 2;1(%—;“11%—1) +g||ﬂ_¢”27 (10)
with x, being the ¢-th element of &, and w; being the [-th element of w.

Correlations among Multiple Time Series. Even when { W'} is diagonal, TRMF retains the power
to capture the correlations among time series via the factors { f;}, since it has an effect only on the
structure of latent embeddings {z}. Indeed, as the i-th dimension of {y,;} is modeled by f," X
in (7), the low rank F is a k dimensional latent embedding of multiple time series. This embedding
captures correlations among multiple time series. Furthermore, {f;} acts as time series features,
which can be used to perform classification/clustering even in the presence of missing values.
Choice of Lag Index Set £. Unlike most approaches mentioned in Section 2.2, the choice of £ in
TRMF is more flexible. Thus, TRMF can provide important advantages: First, because there is no
need to specify the weight parameters J/, L can be chosen to be larger to account for long range
dependencies, which also yields more accurate and robust forecasts. Second, the indices in £ can be
discontinuous so that one can easily embed domain knowledge about periodicity or seasonality. For
example, one might consider £ = {1, 2, 3,51, 52, 53} for weekly data with a one year seasonality.
Connections to Graph Regularization. We now establish connections between Tar (€ |L, w, )

and graph regularization (2) for matrix factorization. Let £ := £ U {0}, wo = —1 so that (10) is
2

T
i 1 15112
Tar(@|L,w,n) = 5 > szxtfz + 3l
t=m \lel
andlet §(d) := {l € L:1—d € L}. We then have the following result:

Theorem 1. Given a lag index set L, weight vector w € R”, and & € R”, there is a weighted
signed graph G*® with T nodes and a diagonal matrix D € R™*T such that

1
Ta(@|L,w,n) = G(z | G*,n) + 52" Da, (1)
where G (:i' | GAR 77) is the graph regularization (2) with G = G*R. Furthermore, Vt and d

ST —wwig if 5(d) # 6,

G vq =  165(d) m<tHi<T and Dy = | Y wy | | Y wyfm <t +1<T)
0 otherwise, leL leL

See Appendix C.1 for a detailed proof. From
Theorem 1, we see that §(d) is non-empty if and
only if there are edges between time points sep-
arated by d in G*R. Thus, we can construct the
dependency graph for Tar (2 |£, w,n) by check-
ing whether §(d) is empty. Figure 3 demon- Figure 3: The graph structure induced by the AR
strates an example with £ = {1,4}. We can see temporal regularizer (10) with £ = {1,4}.

that besides edges of distance d = 1 and d = 4, there are also edges of distance d = 3 (dotted edges
in Figure 3) because 4 — 3 € £ and 6(3) = {4}.

—wiwg  —WiWy

'If the (known) covariance matrix is not identity, we can suitably modify the regularizer.



Table 1: Data statistics.
synthetic electricity traffic walmart-1 walmart-2

n 16 370 963 1,350 1,582
T 128 26,304 10,560 187 187
missing ratio 0% 0% 0% 55.3% 49.3%

Although Theorem 1 shows that AR-based regularizers are similar to the graph-based regularization
framework, we note the following key differences:

o The graph GAR in Theorem 1 contains both positive and negative edges. This implies that the
AR temporal regularizer is able to support negative correlations, which the standard graph-based
regularizer cannot. This can make G (5: | GAR, 7]) non-convex. The addition of the second term in
(11), however, still leads to a convex regularizer Tar (€ |£, w, 7).

o Unlike (3) where there is freedom to specify a weight for each distance, in the graph G*R, the
weight values for the edges are more structured (e.g., the weight for d = 3 in Figure 3 is —wjwy).
Hence, minimization w.r.t. w’s is not trivial, and neither are the obtained solutions.

Plugging Ty (X | ©) = Tar(X |£, W, 1) into (7), we obtain the following problem:

k
. T2 _ _
oin (_%;Q(Yn Fl@)” + ARy (F) + 2_; Ao Tar (& 1C, @1, 1) + AuRu(W),  (12)
where R, (W) is a regularizer for W. We will refer to (12) as TRMF-AR. We can apply alternating
minimization to solve (12). In fact, solving for each variable reduces to well known methods, for
which highly efficient algorithms exist:

Updates for F'. When X and W are fixed, the subproblem of updating F' is the same as updating F’
while X fixed in (1). Thus, fast algorithms such as alternating least squares or coordinate descent can
be applied directly to find F, which costs O(|Q2|k?) time.

