Learning feed-forward one-shot learners

Luca Bertinetto* Joao F. Henriques* Jack Valmadre*
University of Oxford University of Oxford University of Oxford
luca@robots.ox.ac.uk joao@robots.ox.ac.uk jvlmdr@robots.ox.ac.uk
Philip H. S. Torr Andrea Vedaldi
University of Oxford University of Oxford
philip.torr@eng.ox.ac.uk vedaldi@robots.ox.ac.uk
Abstract

One-shot learning is usually tackled by using generative models or discriminative
embeddings. Discriminative methods based on deep learning, which are very
effective in other learning scenarios, are ill-suited for one-shot learning as they
need large amounts of training data. In this paper, we propose a method to learn the
parameters of a deep model in one shot. We construct the learner as a second deep
network, called a learnet, which predicts the parameters of a pupil network from
a single exemplar. In this manner we obtain an efficient feed-forward one-shot
learner, trained end-to-end by minimizing a one-shot classification objective in
a learning to learn formulation. In order to make the construction feasible, we
propose a number of factorizations of the parameters of the pupil network. We
demonstrate encouraging results by learning characters from single exemplars in
Omniglot, and by tracking visual objects from a single initial exemplar in the Visual
Object Tracking benchmark.

1 Introduction

Deep learning methods have taken by storm areas such as computer vision, natural language process-
ing and speech recognition. One of their key strengths is the ability to leverage large quantities of
labelled data and extract meaningful and powerful representations from it. However, this capability is
also one of their most significant limitations since using large datasets to train deep neural network is
not just an option, but a necessity. It is well known, in fact, that these models are prone to overfitting.

Thus, deep networks seem less useful when the goal is to learn a new concept on the fly, from a few or
even a single example as in one shot learning. These problems are usually tackled by using generative
models [18, 13] or, in a discriminative setting, using ad-hoc solutions such as exemplar support vector
machines (SVMs) [14]. Perhaps the most common discriminative approach to one-shot learning is to
learn off-line a deep embedding function and then to define on-line simple classification rules such as
nearest neighbors in the embedding space [5, 16]. However, computing an embedding is a far cry
from learning a model of the new object.

In this paper, we take a very different approach and ask whether we can induce, from a single
supervised example, a full, deep discriminative model to recognize other instances of the same object
class. Furthermore, we do not want our solution to require a lengthy optimization process, but to be
computable on-the-fly, efficiently and in one go. We formulate this problem as the one of learning a
deep neural network, called a learnet, that, given a single exemplar of a new object class, predicts the
parameters of a second network that can recognize other objects of the same type.

*The first three authors contributed equally, and are listed in alphabetical order.

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

Our model has several elements of interest. Firstly, if we consider learning to be any process that maps
a set of images to the parameters of a model, then it can be seen as a “learning to learn” approach.
Clearly, learning from a single exemplar is only possible given sufficient prior knowledge on the
learning domain. This prior knowledge is incorporated in the learnet in an off-line phase by solving
millions of small one-shot learning tasks and back-propagating errors end-to-end. Secondly, our
learnet provides a feed-forward learning algorithm that extracts from the available exemplar the final
model parameters in one go. This is different from iterative approaches such as exemplar SVMs or
complex inference processes in generative modeling. It also demonstrates that deep neural networks
can learn at the “meta-level” of predicting filter parameters for a second network, which we consider
to be an interesting result in its own right. Thirdly, our method provides a competitive, efficient, and
practical way of performing one-shot learning using discriminative methods.

1.1 Related work

Our work is related to several others in the literature. However, we believe to be the first to look at
methods that can learn the parameters of complex discriminative models in one shot.

One-shot learning has been widely studied in the context of generative modeling, which unlike our
work is often not focused on solving discriminative tasks. One very recent example is by Rezende et
al. [18], which uses a recurrent spatial attention model to generate images, and learns by optimizing a
measure of reconstruction error using variational inference [9]. They demonstrate results by sampling
images of novel classes from this generative model, not by solving discriminative tasks. Another
notable work is by Lake et al. [13], which instead uses a probabilistic program as a generative model.
This model constructs written characters as compositions of pen strokes, so although more general
programs can be envisioned, they demonstrate it only on Optical Character Recognition (OCR)
applications.

