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Abstract
We consider the task of clustering items using answers from non-expert crowd
workers. In such cases, the workers are often not able to label the items directly,
however, it is reasonable to assume that they can compare items and judge whether
they are similar or not. An important question is what queries to make, and we
compare two types: random edge queries, where a pair of items is revealed, and
random triangles, where a triple is. Since it is far too expensive to query all possible
edges and/or triangles, we need to work with partial observations subject to a fixed
query budget constraint. When a generative model for the data is available (and we
consider a few of these) we determine the cost of a query by its entropy; when such
models do not exist we use the average response time per query of the workers
as a surrogate for the cost. In addition to theoretical justification, through several
simulations and experiments on two real data sets on Amazon Mechanical Turk,
we empirically demonstrate that, for a fixed budget, triangle queries uniformly
outperform edge queries. Even though, in contrast to edge queries, triangle queries
reveal dependent edges, they provide more reliable edges and, for a fixed budget,
many more of them. We also provide a sufficient condition on the number of
observations, edge densities inside and outside the clusters and the minimum
cluster size required for the exact recovery of the true adjacency matrix via triangle
queries using a convex optimization-based clustering algorithm.

1 Introduction
Collecting data from non-expert workers on crowdsourcing platforms such as Amazon Mechanical
Turk, Zooinverse, Planet Hunters, etc. for various applications has recently become quite popular.
Applications range from creating a labeled dataset for training and testing supervised machine
learning algorithms [1, 2, 3, 4, 5, 6] to making scientific discoveries [7, 8]. Since the workers on
the crowdsourcing platforms are often non-experts, the answers obtained will invariably be noisy.
Therefore the problem of designing queries and inferring quality data from such non-expert crowd
workers is of great importance.

As an example, consider the task of collecting labels of images, e.g, of birds or dogs of different
kinds and breeds. To label the image of a bird, or dog, a worker should either have some expertise
regarding the bird species and dog breeds, or should be trained on how to label each of them. Since
hiring experts or training non-experts is expensive, we shall focus on collecting labels of images
through image comparison followed by clustering. Instead of asking a worker to label an image
of a bird, we can show her two images of birds and ask: “Do these two birds belong to the same
species?"(Figure 1(a)). Answering this comparison question is much easier than the labeling task
and does not require expertise or training. Though different workers might use different criteria for
comparison, e.g, color of feathers, shape, size etc., the hope is that, averaged over the crowd workers,
we will be able to reasonably resolve the clusters (and label each).

Consider a graph of n images that needs to be clustered, where each pairwise comparison is an ‘edge
query’. Since the number of edges grows as O(n2), it is too expensive to query all edges. Instead,
we want to query a subset of the edges, based on our total query budget, and cluster the resulting
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(a) Do these two birds belong to the same species? (b) Which of these birds belong to the same species?

Figure 1: Example of (a) an edge query and (b) a triangle query.

partially observed graph. Of course, since the workers are non-experts, their answers will be noisy
and this should be taken into consideration in designing the queries. For example, it is not clear what
the best strategy to choose the subsets of edges to be queried is.
1.1 Our Contribution
In this work we compare two ways of partially observing the graph: random edge queries, where
a pair of items is revealed for comparison, and random triangle queries, where a triplet is revealed.
We give intuitive generative models for the data obtained for both types of queries. Based on these
models we determine the cost of a query to be its entropy (the information obtained from the response
to the query). On real data sets where such a generative model may not be known we use the average
response time per query as a surrogate for the cost of the query. To fairly compare the use of edge
vs. triangle queries we fix the total budget, defined as the (aforementioned) cost per query times the
total number of queries. Empirical evidence, based on extensive simulations, as well as two real
data sets (images of birds and dogs, respectively), strongly suggests that, for a fixed query budget,
querying for triangles significantly outperforms querying for edges. Even though, in contrast to edge
queries that give information on independent edges, triangle queries give information on dependent
edges, i.e., edges that share vertices, we (theoretically and empirically) argue that triangle queries are
superior because (1) they allow for far more edges to be revealed, given a fixed query budget, and (2)
due to the self-correcting nature of triangle queries, they result in much more reliable edges.