Updates for X. We solve arg minx >, cq (Y — f;ast)g + Ay Zle Tar (%, |L, w,, 7). From
Theorem 1, we see that Tar (€ |£, w, ) shares the same form as the graph regularizer, and we can
apply GRALS [15] to find X, which costs O(|£|Tk?) time.

Updates for 1V. How to update WV while F' and X fixed depends on the choice of R,,(W). There
are many parameter estimation techniques developed for AR with various regularizers [11, 20]. For

simplicity, we consider the squared Frobenius norm: R,,(W) = ||WH§, As a result, each row of w,
of W can be updated by solving the following one-dimensional autoregressive problem.

T 2
. _ _ _ . Aw -
argmin A\, Tar (Z, |C, @, ) + Ay ||w||* = arg min Z :cthwlxt_l + 22 wl|?,
® ® leL A
which is a simple | £| dimensional ridge regression problem with 7' — m + 1 instances, which can be

solved efficiently by Cholesky factorization in O(|£|* + T|£[?) time

t=m

Note that since our method is highly modular, one can resort to any method to solve the optimization
subproblems that arise for each module. Moreover, as mentioned in Section 3, TRMF can also be
used with different regularization structures, making it highly adaptable.

4.1 Connections to Existing MF Approaches

TRMF-AR is a generalization of many existing MF approaches to handle data with temporal depen-
dencies. Specifically, Temporal Collaborative Filtering [23] corresponds to W) = I, on {x:}. The
NMF method of [2] is an AR(L) model with W) = o!=1(1 — a)I}, VI, where « is pre-defined.
The AR(1) model of [16, 26] has w® = I, on {Fx.}. Finally the DLM [7] is a latent AR(1)
model with a general W), which can be estimated by EM algorithms.

4.2 Connections to Learning Gaussian Markov Random Fields

The Gaussian Markov Random Field (GMRF) is a general way to model multivariate data with
dependencies. GMRF assumes that data are generated from a multivariate Gaussian distribution
with a covariance matrix 2 which describes the dependencies among 7" dimensional variables i.e.,
& ~ N(0,%). If the unknown Z is assumed to be generated from this model, The negative log
likelihood of the data can be written as & ' ¥~ &, ignoring the constants and where ¥~ is the inverse
covariance matrix of the Gaussian distribution. This prior can be incorporated into an empirical risk
minimization framework as a regularizer. Furthermore, it is known that if (E_l) o = 0, x; and z,
are conditionally independent, given the other variables. In Theorem 1 we established connections



Table 2: Forecasting results: ND/ NRMSE for each approach. Lower values are better. “-” indicates
an unavailability due to scalability or an inability to handle missing values.
Forecasting with Full Observation
Matrix Factorization Models Time Series Models
TRMF-AR  SVD-AR(1) TCF AR(1) DLM R-DLM Mean
synthetic  0.373/0.487 0.444/0.872 1.000/ 1.4247] 0.928/1.401 0.936/ 1.391 0.996/ 1.420  1.000/ 1.424
electricity  0.255/1.397 0.257/1.865 0.349/ 1.838|| 0.219/ 1.439  0.435/2.753 -/ - 1.410/ 4.528
traffic 0.187/0.423 0.555/1.194 0.624/0.931| 0.275/0.536 0.639/0.951 -/ - 0.560/ 0.826
Forecasting with Missing Values
walmart-1  0.533/1.958 -/ - 0.540/2.231 -/ - 0.602/2.293 -/ - 1.239/3.103
walmart-2  0.432/1.065 -/ - 0.446/1.124 -/ - 0.453/1.110 -/ - 1.097/2.088

to graph based regularizers, and that such methods can be seen as regularizing with the inverse
covariance matrix for Gaussians [27]. We thus have the following result:

Corollary 1. For any lag set L, w, and n > 0, the inverse covariance matrix EA_R1 of the GMRF model
corresponding to the quadratic regularizer R, (&) := Tar(Z|L, W, n) shares the same off-diagonal
non-zero pattern as G*¥ defined in Theorem 1. Moreover, we have Tag(Z |L,w,n) = :ETEXRI T.