A different approach to one-shot learning is to learn an embedding space, which is typically done
with a siamese network [2]. Given an exemplar of a novel category, classification is performed in
the embedding space by a simple rule such as nearest-neighbor. Training is usually performed by
classifying pairs according to distance [5], or by enforcing a distance ranking with a triplet loss [16].

Our work departs from the paradigms of generative modeling and similarity learning, instead predict-
ing the parameters of a neural network from a single exemplar image. It can be seen as a network
that effectively “learns to learn”, generalizing across tasks defined by different exemplars.

The idea of parameter prediction was, to our knowledge, first explored by Schmidhuber [20] in a
recurrent architecture with one network that modifies the weights of another. Parameter prediction
has also been used for zero-shot learning (as opposed to one-shot learning), which is the related
problem of learning a new object class without a single example image, based solely on a description
such as binary attributes or text. Whereas it is usually framed as a modality transfer problem and
solved through transfer learning [21], Noh et al. [15] recently employed parameter prediction to
induce the weights of an image classifier from text for the problem of visual question answering.

Denil et al. [4] investigated the redundancy of neural network parameters, showing that it is possible
to linearly predict as many as 95% of the parameters in a layer given the remaining 5%. This is a
vastly different proposition from ours, which is to predict all of the parameters of a layer given an
external exemplar image, and to do so non-linearly.

2 One-shot learning as dynamic parameter prediction

Since we consider one-shot learning as a discriminative task, our starting point is standard discrimi-
native learning. It generally consists of finding the parameters ¥ that minimize the average loss £ of
a predictor function p(x; W), computed over a dataset of n samples x; and corresponding labels ¢;:

) 1 n
min ;EW(%; W), £;). (1)

Unless the model space is very small, generalization also requires constraining the choice of model,
usually via regularization. However, in the extreme case in which the goal is to learn W from a single
exemplar z of the class of interest, called one-shot learning, even regularization may be insufficient
and additional prior information must be injected into the learning process. The main challenge in

siamese

learnet

siamese learnet

Figure 1: Our proposed architectures predict the parameters of a network from a single example,
replacing static convolutions (green) with dynamic convolutions (red). The siamese learnet predicts
the parameters of an embedding function that is applied to both inputs, whereas the single-stream
learnet predicts the parameters of a function that is applied to the other input. Linear layers are
denoted by * and nonlinear layers by o. Dashed connections represent parameter sharing.

discriminative one-shot learning is to find a mechanism to incorporate domain-specific information in
the learner, i.e. learning to learn. Another challenge, which is of practical importance in applications
of one-shot learning, is to avoid a lengthy optimization process such as eq. (1).

We propose to address both challenges by learning the parameters W of the predictor from a single
exemplar z using a meta-prediction process, i.e. a non-iterative feed-forward function w that maps
(z; W') to W. Since in practice this function will be implemented using a deep neural network, we
call it a learnet. The learnet depends on the exemplar z, which is a single representative of the class of
interest, and contains parameters W' of its own. Learning to learn can now be posed as the problem of
optimizing the learnet meta-parameters W’ using an objective function defined below. Furthermore,
the feed-forward learnet evaluation is much faster than solving the optimization problem (1).

In order to train the learnet, we require the latter to produce good predictors given any possible
exemplar z, which is empirically evaluated as an average over n training samples z;:

1 « ,
r%ipﬁgﬁ(@(xi; w(zi; W), 4). 2)

In this expression, the performance of the predictor extracted by the learnet from the exemplar z; is
assessed on a single “validation” pair (z;, ¢;), comprising another exemplar and its label ¢;. Hence,
the training data consists of triplets (x;, z;,¢;). Notice that the meaning of the label ¢; is subtly
different from eq. (1) since the class of interest changes depending on the exemplar z;: ¢; is positive
when z; and z; belong to the same class and negative otherwise. Triplets are sampled uniformly with
respect to these two cases. Importantly, the parameters of the original predictor ¢ of eq. (1) now
change dynamically with each exemplar z;.

Note that the training data is reminiscent of that of siamese networks [2], which also learn from
labeled sample pairs. However, siamese networks apply the same model p(x; W) with shared
weights W to both x; and z;, and compute their inner-product to produce a similarity score:

min © 37 £({(as W), (a5 W), 6). 3

There are two key differences with our model. First, we treat x; and z; asymmetrically, which results
in a different objective function. Second, and most importantly, the output of w(z; W’) is used to
parametrize linear layers that determine the intermediate representations in the network (. This is
significantly different to computing a single inner product in the last layer (eq. (3)).