Furthermore, for a specific convex optimization-based clustering algorithm, we also provide theoreti-
cal guarantee for the exact recovery of the true adjacency matrix via random triangle queries, which
gives a sufficient condition on the number of queries, edge densities inside and outside the clusters
and the minimum cluster size. In particular, we show that the lower bound of Ω(

√
n) on the cluster

size still holds even though the edges revealed via triangle queries are not independent.
1.2 Problem Setup
Consider n items with K disjoint classes/clusters plus outliers (items that do not belong to any
clusters). Consider a graph with these n items as nodes. In the true underlying graph G∗, all the items
in the same cluster are connected to each other and the items that are not in the same cluster are
not connected to each other. We do not have access to G∗. Instead we have a crowdsourced query
mechanism that can be used to observe a noisy and partial snapshot Gobs of this graph. Our goal is to
find the cluster assignments from Gobs. We consider the following two querying methods:
Random Edge Query: We sampleE edges uniformly at random from

(
n
2

)
possible edges. Figure 1(a)

shows an example of an edge query. For each edge observation, there are two possible configurations:
(1) Both items are similar, denoted by ll, (2) The items are not similar, denoted by lm.
Random Triangle Query: We sample T triangles uniformly at random from

(
n
3

)
possible triangles.

Figure 1(b) shows an example of a triangle query. For each triangle observation, there are five
possible configurations (Figure 2):(1) All items are similar, denoted by lll, (2) Items 1 and 2 are
similar, denoted by llm, (3) Items 1 and 3 are similar, denoted by lml, (4) Items 2 and 3 are similar,
denoted by mll, (5) None are similar, denoted by lmj.
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lll!
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2" 3"llm!
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2" 3"lml!

1"

2" 3"mll!
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2" 3"lmj!
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(a)"Allowed" (b)"Not"allowed"
Figure 2: Configurations for a triangle query that are (a) observed and (b) not allowed.
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Pr(y|x) lll llm lmj

lll p3 + 3p2(1− p) pq2 q3

llm p(1− p)2 p(1− q)2 + (1− p)q2 + 2pq(1− q) q(1− q)2

lml p(1− p)2 (1− p)q(1− q) q(1− q)2

mll p(1− p)2 (1− p)q(1− q) q(1− q)2

lmj (1− p)3 (1− p)(1− q)2 (1− q)3 + 3q2(1− q)
Table 1: Query confusion matrix for the triangle block model for the homogeneous case.

1.3 Related Works
[9, 10, 11, 12, 13, 14] and references therein focus on the problem of inferring true labels from

crowdsoruced multiclass labeling. The common setup in these problems is as follows: A set of
items are shown to workers and labels are elicited from them. Since the workers give noisy answers,
each item is labeled by multiple workers. Algorithms based on Expectation-Maximization [14] for
maximum likelihood estimation and minimax entropy based optimization [12] have been studied for
inferring the underlying true labels. In our setup we do not ask the workers to label the items. Instead
we use comparison between items to find the clusters of items that are similar to each other.

[15] considers the problem of inferring the complete clustering on n images from a large set of
clustering on smaller subsets via crowdsourcing. Each HIT (Human Intelligent Task) is designed such
that all of them share a subset of images to ensure overlapping. Each HIT has M images and all the(
M
2

)
comparisons are made. Each HIT is then assigned to multiple workers to get reliable answers.

These clustering are then combined using an algorithm based on variational Bayesian inference. In
our work we consider a different setup, where either pairs or triples of images are compared by the
crowd to obtain a partial graph on the images which can be clustered.

[16] considers a convex approach to graph clustering with partially observed adjacency matrices, and
provides an example of clustering images by crowdsourcing pairwise comparisons. However, it does
not consider other types of querying such as triangle queries. In this work, we extend the analysis
in [16] and show that similar performance guarantee holds for clustering via triangle queries.

Another interesting line of work is learning embeddings and kernels through triplet comparison tasks
in [17, 18, 19, 20, 21, 22] and references therein. The ‘triplet comparison’ task in these works is of
type: ‘Is a closer to b or to c?’, with two possible answers, to judge the relative distances between the
items. On the other hand, a triangle query in our work has five possible answers (Figure 1(b)) that
gives a clustering (discrete partitioning) of the three items.

