
Linear Feature Encoding for Reinforcement Learning

Zhao Song, Ronald Parr†, Xuejun Liao, Lawrence Carin
Department of Electrical and Computer Engineering

† Department of Computer Science
Duke University, Durham, NC 27708, USA

Abstract

Feature construction is of vital importance in reinforcement learning, as the quality
of a value function or policy is largely determined by the corresponding features.
The recent successes of deep reinforcement learning (RL) only increase the im-
portance of understanding feature construction. Typical deep RL approaches use
a linear output layer, which means that deep RL can be interpreted as a feature
construction/encoding network followed by linear value function approximation.
This paper develops and evaluates a theory of linear feature encoding. We extend
theoretical results on feature quality for linear value function approximation from
the uncontrolled case to the controlled case. We then develop a supervised linear
feature encoding method that is motivated by insights from linear value function
approximation theory, as well as empirical successes from deep RL. The resulting
encoder is a surprisingly effective method for linear value function approximation
using raw images as inputs.

1 Introduction

Feature construction has been and remains an important topic for reinforcement learning. One of
the earliest, high profile successes of reinforcement learning, TD-gammon [1], demonstrated a huge
performance improvement when expert features were used instead of the raw state, and recent years
have seen a great deal of practical and theoretical work on understanding feature selection and
generation for linear value function approximation [2–5].

More recent practical advances in deep reinforcement learning have initiated a new wave of interest in
the combination of neural networks and reinforcement learning. For example, Mnih et al. [6] described
a reinforcement learning (RL) system, referred to as Deep Q-Networks (DQN), which learned to
play a large number of Atari video games as well as a good human player. Despite these successes
and, arguably because of them, a great deal of work remains to be done in understanding the role of
features in RL. It is common in deep RL methods to have a linear output layer. This means that there
is potential to apply the insights gained from years of work in linear value function approximation to
these networks, potentially giving insight to practitioners and improving the interpretability of the
results. For example, the layers preceding the output layer could be interpreted as feature extractors
or encoders for linear value function approximation.

As an example of the connection between practical neural network techniques and linear value
function approximation theory, we note that Oh et al. [7] introduced spatio-temporal prediction
architectures that trained an action-conditional encoder to predict next states, leading to improved
performance on Atari games. Oh et al. cited examples of next state prediction as a technique used in
neural networks in prior work dating back several decades, though this approach is also suggested by
more recent linear value function approximation theory [4].

In an effort to extend previous theory in a direction that would be more useful for linear value function
approximation and, hopefully, lead to greater insights into deep RL, we generalize previous work

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

on analyzing features for uncontrolled linear value function approximation [4] to the controlled
case. We then build on this result to provide a set of sufficient conditions which guarantee that
encoded features will result in good value function approximation. Although inspired by deep RL,
our results (aside from one negative one in Section 3.2) apply most directly to the linear case, which
has been empirically explored in Liang et al. [8]. This implies the use of a rich, original (raw) feature
space, such as sequences of images from a video game without persistent, hidden state. The role of
feature encoding in such cases is to find a lower dimensional representation that is suitable for linear
value function approximation. Feature encoding is still needed in such cases because the raw state
representation is so large that it is impractical to use directly.

Our approach works by defining an encoder and a decoder that use a lower dimensional representation
to encode and predict both reward and next state. Our results differ from previous results [4] in linear
value function approximation theory that provided sufficient conditions for good approximation.
Specifically, our results span two different representations, a large, raw state representation and
a reduced one. We propose an efficient coordinate descent algorithm to learn parameters for the
encoder and decoder. To demonstrate the effectiveness of this approach, we consider the challenging
(for linear techniques) problem of learning features from raw images in pendulum balancing and
blackjack. Surprisingly, we are able to discover good features and learn value functions in these
domains using just linear encoding and linear value function approximation.

2 Framework and Notation

Markov Decision Processes (MDPs) can be represented as a tuple 〈S,A, R, P, γ〉, where S =
{s1, s2, . . . , sn} is the state set, A = {a1, a2, . . . , am} is the action set, R ∈ Rnm×1 represents the
reward function whose element R(si, aj) denotes the expected immediate reward when taking action
aj in state si, P ∈ Rnm×n denotes the transition probabilities of underlying states whose element
P
[
(si, a), sj

]
is the probability of transiting from state si to state sj when taking an action a, and

γ ∈ [0, 1) is the discount factor for the future reward. The policy π in an MDP can be represented in
terms of the probability of taking action a when in state s, i.e., π(a|s) ∈ [0, 1] and

∑
a π(a|s) = 1.