Eq. (2) specifies the optimization objective of one-shot learning as dynamic parameter prediction.
By application of the chain rule, backpropagating derivatives through the computational blocks
of ¢(x; W) and w(z; W) is no more difficult than through any other standard deep network.
Nevertheless, when we dive into concrete implementations of such models we face a peculiar
challenge, discussed next.

2.1 The challenge of naive parameter prediction

In order to analyse the practical difficulties of implementing a learnet, we will begin with one-shot
prediction of a fully-connected layer, as it is simpler to analyse. This is given by

y=Wx+b, 4)

w(z) —D

T

Figure 2: Factorized convolutional layer (eq. (8)). The channels of the input x are projected to the
factorized space by M (a 1 x 1 convolution), the resulting channels are convolved independently
with a corresponding filter prediction from w(z), and finally projected back using M’.

given an input = € R?, output y € R*, weights W € R**? and biases b € R*.

We now replace the weights and biases with their functional counterparts, w(z) and b(z), representing
two outputs of the learnet w(z; W) given the exemplar z € R™ as input (to avoid clutter, we omit
the implicit dependence on W’):

y =w(z)x + b(z). ®)
While eq. (5) seems to be a drop-in replacement for linear layers, careful analysis reveals that it scales
extremely poorly. The main cause is the unusually large output space of the learnet w : R™ — R¥*4,
For a comparable number of input and output units in a linear layer (d ~ k), the output space of the
learnet grows quadratically with the number of units.

While this may seem to be a concern only for large networks, it is actually extremely difficult also for
networks with few units. Consider a simple linear learnet w(z) = W’z. Even for a very small fully-
connected layer of only 100 units (d = k£ = 100), and an exemplar z with 100 features (m = 100),
the learnet already contains 1M parameters that must be learned. Overfitting and space and time
costs make learning such a regressor infeasible. Furthermore, reducing the number of features in the
exemplar can only achieve a small constant-size reduction on the total number of parameters. The
bottleneck is the quadratic size of the output space dk, not the size of the input space m.

2.2 Factorized linear layers

A simple way to reduce the size of the output space is to consider a factorized set of weights, by
replacing eq. (5) with:

y = M'diag (w(z)) Mz + b(z). (6)
The product M'diag (w(z)) M can be seen as a factorized representation of the weights, analogous
to the Singular Value Decomposition. The matrix M € R%*? projects z into a space where the
elements of w(z) represent disentangled factors of variation. The second projection M’ € Rk*4
maps the result back from this space.

Both M and M’ contain additional parameters to be learned, but they are modest in size compared to
the case discussed in sect. 2.1. Importantly, the one-shot branch w(z) now only has to predict a set of
diagonal elements (see eq. (6)), so its output space grows linearly with the number of units in the
layer (i.e. w(z): R™ — RY).

2.3 Factorized convolutional layers

The factorization of eq. (6) can be generalized to convolutional layers as follows. Given an input
tensor € R"*¢*4 weights W € RS */X@xk (where f is the filter support size), and biases b € R,

the output y € R” *¢'*¥ of the convolutional layer is given by
y=Wsxax+D, (N
where * denotes convolution, and the biases b are applied to each of the & channels.

Projections analogous to M and M’ in eq. (6) can be incorporated in the filter bank in different ways
and it is not obvious which one to pick. Here we take the view that M and M’ should disentangle
the feature channels (i.e. third dimension of x) so that the predicted filters w(z) can operate on each
channel independently. As such, we consider the following factorization:

y =M xw(z)*q M xx +b(2), (8)

HE gxhTRELS TEMIEEET
S ROSNAGEF BEOESEEN
II AEAHEAC LY BEINSLSTEE

Predicted filters w(z) Activations

Figure 3: The predicted filters and the output of a dynamic convolutional layer in a single-stream
learnet trained for the OCR task. Different exemplars z define different filters w(z). Applying the
filters of each exemplar to the same input = yields different responses. Best viewed in colour.

z T Predicted filters w(Activations

Figure 4: The predicted filters and the output of a dynamic convolutional layer in a siamese learnet
trained for the object tracking task. Best viewed in colour.

where M € RIXIxdxd /¢ RIXIxdXk and q(z) € RI**4, Convolution with subscript d
denotes independent filtering of d channels, i.e. each channel of x *4 y is simply the convolution of
the corresponding channel in = and y. In practice, this can be achieved with filter tensors that are
diagonal in the third and fourth dimensions, or using d filter groups [12], each group containing a
single filter. An illustration is given in fig. 2. The predicted filters w(z) can be interpreted as a filter
basis, as described in the supplementary material (sec. A).