2 Models
Probability of observing a particular configuration y is given by: Pr(y) =

∑
x∈X Pr(y|x)Pr(x),

where x is the true configuration and X is the set of true configurations. Let Y be the set of all
observed configurations. Each query has a |Y| × |X | confusion matrix [Pr(y|x)] associated to it.
Note that the columns of this confusion matrix sum to 1, i.e

∑
y∈Y Pr(y|x) = 1.

2.1 Random Edge Observation Models
For the random edge query case, there are two observation configurations, Y = {ll, lm} where lm
denotes ‘no edge’ and ll denotes ‘edge’.
One-coin Edge Model: Assume all the queries are equally hard. Let the ζ be the probability of
answering a question wrong. Then Pr(ll|ll) = Pr(lm|lm) = 1− ζ, Pr(lm|ll) = Pr(ll|lm) = ζ.
This model is inspired by the one-coin Dawid-Skene Model [23], which is used in inference for item
label elicitation tasks. This is a very simple model and does not capture the difficulty of a query
depending on which clusters the items in the query belong to. In order to incorporate these differences
we consider the popular Stochastic Block model (SBM) [24, 25] which is one of the most widely
used model for graph clustering.
Stochastic Block Model (SBM): Consider a graph on n nodes with K disjoint clusters and outliers.
Any two nodes i and j are connected (independent of other edges) with probability p if they belong
to the same cluster and with probability q otherwise. That is, Pr(ll|ll) = p, Pr(lm|ll) = 1 − p,
Pr(ll|lm) = q and Pr(lm|lm) = 1− q. We assume that the density of the edges inside the clusters
is higher than that between the clusters, that is, p > q.

2.2 Random Triangle Observation Models
For the triangle query model, there are five possible observation configurations (Figure 2), Y =
{lll, llm, lml,mll, lmj}.
One-coin Triangle Model: Let each question be answered correctly with probability 1 − ζ, and
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Pr(y|x) lll llm lmj

lll p3/zlll pq2/zllm q3/zlmj

llm p(1− p)2/zlll p(1− q)2/zllm q(1− q)2

lml p(1− p)2/zlll (1− p)q(1− q)/zllm q(1− q)2/zlmj

mll p(1− p)2/zlll (1− p)q(1− q)/zllm q(1− q)2/zlmj

lmj (1− p)3/zlll (1− p)(1− q)2/zllm (1− q)3/zlmj

Table 2: Query confusion matrix for the conditional block model for the homogeneous case.

when wrongly answered, all the other configurations are equally confusing. So, Pr(lll|lll) = 1− ζ
and Pr(llm|lll) = Pr(lml|lll) = Pr(mll|lll) = Pr(lmj|lll) = ζ/4 and so on. This model, as
in the case of the one-coin model for edge query, does not capture the differences in difficulty for
different clusters. In order to include the differences in confusion between different clusters, we
consider the following observation models for a triangle query.

For these 3 items in the triangle query, the edges are first generated from the SBM. This can give rise
to 8 configurations, out of which 5 are allowed as an answer to triangle query while the rest 3 are not
allowed (Figure 2). The two models differ in how they handle the configurations that are not allowed,
and are described below:
Triangle Block Model (TBM): In this model we assume that a triangle query helps in correctly
resolving the configurations that are not allowed. So, when the triangle generated from the SBM
takes one of the 3 non-allowed configurations, it is mapped to the true configuration. This gives a
5× 5 query confusion matrix which is given in Table 1. Note that the columns for lml and mll can
be filled in a similar manner to that of llm.
Conditional Block Model (CBM): In this model when a non-allowed configuration is encountered,
it is redrawn again. This is equivalent to conditioning on the allowed configurations. Define the
normalizing factors, zlll := 3p3 − 3p2 + 1, zllm := 3pq2 − 2pq − q2 + 1, zllm := 3q3 − 3q2 + 1 .
The 5× 5 query confusion matrix which is given in Table 2.

Remark: Note that the SBM (and hence the derived models) can be made more general by considering
different edge probabilities Pii for cluster i and Pij = Pji between clusters i 6= j.