A detailed proof is in Appendix C.2. As a result, our proposed AR-based regularizer is equivalent to
imposing a Gaussian prior on Z with a structured inverse covariance described by the matrix GAR
defined in Theorem 1. Moreover, the step to learn WV has a natural interpretation: the lag set £
imposes the non-zero pattern of the graphical model on the data, and then we solve a simple least
squares problem to learn the weights corresponding to the edges. As an application of Theorem 1

from [15] and Corollary 1, when R;(F') = || F Hi,,we can relate Tag to a weighted nuclear norm:
. 2 _ }
1Bl =5, ot MFIE+ > Tar(@, 1L, . m), (13)

where B = US'/? and ¥} = USU" is the eigen-decomposition of ¥ ;1. (13) enables us to apply
the results from [15] to obtain guarantees for the use of AR temporal regularizer when WV is given. For
simplicity, we assume w, = w, Vr and consider a relaxed convex formulation for (12) as follows:

. 1 5
7 = in — 7.
argIZnenclN Z (Yz sz) +)‘Z||ZB||*> (14)
(,7)€Q
where N = |Q|, and C is a set of matrices with low spikiness. Full details are provided in Ap-
pendix C.3. As an application of Theorem 2 from [15], we have the following corollary.

Corollary 2. Let Z* = FX be the ground truth n x T time series matrix of rank k. Let Y be
the matrix with N = |Q| randomly observed entries corrupted with additive Gaussian noise with

variance 0. Then if A, > C} ("JFT)IX,M, with high probability for the Z obtained by (14),
k(n+T)log(n+1T)
N

A zH < Cha? max(1, o2) +0(a?/N),
F
where C,Cy are positive constants, and o depends on the product Z* B.

See Appendix C.3 for details. From the results in Table 3, we observe superior performance of
TRMF-AR over standard MF, indicating that w learnt from our data-driven approach (12) does aid
in recovering the missing entries for time series. We would like to point out that establishing a
theoretical guarantee for TRMF with W is unknown remains a challenging research direction.

5 Experimental Results Scalability Comparison

10*
We consider five datasets (Table 1). For synthetic, we first :
randomly generate ' € R'6*4 and generate {ax;} follow- 0 .
ing an AR process with £ = {1,8}. Then Y is obtained ‘g
by y; = Fx; + €, where €, ~ N(0,0.1]). The data sets £ 10} *
electricity and traffic are obtained from the UCI reposi- 3 . s TRMF-A‘R:{II;'})’A‘ /
tory, while walmart-1 and walmart-2 are two propriety = ' @/i/""" .+ TRMFAR(L..5h
datasets from Walmart E-commerce containing weekly £ @& = = AR({1Ls)
sale information. Due to reasons such as out-of-stock, Footy = a AR({1,...8})
55.3% and 49.3% of entries are missing respectively. To = DL
evaluate the prediction performance, we consider the nor- O ension of time series ) 000

malized deviation (ND) and normalized RMSE (NRMSE). Figure 4: Scalability: T = 512. n €
See details for the description for each dataset and the {500, 1000,...,50000}. AR({1,...,8})
formal definition for each criterion in Appendix A. cannot finish in 1 day.



Table 3: Missing value imputation results: ND/ NRMSE for each approach. Note that TRMF
outperforms all competing methods in almost all cases.