Given a policy π, we define Pπ ∈ Rnm×nm as the transition probability for the state-action pairs,
where Pπ(s′, a′|s, a) = P

[
(s, a), s′

]
π(a′|s′). For any policy π, its Q-function is defined over the

state-action pairs, where Qπ(s, a) represents the expected total γ−discounted rewards when taking
action a in state s and following π afterwards. For the state-action pair (s, a), the Q−function
satisfies the following Bellman equation:

Qπ
(
s, a
)

= R(s, a) +
[
γ
∑
s′,a′

Pπ(s′, a′|s, a)Qπ
(
s′, a′

)]
(1)

2.1 The Bellman operator

We define the Bellman operator Tπ on the Q−functions as

(TπQ)(s, a) = R(s, a) +
[
γ
∑
s′,a′

Pπ(s′, a′|s, a)Q
(
s′, a′

)]
.

Qπ is known to be a fixed point of Tπ, i.e., TπQπ = Qπ. Of particular interest in this paper is the
Bellman error for an approximated Q-function to Qπ, specifically BE(Q̂π) = TπQ̂π − Q̂π. When
the Bellman error is 0, the Q-function is at the fixed point. Otherwise, we have [9]:

‖Q̂π −Qπ‖∞ ≤ ‖Q̂π − TπQ̂π‖∞ / (1− γ),

where ‖x‖∞ refers to the `∞ norm of a vector x.

2.2 Linear Approximation

When the Q-function cannot be represented exactly, we can approximate it with a linear function
as Q̂π(s, a) = Φwπ

Φ, with Φ = [Φ(s1, a1) . . .Φ(sn, am)]
T ∈ Rnm×km, Φ(si, aj) ∈ Rkm×1 is a

feature vector for state si and action aj , superscript T represents matrix transpose, and wπ
Φ ∈ Rkm×1

is the weight vector.

2

Given the features Φ, the linear fixed point methods [10–12] aim to estimate wπ
Φ, by solving the

following fixed-point equation:

Φwπ
Φ = Π(R+ γPπΦwπ

Φ) (2)

where Π = Φ(ΦTΦ)−1ΦT is the orthogonal `2 projector on span(Φ). Solving (2) leads to the
following linear fixed-point solution:

wπ
Φ = (ΦTΦ− γΦTPπΦ)−1 ΦT R.

2.3 Feature Selection/Construction

There has been great interest in recent years in automating feature selection or construction for
reinforcement learning. Research in this area has typically focused on using a linear value function
approximation method with a feature selection wrapper.

Parr et al. [2] proposed using the Bellman error to generate new features, but this approach did not
scale well in practice. Mahadevan and Maggioni [3] explored a feature generation approach based
upon the Laplacian of a connectivity graph of the MDP. This approach has many desirable features,
though it did not connect directly to the optimization problem implied by the MDP and could produce
worthless features in pathological cases [4].

Geramifard et al. [13] and Farahmand and Precup [14] consider feature construction where features
are built up through composition of base or atomic features. Such approaches are reminiscent of
classical approaches to features construction. They can be useful, but they can also be myopic if the
needed features are not reachable through chains of simpler features where each step along the chain
is a demonstrable improvement.

Feature selection solves a somewhat different problem from feature construction. Feature selection
assumes that a reasonable set of candidate features are presented to the learner, and the learner’s task is
to find the good ones from a potentially large set of mostly worthless or redundant ones. LASSO [15]
and Orthogonal Matching Pursuit (OMP) [16] are methods of feature selection for regression that
have been applied to reinforcement learning [17, 5, 18, 19]. In practice, these approaches do require
that good features are present within the larger set, so they do not address the question of how to
generate good features in the first place.

3 Theory for Feature Encoding
Previous work demonstrated an equivalence between linear value function approximation and linear
model approximation [20, 21, 4], as well as the relationship between errors in the linear model and
the Bellman error for the linear fixed point [4]. Specifically, low error in the linear model could imply
low Bellman error in the linear fixed point approximation. These results were for the uncontrolled
case. A natural extension of these results would be to construct features for action-conditional linear
models, one for each action, and use those features across multiple policies, i.e., through several
iterations of policy iteration. Anecdotally, this approach seemed to work well in some cases, but there
were no theoretical results to justify it. The following example demonstrates that features which are
sufficient for perfect linear action models and reward models, may not suffice for perfect linear value
function approximation.