Some intuitive properties of the triangle query models described in this section are:
1. If p > q, then the diagonal term will dominate any other term in a row. That is Pr(lll|lll) >

Pr(lll|? 6= lll),Pr(llm|llm) > Pr(llm|? 6= llm) and so on.
2. If p > 1/2 > q, then the diagonal term will dominate the other terms in the column, i.e,

Pr(lll|lll) > Pr(llm|lll) = Pr(lml|lll) = Pr(mll|lll) > Pr(lmj|lll) etc.
3. When there is a symmetry between the items, the observation probability should be the same. That

is, if the true configuration is llm, then observing lml and mll should be equally likely as item1
and item2 belong to the same cluster and so on. This property will hold good in the general case
as well except for when the true configuration is lmj. In this case, the probability of observing
llm, lml and mll can be different as it depends on the clusters to which items 1, 2 and 3 belong.

2.3 Adjacency Matrix: Edge Densities and Edge Errors
The adjacency matrix, A = AT of a graph can be partially filled by querying a subset of edges.
Since we query edges randomly, most of the edges are seen only once. Some edges might get queried
multiple times, in which case, we randomly pick one of them. Similarly we can also partially fill
the adjacency matrix from triangle queries. We fill the unobserved entries of the adjacency matrix
with zeros. We can perform clustering on A to obtain a partition of items. The true underlying graph
G∗ has perfect clusters (disjoint cliques). So, the performance of clustering on A depends on how
noisy it is. This in turn depends on the probability of error for each revealed edge in A, i.e, what is
the probability that a true edge was registered as no-edge and vice versa. The hope is that triangle
queries help workers to resolve the edges better and hence have less errors among the revealed edges
than those obtained from edge queries.

If we make E edge queries, then the probability of observing an edge is, r = E/
(
n
2

)
. If we make T

triangle queries, the probability of observing an edge is rT = 3T/
(
n
2

)
. Let rp (rT pT ) and rq (rT qT )

be the edge probability in side the clusters and between the clusters respectively, in A which is
partially filled via edge (triangle) queries. For simplicity consider a graph with K clusters of size m
each (n = Km). The probability that a randomly chosen edge in A filled via edge query is in error
can be computed as: pedgeerr := (1− rp) (m− 1)/(n− 1) + rq (n−m)/(n− 1). Similarly, we can
write p∆

err. Under reasonable conditions on the parameters involved, p∆
err < pedgeerr .
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Figure 3: Fraction of entries in error in the matrix recovered via Program 4.1.

For example, in the case of One-coin model, for edge qurey, rp = r (1− ζ) and rq = rζ . For triangle
query, rT pT = rT (1− 3ζ/4) and rT qT = rT ζ/2. If rT < 2r, we have rT qT < rq and rT pT > rp,
and hence p∆

err < pedgeerr .

For the TBM, when p > 1/2 > q, with r < rT < r/(1 − q), we get rT pT > rp and rT qT < rq,
and hence p∆

err < pedgeerr . For the CBM, when p > 1/2 > q, under reasonable assumptions on r,
rT qT < rq, but depending on the values of r and rT , rT pT can get below rp. If the decrease in
edge probability between the clusters is large enough to overcome the fall in edge density inside the
clusters, then p∆

err < pedgeerr .

In summary, when A is filled by triangle queries, the edge density between the clusters decreases and
the overall number of edge errors decreases (we observe this in real data as well, see Table 3). Both
of these are desirable for clustering algorithms that try to approximate the minimum cut to find the
clusters like spectral clustering.

3 Value of a Query
To make a meaningful comparison between edge queries and triangle queries, we need to fix a budget.
Suppose we have a budget to make E edge queries. To find the number of triangle queries that can
be made with the same budget, we need to define the value (cost) of a triangle query. Although a
triangle query has 3 edges, they are not independent and hence its relative cost is less than that of
making 3 random edge queries. Thus we need a fair way to compare the value of a triangle query to
that of an edge query.

Let s ∈ [0, 1]|Y|,
∑

y∈Y sy = 1 be the probability mass function (pmf) of the observation in a
query, with sy := Pr(y) =

∑
x∈X Pr(y|x)Pr(x). We define the value of a query as the information

obtained from the observation, which is measured by its entropy: H(s) = −
∑

i∈Y si log(si). Ideally,
the cost of a query should be proportional to the amount of information it provides. So, if E is the
number of edge queries, then the number of triangle queries we can make with the same budget is:
TB = E ×HE/H∆.