Notice that, under this factorization, the number of elements to be predicted by the one-shot branch
w(z) is only f2d (the filter size f is typically very small, e.g. 3 or 5[5, 23]). Without the factorization,
it would be f2dk (the number of elements of W in eq. (7)). Similarly to the case of fully-connected
layers (sect. 2.2), when d ~ k this keeps the number of predicted elements from growing quadratically
with the number of channels, allowing them to grow only linearly.

Examples of filters that are predicted by learnets are shown in figs. 3 and 4. The resulting activations
confirm that the networks induced by different exemplars do indeed possess different internal
representations of the same input.

3 Experiments

We evaluate learnets against baseline one-shot architectures (sect. 3.1) on two one-shot learning
problems in Optical Character Recognition (OCR; sect. 3.2) and visual object tracking (sect. 3.3).
All experiments were performed using MatConvNet [22].

3.1 Architectures

As noted in sect. 2, the closest competitors to our method in discriminative one-shot learning are
embedding learning using siamese architectures. Therefore, we structure the experiments to compare
against this baseline. In particular, we choose to implement learnets using similar network topologies
for a fairer comparison.

The baseline siamese architecture comprises two parallel streams o (z; W) and ¢(z; W) composed
of a number of layers, such as convolution, max-pooling, and ReL.U, sharing parameters W (fig. 1.a).
The outputs of the two streams are compared by a layer I'(¢(x; W), ¢(2z; W)) computing a measure
of similarity or dissimilarity. We consider in particular: the dot product (a, b) between vectors a and
b, the Euclidean distance ||a — b||, and the weighted {'-norm ||w ® a — w ® b||; where w is a vector
of learnable weights and ® the Hadamard product).

The first modification to the siamese baseline is to use a learnet to predict some of the intermediate
shared stream parameters (fig. 1.b). In this case W = w(z; W') and the siamese architecture writes
D(p(x;w(z; W), p(z;w(z; W))). Note that the siamese parameters are still the same in the two

Table 1: Error rate for character recognition in foreign alphabets (chance is 95%).
Inner-product (%) Euclidean dist. (%) Weighted /T dist. (%)

Siamese (shared) 48.5 37.3 41.8
Siamese (unshared) 47.0 41.0 34.6
Siamese (unshared, fact.) 48.4 - 33.6
Siamese learnet (shared) 51.0 39.8 314
Learnet 43.7 36.7 28.6
Modified Hausdorff distance 43.2

streams, whereas the learnet is an entirely new subnetwork whose purpose is to map the exemplar
image to the shared weights. We call this model the siamese learnet.

The second modification is a single-stream learnet configuration, using only one stream ¢ of the
siamese architecture and predicting its parameter using the learnet w. In this case, the comparison
block I' is reinterpreted as the last layer of the stream ¢ (fig. 1.c). Note that: i) the single predicted
stream and learnet are asymmetric and with different parameters and ii) the learnet predicts both the
final comparison layer parameters I' as well as intermediate filter parameters.

The single-stream learnet architecture can be understood to predict a discriminant function from one
example, and the siamese learnet architecture to predict an embedding function for the comparison
of two images. These two variants demonstrate the versatility of the dynamic convolutional layer
from eq. (6).

Finally, in order to ensure that any difference in performance is not simply due to the asymmetry of
the learnet architecture or to the induced filter factorizations (sect. 2.2 and sect. 2.3), we also compare
unshared siamese nets, which use distinct parameters for each stream, and factorized siamese nets,
where convolutions are replaced by factorized convolutions as in learnet.

3.2 Character recognition in foreign alphabets

This section describes our experiments in one-shot learning on OCR. For this, we use the Omniglot
dataset [13], which contains images of handwritten characters from 50 different alphabets. These
alphabets are divided into 30 background and 20 evaluation alphabets. The associated one-shot
learning problem is to develop a method for determining whether, given any single exemplar of a
character in an evaluation alphabet, any other image in that alphabet represents the same character or
not. Importantly, all methods are trained using only background alphabets and tested on the evaluation
alphabets.