Example 1. Consider an MDP with a single feature φ(x) = x, two actions that have no effect,
p(x|x, a1) = 1.0 and p(x|x, a2) = 1.0, and with R(x, a1) = x and R(x, a2) = −x. The single
feature φ is sufficient to construct a linear predictor of the expected next state and reward. However,
the value function is not linear in φ since V ∗(x) = |x| / (1− γ).

The significance of this example is that existing theory on the connection between linear models
and linear features does not provide sufficient conditions on the quality of the features for model
approximation that would ensure good value function approximation for all policies. Existing theory
also does not extend to provide a connection between the model error for a set of features and
the Bellman error of a Q-function based on these features. To make this connection, the features
must be thought of as predicting not only expected next features, but expected next feature-action
combinations. Below, we extend the results of Parr et al. [4] to Q-functions and linear state-action
models.

3

The linear model Similar to Parr et al. [4], we approximate the reward R and the expected policy-
conditional next feature PπΦ in the controlled case, using the following linear model:

R̂ = ΦrΦ = Φ(ΦTΦ)−1ΦTR (3a)

P̂πΦ = ΦPπΦ = Φ(ΦTΦ)−1ΦTPπΦ. (3b)

Since Q̂π = Φw for some w, the fixed-point equation in (1) becomes

Φw = ΦrΦ + γΦPπΦw (4a)

w = (I − γPπΦ)−1 rΦ (4b)

Lemma 2. For any MDP M with features Φ and policy π represented as the fixed point of the
approximate Q−function, the linear-model solution and the linear fixed-point solution are the same.

Proof: See Supplemental Materials.

To analyze the error in the controlled case, we define the Bellman error for the state-value function,
given a policy π as

BE
(
Q̂π(s, a)

)
= R(s, a) +

[
γ
∑
s′,a′

Pπ(s′, a′|s, a)Q̂π
(
s′, a′

)]
− Q̂π(s, a).

As a counterpart to Parr et al. [4], we introduce the following reward error and policy-conditional
per-feature error, in the controlled case as

∆R = R− R̂ = R− ΦrΦ (5a)

∆π
Φ = PπΦ− P̂Φπ = PπΦ− ΦPπΦ . (5b)

Theorem 3. For any MDP M with feature Φ, and policy π represented as the fixed point of the
approximate Q−function, the Bellman error can be represented as

BE
(
Q̂π
)

= ∆R + γ∆π
Φw

π
Φ.

Proof: See Supplemental Materials.

Theorem 3 suggests a sufficient condition for a good set of features: If the model prediction error ∆π
Φ,

and reward prediction error ∆R are low, then the Bellman error must also be low. Previous work did
not give an in-depth understanding of how to construct such features. In Parr et al. [2], the Bellman
error is defined only on the training data. Since it is orthogonal to the span of the existing features,
there is no convenient way to approximate it, and the extension to off-sample states is not obvious.
They used locally weighted regression with limited success, but the process was slow and prone to the
usual perils of non-parametric approximators, such as high sensitivity to the distance function used.

One might hope to minimize (5a) and (5b) directly, perhaps using sampled states and next states, but
this is not a straightforward optimization problem to solve in general, because the search space for
Φ is the space of functions and because Φ appears inconveniently on both sides of 5(b) making it
difficult rearrange terms to solve for Φ as an optimization problem with a fixed target. Thus, without
additional assumptions about how the states are initially encoded and what space of features will be
searched, it is challenging to apply Theorem 3 directly. Our solution to this difficulty is to apply the
theorem in a somewhat indirect manner: First we assume that the input is a rich, raw feature set (e.g.,
images) and that the primary challenge is reducing the size of the feature set rather than constructing
more elaborate features. Next, we restrict our search space for Φ to the space of linear encodings of
these raw features. Finally, we require that these encoded features are predictive of next raw features
rather than next encoded features. This approach differs from what Theorem 3 requires but it results
in an easier optimization problem and, as shown below, we are able to use Theorem 3 to show that
this alternative condition is sufficient to represent the true value function.