We should remark that detetrmining the above cost requires knowledge of the generative model of the
graph, which may not be available for empirical data sets. In such situations, a very reasonable cost
is the relative time it takes for a worker to respond to a triangle query, compared to an edge query. (In
this manner, a fixed budget means a fixed amount of time for the queries to be completed.) A good
rule of thumb, which is widely supported by empirical data, is the cost of 1.5, ostensibly because in
triangle queries workers need to study three images, rather than two, and so it takes them 50% longer
to respond. The end result is that, for a fixed budget, triangle queries reveal twice as many edges.

4 Guaranteed Recovery of the True Adjacency Matrix
In this section we provide a sufficient condition for the full recovery of the adjacency matrix
corresponding to the underlying true G∗ from partially observed noisy A filled via random triangle
queries. We consider the following convex program from [16]:

minimize
L,S

‖L‖? + λ‖S‖1 (4.1)

s. t. 1 ≥ Li,j ≥ Si,j ≥ 0 for all i, j ∈ {1, 2, . . . n}, Li,j = Si,j whenever Ai,j = 0,

n∑
i,j=1

Lij ≥ |R|

where ‖.‖? is the nuclear norm (sum of the singular values of the matrix), and ‖.‖1 is the l1-norm
(sum of absolute values of the entries of the matrix) and λ ≥ 0 is the regularization parameter. L
is the low-rank matrix corresponding to the true cluster structure, S is the sparse error matrix that
accounts only for the missing edges inside the clusters and |R| is the size of the cluster region.
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When A is filled using a subset of random edge queries, under the SBM with parameters
{n, nmin,K, p, q}, [16] provides the following sufficient condition for the guaranteed recovery
of the true G∗:

nmin r (p− q) ≥ 1

λ
≥ 2
√
n
√
rq(1− rq) + 2

√
nmax

√
rp(1− rp) + rq(1− rq), (4.2)

where nmin and nmax are the sizes of the smallest and the largest clusters respectively. We extend the
analysis in[16] to the case when A is filled via a subset of random triangle queries, and obtain the
following sufficient condition:

Theorem 1 If the following condition holds:

nmin rT (pT − qT ) ≥ 1

λ

≥ 3

(
2
√
n

√
rT
qT
3

(1− rT
qT
3

) + 2
√
nmax

√
rT
pT
3

(1− rT
pT
3

) + rT
qT
3

(1− rT
qT
3

)

)
then Program 4.1 succeeds in recovering the true G∗ with high probability.

When A is filled using random edge queries, the entries are independent of each other (since the
edges are independent in the SBM). When we use triangle queries to fill A, this no longer holds as
the 3 edges filled from a triangle query are not independent. Due to the limited space, we present
only the key idea of our proof: The analysis in [16] relies on the independence of entries of A to use
Bernstein-type concentration results for the sum of independent random variables and the bound on
the spectral norm of random matrix with independent entries. We make the following observation:
Split A filled via random triangle queries into three parts, A = A1 + A2 + A3. For each triangle
query, allocate one edge to each part randomly. If an edge gets queried as a part of multiple triangle
queries, keep one of them randomly. Each Ai now contains independent entries. The edge density
in Ai is rT pT /3 and rT qT /3 inside the clusters and outside respectively. This allows us to use
the results on concentration of sum of independent random variables and the O(

√
n) bound on the

spectral norm of random matrices, with a penalty due to triangle inequality for spectral norm.

It can be seen that, when the number of revealed edges is the same (rT = r) and the probability of
correctly identifying edges is the same (pT = p and 1 − qT = 1 − q), then the reovery condition
of Theorem 1 is worse than that of (4.2). (This is expected, since triangle queries yield dependent
edges.) However, it is overcompensated by the fact that triangle queries result in more reliable edges
(pT − qT > p− q) and also reveal more edges (rT > r, since the relative cost is less than 3).

To illustrate this, consider a graph on n = 600 nodes with K = 3 clusters of equal size m = 200.
We generate the adjacency matrices from different models in Section 2 for varying p from 0.65 to 0.9.
For the one-coin models, 1−ζ = p. For the rest of the models q = 0.25. We run the improved convex
program (4.1) by setting λ = 1/

√
n. Figure 3 shows the fraction of the entries in the recovered

matrix that are wrong compared to the true adjacency matrix for r = 0.2 and 0.3 (averaged over 5
runs; TE = dE/3e and TB = EHE/H∆). We note that the error drops significantly when A is filled
via triangle queries than via edge queries.