Dataset and evaluation protocol. Character images are resized to 28 x 28 pixels in order to be able
to explore efficiently several variants of the proposed architectures. There are exactly 20 sample
images for each character, and an average of 32 characters per alphabet. The dataset contains a total
of 19,280 images in the background alphabets and 13,180 in the evaluation alphabets.

Algorithms are evaluated on a series of recognition problems. Each recognition problem involves
identifying the image in a set of 20 that shows the same character as an exemplar image (there is
always exactly one match). All of the characters in a single problem belong to the same alphabet.
At test time, given a collection of characters (z1, ...,), the function is evaluated on each pair
(2, ;) and the candidate with the highest score is declared the match. In the case of the learnet
architectures, this can be interpreted as obtaining the parameters W = w(z; W’) and then evaluating
a static network ¢(x;; W) for each x;.

Architecture. The baseline stream ¢ for the siamese, siamese learnet, and single-stream learnet
architecture consists of 3 convolutional layers, with 2 x 2 max-pooling layers of stride 2 between
them. The filter sizesare 5 x 5 x 1 X 16,5 x 5 X 16 x 64 and 4 x 4 x 64 x 512. For both the siamese
learnet and the single-stream learnet, w consists of the same layers as ¢, except the number of outputs
is 1600 — one for each element of the 64 predicted filters (of size 5 x 5). To keep the experiments
simple, we only predict the parameters of one convolutional layer. We conducted cross-validation to
choose the predicted layer and found that the second convolutional layer yields the best results for
both of the proposed variants.

Siamese nets have previously been applied to this problem by Koch et al. [10] using much deeper
networks applied to images of size 105 x 105. However, we have restricted this investigation to
relatively shallow networks to enable a thorough exploration of the parameter space. A more powerful

algorithm for one-shot learning, Hierarchical Bayesian Program Learning [13], is able to achieve
human-level performance. However, this approach involves computationally expensive inference at
test time, and leverages extra information at training time that describes the strokes drawn by the
human author.

Learning. Learning involves minimizing the objective function specific to each method (e.g. eq. (2)
for learnet and eq. (3) for siamese architectures) and uses stochastic gradient descent (SGD) in all
cases. As noted in sect. 2, the objective is obtained by sampling triplets (z;, x;, ;) where exemplars
z; and x; are congruous (¢; = +1) or incongruous (¢; = —1) with 50% probability. We consider
100,000 random pairs for training per epoch, and train for 60 epochs. We conducted a random
search to find the best hyper-parameters for each algorithm (initial learning rate and geometric decay,
standard deviation of Gaussian parameter initialization, and weight decay).

Results and discussion. Tab. 1 shows the classification error obtained using variants of each
architecture. A dash indicates a failure to converge given a large range of hyper-parameters. The two
learnet architectures combined with the weighted ¢! distance are able to achieve significantly better
results than other methods. The best architecture reduced the error from 37.3% for a siamese network
with shared parameters to 28.6% for a single-stream learnet.

While the Euclidean distance gave the best results for siamese networks with shared parameters,
better results were achieved by learnets (and siamese networks with unshared parameters) using a
weighted /¢ 1 distance. In fact, none of the alternative architectures are able to achieve lower error
under the Euclidean distance than the shared siamese net. The dot product was, in general, less
effective than the other two metrics.

The introduction of the factorization in the convolutional layer might be expected to improve the
quality of the estimated model by reducing the number of parameters, or to worsen it by diminishing
the capacity of the hypothesis space. For this relatively simple task of character recognition, the
factorization did not seem to have a large effect.

3.3 Object tracking

The task of single-target object tracking requires to locate an object of interest in a sequence of video

frames. A video frame can be seen as a collection F = {wy, ..., wk } of image windows; then, in a
one-shot setting, given an exemplar z € F; of the object in the first frame J7, the goal is to identify
the same window in the other frames Fo, ..., Fys.

Datasets. The method is trained using the ImageNet Large Scale Visual Recognition Challenge
2015 [19], with 3,862 videos totalling more than one million annotated frames. Instances of objects
of thirty different classes (mostly vehicles and animals) are annotated throughout each video with
bounding boxes. For tracking, instance labels are retained but object class labels are ignored. We use
90% of the videos for training, while the other 10% are held-out to monitor validation error during
network training. Testing uses the VOT 2015 benchmark [11].