We now present a theory of predictively optimal feature encoding. We refer to the features that
ultimately are used by a linear value function approximation step using the familiar Φ notation, and
we refer to the inputs before feature encoding as the raw features, A. For n samples and l raw features,
we can think of A as an nm× lm matrix. For every row in A, only the block corresponding to the
action taken is non-zero. The raw features are operated on by an encoder:

4

Definition 4. The encoder, Eπ (or Eπ in the linear case) is a transformation Eπ(A) = Φ. We use the
notation Eπ because we think of it as encoding the raw state. When the encoder is linear, Eπ = Eπ,
where Eπ is an lm× km matrix that right multiplies A, AEπ = Φ.
We want to encode a reduced size representation of the raw features sufficient to predict the next
expected reward and raw features because, as proven below, doing so is a sufficient (though not
necessary) condition for good linear value function approximation. Prediction of next raw feature
and rewards is done via a decoder, which is a matrix in this paper, but could be non-linear in general:
Definition 5. The decoder, D, is a km× (lm+ 1) matrix predicting [PπA,R] from Eπ(A).
This approach is distinct from the work of Parr et al. [4] for several reasons. We study a set of
conditions on a reduced size feature set and study the relationship between the reduced feature set and
the original features, and we provide an algorithm in the next section for constructing these features.
Definition 6. Φ = Eπ(A) is predictively optimal with respect to A and π if there exists a Dπ such
that Eπ(A)Dπ = [PπA,R].

3.1 Linear Encoder and Linear Decoder

In the linear case, a predictively optimal set of features satisfies:
AEπDπ = AEπ[Ds

π, D
r
π] = [PπA,R] (6)

where Ds
π and Dr

π represent the first lm columns and the last column of Dπ , respectively.
Theorem 7. For any MDP M with predictively optimal Φ = AEπ for policy π, if the linear fixed
point for Φ is Q̂π , BE(Q̂π) = 0.

Proof: See Supplemental Materials.

3.2 Non-linear Encoder and Linear Decoder

One might expect that the results above generalize easily to the case where a more powerful encoder
is used. This could correspond, for example, to a deep network with a linear output layer used for
value function approximation. Surprisingly, the generalization is not straightforward:
Theorem 8. The existence of a non-linear encoder E and linear decoder D such that E(A)D =
[PπA,R] is not sufficient to ensure predictive optimality of Φ = E(A).

Proof: See Supplemental Materials.

This negative result doesn’t shut the door on combining non-linear encoders with linear decoders.
Rather, it indicates that additional conditions beyond those needed in the linear case are required
to ensure optimal encoding. For example, requiring that the encoded features lie in an invariant
subspace of Pπ [4] would be a sufficient condition (though of questionable practicality).

4 Iterative Learning of Policy and Encoder

In practice we do not have access to Pπ, but do have access to the raw feature representation of
sampled states and sampled next states. To train the encoder Eπ and decoder Dπ, we sample states
and next states from a data collection policy. When exploration is not the key challenge, this can be
done with a single data collection run using a policy that randomly selects actions (as is often done
with LSPI [22]). For larger problems, it may be desirable to collect additional samples as the policy
changes. These sampled states and next states are represented by matrices Ã and A′, respectively.

Theorem 7 suggests that given a policy π, zero Bellman error can be achieved if features are encoded
appropriately. Subsequently, the obtained features and resulting Q-functions can be used to update
the policy, with an algorithm such as LSPI. In a manner similar to the policy update in LSPI, the
non-zero blocks in A′ are changed accordingly after a new policy is learned. With the updated A′, we
re-learn the encoder and then repeat the process, as summarized in Algorithm 1. It may be desirable
to update the policy several times while estimating Q̂π since the encoded features may still be useful
if the policy has not changed much. Termination conditions for this algorithm are typical approximate
policy iteration termination conditions.

4.1 Learning Algorithm for Encoder

5

Algorithm 1 Iterative Learning of Encoder and Policy
while Termination Conditions Not Satisfied do

Learn the encoder Eπ and decoder Dπ

Estimate Q̂π
Update the next raw state A′, by changing the po-
sition of non-zero blocks according to the greedy
policy for Q̂π .

end while

In our implementation, the encoder Eπ
and decoder Dπ are jointly learned us-
ing Algorithm 2, which seeks to minimize
‖ÃEπDπ − [A′, R]‖F by coordinate de-
scent [23], where ‖X‖F represents the
Frobenius norm of a matrixX . Note that Ã
can be constructed as a block diagonal ma-
trix, where each block corresponds to the
samples from each action. Subsequently,
the pseudoinverse of Ã in Algorithm 2 can
be efficiently computed, by operating on the pseudoinverse of each block in Ã.