5 Performance of Spectral Clustering: Simulated Experiments
We generate adjacency matrices from the edge query and the triangle query models (Section 2) and
run the spectral clustering algorithm [26] on them. We compare the output clustering with the ground
truth via variation of information (VI) [27] which is defined for two clusterings (partitions) of a
dataset and has information theoretical justification. Smaller values of VI indicate a closer match
and a VI of 0 means that the clusterings are identical. We compare the performance of the spectral
clustering algorithms on the partial adjacency matrices obtained from querying: (1) E = dr

(
n
2

)
e

random edges, (2) TB = E ×HE/H∆ random triangles, which has the same budget as querying
E edges and (3) TE = dE/3e < TB random triangles, which has same number of edges as in the
adjacency matrix obtained by querying E edges.
Varying Edge Density Inside the Clusters: Consider a graph on n = 450 nodes with K = 3
clusters of equal size m = 150. We vary edge density inside the cluster p from 0.55 to 0.9. For the
one-coin models, 1− ζ = p, and q = 0.25 for the rest. Figure 4 shows the performance of spectral
clustering for r = 0.15 and r = 0.3 (averaged over 5 runs).

Varying Cluster Sizes: Let N = 1200. Consider a graph with K clusters of equal sizes m =
bN/Kc and n = K m. We vary K from 2 to 12 which varies the cluster sizes from 600 (large
clusters) to 100 (small clusters, note that

√
1200 ≈ 35). We set p = 0.7. For the one-coin models
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Figure 4: VI for Spectral Clustering output for varying edge density inside the clusters.
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Figure 5: VI for Spectral Clustering output for varying number of clusters (K).

1 − ζ = p and q = 0.25 for the rest. Figure 5 shows the performance of spectral clustering for
r = 0.2 and 0.3. The performance is significantly better with triangle queries compared to that with
edge queries.

6 Experiments on Real Data
We use Amazon Mechanical Turk as crowdsourcing platform. For edge queries, each HIT (Human
Intelligence Task) has 30 queries of random pairs, a sample is shown in Figure 1(a). For triangle
queries, each HIT has 20 queries, with each query having 3 random images, a sample is shown in
Figure 1(b). Each HIT is answered by a unique worker. Note that we do not provide any examples
of different classes or any training to do the task. We fill A as described in Section 2.3 and run the
k-means, the Spectral Clustering and Program 4.1 followed by Spectral Clusteirng on it. Since we do
not know the model parameters and hence have no access to the entropy information, we can use the
the average time taken as the “cost” or value of the query. For E edge comparisons, the equivalent
number of triangle comparisons would be T = E × tE/t∆, where tE and t∆ are average time taken
to answer an edge query and a triangle query respectively. We consider two datasets:
1. Dogs3 dataset has images of the following 3 breeds of dogs from the Stanford Dogs Dataset [28]:

Norfolk Terrier (172), Toy Poodle (150) and Bouvier des Flanders (151), giving a total of 473
dogs images. On an average a worker took tE = 8.4s to answer an edge query and t∆ = 11.7s to
answer a triangle query.

2. Birds5 dataset has 5 bird species from CUB-200-2011 dataset [29]: Laysan Albatross (60), Least
Tern (60), Artic Tern (58), Cardinal (57) and Green Jay (57). We also add 50 random species as
outliers, giving us a total if 342 bird images. On an average, workers took tE = 8.3s to answer
one edge query and t∆ = 12.1s to answer a triangle query.

Details of the data obtained from edge query and triangle query experiments is summarized in Table 3.
Note that the error in the revealed edges drop significantly for triangle queries.

For the Dogs3 dataset, the empirical edge densities inside and between the clusters for A obtained
from the edge queries (P̂E) and the triangle queries (P̂T ) is:

P̂E =

[
0.7577 0.1866 0.2043
0.1866 0.6117 0.2487
0.2043 0.2487 0.7391

]
, P̂T =

[
0.7139 0.1138 0.1253
0.1138 0.6231 0.1760
0.1253 0.1760 0.7576

]
.