Architecture. We experiment with siamese and siamese learnet architectures (fig. 1) where the
learnet w predicts the parameters of the second (dynamic) convolutional layer of the siamese streams.
Each siamese stream has five convolutional layers and we test three variants of those: variant (A) has
the same configuration as AlexNet [12] but with stride 2 in the first layer, and variants (B) and (C)
reduce to 50% the number of filters in the first two convolutional layers and, respectively, to 25% and
12.5% the number of filters in the last layer.

Training. In order to train the architecture efficiently from many windows, the data is prepared
as follows. Given an object bounding box sampled at random, a crop z double the size of that is
extracted from the corresponding frame, padding with the average image color when needed. The
border is included in order to incorporate some visual context around the exemplar object. Next,
¢ € {+1,—1} is sampled at random with 75% probability of being positive. If £ = —1, an image =
is extracted by choosing at random a frame that does not contain the object. Otherwise, a second
frame containing the same object and within 50 temporal samples of the first is selected at random.
From that, a patch z centered around the object and four times bigger is extracted. In this way,
contains both subwindows that do and do not match z. Images 2 and z are resized to 127 x 127 and
255 x 255 pixels, respectively, and the triplet (z, x, £) is formed. All 127 x 127 subwindows in x are
considered to not match z except for the central 2 X 2 ones when ¢ = +1.

Table 2: Tracking accuracy and number of tracking failures in the VOT 2015 Benchmark, as reported
by the toolkit [1 1]. Architectures are grouped by size of the main network (see text). For each group,
the best entry for each column is in bold. We also report the scores of 5 recent trackers.

Method Accuracy Failures Method Accuracy Failures
Siamese (p=B) 0.465 105 Siamese (p=C) 0.466 120
Siamese (=B; unshared) 0.447 131 Siamese (¢=C; factorized) 0.435 132
Siamese (p=B; factorized) 0.444 138 Siamese learnet (p=C; w=A) 0.483 105
Siamese learnet (p=B; w=A) 0.500 87 Siamese learnet (p=C; w=C) 0.491 106
Siamese learnet (p=B; w=B) 0.497 93 DSST [3] 0.483 163
DAT [17] 0.442 113 MEEM [24] 0.458 107
SO-DLT [23] 0.540 108 MUSTer [7] 0.471 132

All networks are trained from scratch using SGD for 50 epoch of 50,000 sample triplets (z;, x;, £;).
The multiple windows contained in are compared to z efficiently by making the comparison layer
I" convolutional (fig. 1), accumulating a logistic loss across spatial locations. The same hyper-
parameters (learning rate of 10~2 geometrically decaying to 10~°, weight decay of 0.005, and small
mini-batches of size 8) are used for all experiments, which we found to work well for both the baseline
and proposed architectures. The weights are initialized using the improved Xavier [6] method, and
we use batch normalization [8] after all linear layers.

Testing. Adopting the initial crop as exemplar, the object is sought in a new frame within a radius of
the previous position, proceeding sequentially. This is done by evaluating the pupil net convolutionally,
as well as searching at five possible scales in order to track the object through scale space. The
approach is described in more detail in Bertinetto et al. [1].

Results and discussion. Tab. 2 compares the methods in terms of the official metrics (accuracy and
number of failures) for the VOT 2015 benchmark [|]. The ranking plot produced by the VOT toolkit
is provided in the supplementary material (fig. B.1). From tab. 2, it can be observed that factorizing
the filters in the siamese architecture significantly diminishes its performance, but using a learnet to
predict the filters in the factorization recovers this gap and in fact achieves better performance than
the original siamese net. The performance of the learnet architectures is not adversely affected by
using the slimmer prediction networks B and C (with less channels).

An elementary tracker based on learnet compares favourably against recent tracking systems, which
make use of different features and online model update strategies: DAT [17], DSST [3], MEEM [24],
MUSTer [7] and SO-DLT [23]. SO-DLT in particular is a good example of direct adaptation of
standard batch deep learning methodology to online learning, as it uses SGD during tracking to
fine-tune an ensemble of deep convolutional networks. However, the online adaptation of the model
comes at a big computational cost and affects the speed of the method, which runs at 5 frames-per-
second (FPS) on a GPU. Due to the feed-forward nature of our one-shot learnets, they can track
objects in real-time at framerates in excess of 60 FPS, while achieving less tracking failures. We
consider, however, that our implementation serves mostly as a proof-of-concept, using tracking as an
interesting demonstration of one-shot-learning, and is orthogonal to many technical improvements
found in the tracking literature [11].