Algorithm 2 alternatively updates Eπ and Dπ until one of the following conditions is met: (1) the
number of iterations reaches the maximally allowed one; (2) the residual ‖ÃEπDπ−[A′,R]‖F

‖[A′,R]‖F is below
a threshold; (3) the current residual is greater than the previous residual. For regularization, we use
the truncated singular value decomposition (SVD) [24] when taking the pseudo-inverses of Ã to
discard all but the top k singular vectors in each block of Ã.

Algorithm 2 Linear Feature Discovery

LINEARENCODERFEATURES (Ã, A′, R, k)
Dπ ← rand(km, lm+ 1)
while Convergence Conditions Not Satisfied do
Eπ ← Ã†[A′, R]D†π
Dπ ← (ÃEπ)†[A′, R]

end while
return Eπ

See text for termination conditions.
rand represents samples from uniform [0, 1].
† is the (truncated) Moore-Penrose pseudoinverse.

Algorithm 2 is based on a linear encoder
and a linear decoder. Consequently, one
may notice that the value function is also
linear in the domain of the raw features, i.e.,
the value function can be represented as
Q̂π = Ã Eπw = Ãw′ with w′ = Eπw.
One may wonder, why it is not better to
solve for w′ directly with regularization
on w′? Although it is impractical to do
this using batch linear value function ap-
proximation methods, due to the size of the
feature matrix, one might argue that on-line
approaches such as deep RL techniques ap-
proximate this approach by stochastic gra-

dient descent. To the extent this characterization is accurate, it only increases the importance of
having a clear understanding of feature encoding as an important sub-problem, since this is the natural
interpretation of everything up to the final layer in such networks and is even an explicit objective in
some cases [7].

5 Experiments
The goal of our experiments is to show that the model of and algorithms for feature encoding presented
above are practical and effective. The use of our encoder allows us to learn good policies using linear
value function approximation on raw images, something that is not generally perceived to be easy
to do. These experiments should be viewed as validating this approach to feature encoding, but not
competing with deep RL methods, which are non-linear and use far greater computational resources.

We implement our proposed linear encoder-decoder model and, for comparison, the random projection
model in Ghavamzadeh et al. [25]. We tested them on the Inverted Pendulum and Blackjack [26],
two popular benchmark domains in RL. Our test framework creates raw features using images, where
the elements in the non-zero block of Ã correspond to an image that has been converted to vector by
concatenating the rows of the image. For each problem, we run Algorithm 1 50 times independently to
account for the randomness in the training data. Our training data are formed by running a simulation
for the desired number of steps and choosing actions at random. For the encoder, the number of
features k is selected over the validation set to achieve the best performance. All code is written in
MATLAB and tested on a machine with 3.1GHz CPU and 8GB RAM. Our test results show that
Algorithm 1 cost at most half an hour to run, for the inverted pendulum and blackjack problems.

To verify that the encoder is doing something interesting, rather than simply picking features from Ã,
we also tried a greedy, sparse reinforcement learning algorithm, OMP-TD [5] using Ã as the candidate
feature set. Our results, however, showed that OMP-TD’s performance was much worse than the
approach using linear encoder. We skip further details on OMP-TD’s performance for conciseness.

6

5.1 Inverted Pendulum

We used a version of the inverted pendulum adapted from Lagoudakis and Parr [22], a continuous
control problem with 3 discrete actions, left, right, or nothing, corresponding to the force applied to
a cart on an infinite rail upon which an inverted pendulum is mounted. The true state is described
by two continuous variables, the angle and angular velocity of the pendulum. For the version of the
problem used here, there is a reward of 0 for each time step the pendulum is balanced, and a penalty
of −1 for allowing the pendulum to fall, after which the system enters an absorbing state with value
0. The discount factor is set to be 0.95.

For the training data, we collected a desired number of trajectories with starting angle and angular
velocity sampled uniformly on [−0.2, 0.2]. These trajectories were truncated after 100 steps if the
pendulum had not already fallen. Algorithm 2 did not see the angle or angular velocity. Instead,
the algorithm was given two successive, rendered, grayscale images of the pendulum. Each image
has 35× 52 pixels and hence the raw state is a 35× 52× 2 = 3640 dimensional vector. To ensure
that these two images are a Markovian representation of the state, it was necessary to modify the
simulator. The original simulator integrated the effects of gravity and the force applied over the time
step of the simulator. This made the simulation more accurate, but has the consequence that the
change in angle between two successive time steps could differ from the angular velocity. We forced
the angular velocity to match the change in angle per time step, thereby making the two successive
images a Markovian state.