E: Edge, T: ∆ # Workers # Unique Edges % of Edges Seen % of Edge Errors
Dogs3, Edge Query 300 E′ = 8630 7.73% 25.2%
Dogs3, ∆ Query 150 3T ′E = 8644 7.74% 19.66%
Dogs3, ∆ Query 320 3T ′ = 17, 626 15.79% 20%

Birds5, Edge Query 300 E′ = 8319 14.27% 14.82%
Birds5, ∆ Query 155 3T ′E = 8600 14.74% 10.96%
Birds5, ∆ Query 285 3T ′ = 14, 773 25.34% 11.4%

Table 3: Summary of the data colleced in the real experiments.
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Query (E: Edge, T: ∆) k-means Spectral Clustering Convex Program
E′ = 8630 0.8374± 0.0121 (K=2) 0.6972± 0 (K = 3) 0.5176± 0 (K=3)
3T ′E = 8644 0.6675± 0.0246 (K=3) 0.5690± 0 (K=3) 0.4605± 0 (K = 3)
3T ′ = 17626 0.3268± 0 (K=3) 0.3470± 0 (K=3) 0.2279± 0 (K = 3)

Table 4: VI for clustering output by k-means and spectral clustering for the Dogs3 dataset.

Query k-means Spectral Clustering Convex Program
E′ = 8319 1.4504± 0.0338 (K = 2) 1.2936± 0.0040 (K = 4) 1.0392± 0 (K = 4)
3T ′E = 8600 1.1793± 0.0254 (K = 3) 1.1299± 0(K = 4) 0.9105± 0 (K=4)
3T ′ = 14, 773 0.7989± 0 (K = 4) 0.8713± 0 (K = 4) 0.9135± 0 (K = 4)

Table 5: VI for clustering output by k-means and spectral clustering for the Birds5 dataset.

For the Birds5 dataset, the emprical edge densities within and between various clusters in A filled
via edge queries (P̂E) and triangle queries (P̂T ) are:

P̂E =


0.801 0.304 0.208 0.016 0.032 0.100
0.304 0.778 0.656 0.042 0.131 0.123
0.208 0.656 0.912 0.062 0.094 0.096
0.016 0.042 0.062 0.855 0.154 0.110
0.032 0.131 0.094 0.154 0.958 0.158
0.100 0.123 0.096 0.110 0.158 0.224

 , P̂T =


0.786 0.207 0.151 0.011 0.021 0.058
0.207 0.797 0.625 0.023 0.047 0.1
0.151 0.625 0.865 0.024 0.06 0.071
0.011 0.023 0.024 0.874 0.059 0.076
0.021 0.047 0.06 0.059 0.943 0.08
0.058 0.1 0.071 0.078 0.08 0.182

 .

As we see the triangle queries give rise to an adjacency matrix with significantly less confusion
across the clusters (compare the off-diagonal entries in P̂E and P̂T ).

Tables 4 and 5 show the performance of clustering algorithms (in terms of variation of information)
for the two datasets. The no. of clusters found is given in brackets. We note that for both the datasets,
the performance is significantly better with triangle queries than with edge queries. Furthermore,
even with less triangle queries (3T ′E ≈ E) than that is allowed by the budget, the clustering obtained
is better compared to edge queries.

7 Summary
In this work we compare two ways of querying for crowdsourcing clustering using non-experts:
random edge comparisons and random triangle comparisons. We provide simple and intuitive models
for both. Compared to edge queries that reveal independent entries of the adjacency matrix, triangle
queries reveal dependent ones (edges in a triangle share a vertex). However, due to their error-
correcting capabilities, triangle queries result in more reliable edges and, furthermore, because the
cost of a triangle query is less than that of 3 edge queries, for a fixed budget, triangle queries reveal
many more edges. Simulations based on our models, as well as empirical evidence strongly support
these facts. In particular, experiments on two real datasets suggests that clustering items from random
triangle queries significantly outperforms random edge queries when the total query budget is fixed.
We also provide theoretical guarantee for the exact recovery of the true adjacency matrix using
random triangle queries. In the future we will focus on exploiting the structure of triangle queries via
tensor representations and sketches, which might further improve the clustering performance.
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