4 Conclusions

In this work, we have shown that it is possible to obtain the parameters of a deep neural network
using a single, feed-forward prediction from a second network. This approach is desirable when
iterative methods are too slow, and when large sets of annotated training samples are not available. We
have demonstrated the feasibility of feed-forward parameter prediction in two demanding one-shot
learning tasks in OCR and visual tracking. Our results hint at a promising avenue of research in
“learning to learn” by solving millions of small discriminative problems in an offline phase. Possible
extensions include domain adaptation and sharing a single learnet between different pupil networks.

Acknowledgements

This research was supported by Apical Ltd. and ERC grants ERC-2012-AdG 321162-HELIOS,
HELIOS-DFR00200 and “Integrated and Detailed Image Understanding” (EP/L024683/1).

References

[1] L. Bertinetto, J. Valmadre, J. F. Henriques, A. Vedaldi, and P. H. S. Torr. Fully-convolutional
siamese networks for object tracking. 2016.

[2] J. Bromley, J. W. Bentz, L. Bottou, I. Guyon, Y. LeCun, C. Moore, E. Siackinger, and R. Shah.
Signature verification using a “siamese” time delay neural network. International Journal of
Pattern Recognition and Artificial Intelligence, 1993.

[3] M. Danelljan, G. Héger, F. Khan, and M. Felsberg. Accurate scale estimation for robust visual
tracking. In BMVC, 2014.

[4] M. Denil, B. Shakibi, L. Dinh, N. de Freitas, et al. Predicting parameters in deep learning. In
NIPS, 2013.

[5] H. Fan, Z. Cao, Y. Jiang, Q. Yin, and C. Doudou. Learning deep face representation. arXiv,
2014.

[6] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-level
performance on ImageNet classification. In ICCV, 2015.

[7] Z. Hong, Z. Chen, C. Wang, X. Mei, D. Prokhorov, and D. Tao. Multi-store tracker (MUSTER):
A cognitive psychology inspired approach to object tracking. In CVPR, 2015.

[8] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. arXiv, 2015.
[9] D. P. Kingma and M. Welling. Auto-encoding variational bayes. arXiv, 2013.
[10] G. Koch, R. Zemel, and R. Salakhutdinov. Siamese neural networks for one-shot image
recognition. In ICML 2015 Deep Learning Workshop, 2016.

[11] M. Kristan, J. Matas, A. Leonardis, M. Felsberg, L. Cehovin, G. Fernandez, T. Vojir, G. Hager,
G. Nebehay, and R. Pflugfelder. The VOT2015 challenge results. In ICCV Workshop, 2015.

[12] A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet classification with deep convolutional
neural networks. In NIPS, 2012.

[13] B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum. Human-level concept learning through
probabilistic program induction. Science, 350(6266):1332—-1338, 2015.

[14] T. Malisiewicz, A. Gupta, and A. A. Efros. Ensemble of exemplar-SVM:s for object detection
and beyond. In ICCV, 2011.

[15] H. Noh, P. Hongsuck Seo, and B. Han. Image question answering using convolutional neural
network with dynamic parameter prediction. In CVPR, 2016.

[16] O. M. Parkhi, A. Vedaldi, and A. Zisserman. Deep face recognition. BMVC, 2015.

[17] H. Possegger, T. Mauthner, and H. Bischof. In defense of color-based model-free tracking. In
CVPR, 2015.

[18] D.J. Rezende, S. Mohamed, I. Danihelka, K. Gregor, and D. Wierstra. One-shot generalization
in deep generative models. arXiv, 2016.

[19] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual Recognition
Challenge. 1JCV, 2015.

[20] J. Schmidhuber. Learning to control fast-weight memories: An alternative to dynamic recurrent
networks. Neural Computation, 4(1):131-139, 1992.

[21] R. Socher, M. Ganjoo, C. D. Manning, and A. Ng. Zero-shot learning through cross-modal
transfer. In NIPS, 2013.

[22] A. Vedaldi and K. Lenc. MatConvNet — Convolutional Neural Networks for MATLAB. In
Proceedings of the ACM Int. Conf. on Multimedia, 2015.

[23] N. Wang, S. Li, A. Gupta, and D.-Y. Yeung. Transferring rich feature hierarchies for robust
visual tracking. arXiv, 2015.

[24] J. Zhang, S. Ma, and S. Sclaroff. MEEM: Robust tracking via multiple experts using entropy
minimization. In ECCV. 2014.