1 Matrix Factorization Models Time Series Models
nxT  TRMF-AR TCF MF DLM Mean
20% 0.467/0.661 0.713/1.030 0.688/1.064 || 0.933/1.382 1.002/1.474
synthetic 30% 0.336/0.455 0.629/0.961 0.595/0.926 || 0.913/1.324 1.004/ 1.445
40%  0.231/0.306 0.495/0.771 0.374/0.548 || 0.834/1.259 1.002/1.479
50% 0.201/0.270 0.289/0.464 0.317/0.477 || 0.772/1.186  1.001/ 1.498
20%  0.245/2.395 0.255/2.427 0.362/2.903 || 0.462/4.777 1.333/6.031
electricity 30% 0.235/2.415 0.245/2.436 0.355/2.766 || 0.410/6.605 1.320/6.050
40% 0.231/2.429 0.242/2.457 0.348/2.697 || 0.196/2.151 1.322/6.030
50% 0.223/2.434 0.233/2.459 0.319/2.623 | 0.158/1.590 1.320/6.109
20% 0.190/0.427 0.208/0.448 0.310/0.604 || 0.353/0.603 0.578/0.857
traffic 30% 0.186/0.419 0.199/0.432 0.299/0.581 || 0.286/0.518 0.578/0.856
40%  0.185/0.416 0.198/0.428 0.292/0.568 || 0.251/0.476 0.578/0.857
50% 0.184/0.415 0.193/0.422 0.251/0.510 || 0.224/0.447 0.578/0.857

Methods/Implementations Compared:

e TRMF-AR: The proposed formulation (12) with R,,(W) = ||W||§, For £, we use {1,2,...,8}
for synthetic, {1,...,24}U{7 x 24, ..., 8 x 24 — 1} for electricity and traffic, and {1, ...,10}U
{50,...,56} for walmart-1 and walmart-2 to capture seasonality.

e SVD-AR(1): The rank-k approximation of Y = USV T is first obtained by SVD. After setting
F=USand X =V, ak-dimensional AR(1) is learned on X for forecasting.

o TCF: Matrix factorization with the simple temporal regularizer proposed in [23].

o AR(1): n-dimensional AR(1) model.?

e DLM: two implementations: the widely used R-DLM package [12] and the code provided in [8].

e Mean: The baseline, which predicts everything to be the mean of the observed portion of Y.

For each method and data set, we perform a grid search over various parameters (such as k, \ values)

following a rolling validation approach described in [11].

Scalability: Figure 4 shows that traditional time-series approaches such as AR or DLM suffer

from the scalability issue for large n, while TRMF-AR scales much better with n. Specifically, for

n = 50,000, TRMF is 2 orders of magnitude faster than competing AR/DLM methods. Note that

the results for R-DLM are not available because the R package cannot scale beyond n in the tens

(See Appendix D for more details.). Furthermore, the d1mMLE routine in R-DLM uses a general

optimization solver, which is orders of magnitude slower than the implementation provided in [8].

5.1 Forecasting

Forecasting with Full Observations. We first compare various methods on the task of forecasting

values in the test set, given fully observed training data. For synthetic, we consider one-point ahead

forecasting task and use the last ten time points as the test periods. For electricity and traffic, we

consider the 24-hour ahead forecasting task and use last seven days as the test periods. From Table 2,

we can see that TRMF-AR outperforms all the other methods on both metrics considered.

Forecasting with Missing Values. We next compare the methods on the task of forecasting in the

presence of missing values in the data. We use the Walmart datasets here, and consider 6-week ahead

forecasting and use last 54 weeks as the test periods. Note that SVD-AR(1) and AR(1) cannot handle
missing values. The second part of Table 2 shows that we again outperform other methods.

5.2 Missing Value Imputation

We next consider the case of imputing missing values in the data. As in [9], we assume that blocks of
data are missing, corresponding to sensor malfunctions for example, over a length of time. To create
data with missing entries, we first fixed the percentage of data that we were interested in observing,
and then uniformly at random occluded blocks of a predetermined length (2 for synthetic data and
5 for the real datasets). The goal was to predict the occluded values. Table 3 shows that TRMF
outperforms the methods we compared to on almost all cases.

6 Conclusions

We propose a novel temporal regularized matrix factorization framework (TRMF) for high-
dimensional time series problems with missing values. TRMF not only models temporal dependency
among the data points, but also supports data-driven dependency learning. TRMF generalizes sev-
eral well-known methods and yields superior performance when compared to other state-of-the-art
methods on real-world datasets.

Acknowledgements: This research was supported by NSF grants (CCF-1320746, 11S-1546459, and CCF-
1564000) and gifts from Walmart Labs and Adobe. We thank Abhay Jha for the help on Walmart experiments.

?In Appendix A, we also show a baseline which applies an independent AR model to each dimension.
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