We compare the linear encoder with the features using radial basis functions (RBFs) in Lagoudakis
and Parr [22], and the random projection in Ghavamzadeh et al. [25]. The learned policy was then
evaluated 100 times to obtain the average number of balancing steps. For each episode, a maximum
of 3000 steps is allowed to run. If a run achieves this maximum number, we claim it as a success and
count it when computing the probability of success. We used k = 50 features for both linear encoder
and random projection.

200 400 600 800 1000

Number of training episodes

0

500

1000

1500

2000

2500

3000

S
te

p
s

Encoder-2

Encoder-1

RBF

Random Projection

(a)

200 400 600 800 1000

Number of training episodes

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

b
a
b
ili

ty
 o

f
s
u
c
c
e
s
s

Encoder-2

Encoder-1

RBF

Random Projection

(b)

Figure 1: (a) Number of balancing steps and (b) prob. of success, vs. number
of training episodes.

Figure 1 shows the
results with means
and 95% confidence
intervals, given dif-
ferent numbers of
training episodes,
where Encoder−τ
corresponds to the
version of Algorithm 1
with τ changes in the
encoder. We observe
that for most of the
points, our proposed
encoder achieves
better performance
than RBFs and random projections, in terms of both balancing steps and the probability of success.
This is a remarkable result because the RBFs had access to the underlying state, while the encoder
was forced to discover an underlying state representation based upon the images. Moreover,
Encoder−2 achieves slightly better performance than Encoder−1 in most of the testing points. We
also notice that further increasing τ did not bring any obvious improvement, based on our test.

5.2 Blackjack

There are 203 states in this problem, so we can solve directly for the optimal value V ∗ and the
optimal policy π∗ explicitly. The states from 1-200 in this problem can be completely described by
the information from the ace status (usable or not), player’s current sum (12-21), and dealer’s one
showing card (A-10). The terminal states 201- 203 correspond to win, lose, and draw, respectively.
We set k = 203 features for the linear encoder.

To represent raw states for the encoder, we use three concatenated sampled MNIST digitsand hence a
raw state is a 28× 28× 3 = 2352 dimensional vector. Two examples of such raw states are shown in
Figure 2. Note that three terminal states are represented by “300”, “400”, and “500”, respectively.

7

The training data are formed by executing the random policy with the desired number of episodes.
Our evaluation metrics for a policy represented by the value V and the corresponding action a are

Relative value error = ‖V − V ∗‖2 / ‖V ∗‖2, Action error = ‖a− a∗‖0.

We compare the features discovered by the linear encoder and random projection against in-
dicator functions on the true state, since such indicator features should be the gold standard.

(a) (b)

Figure 2: Two examples of
the blackjack state rendered as
three MNIST digits.

We can make the encoder and random projection’s tasks more chal-
lenging by adding noise to the raw state. Although it is not guaran-
teed in general (Example 1), it suffices to learn a single encoder that
persisted across policies for this problem, so we report results for a
single set of encoded features. We denote the algorithms using linear
encoder as Encoder-Image-κ and the algorithms using random
projection as Random-Image-κ, where κ is the number of possible
images used for each digit. For example κ = 10 means that the
image for each digit is randomly selected from the first 10 images in the MNIST training dataset.

Number of training episodes
2000 4000 6000 8000 10000

R
e

la
ti
v
e

 v
a

lu
e

 e
rr

o
r

0.2

0.4

0.6

0.8

1

1.2
Random-Image-10
Encoder-Image-10
Random-Image-1
Encoder-Image-1
Indicator

(a)
Number of training episodes

2000 4000 6000 8000 10000

A
c
ti
o

n
 e

rr
o

r

20

25

30

35

40

45

50

55

60

65

70

75

Random-Image-10
Encoder-Image-10
Random-Image-1
Encoder-Image-1
Indicator

(b)

Figure 3: (a) Relative value error and (b) action error, as functions of the
number of training episodes. An additional plot for the actual return is
provided in Supplemental Materials.

Figure 3 shows the
surprising result that
Encoder-Image-1
and Random-Image-1
achieve superior per-
formance to indicator
functions on the true
state when the number
of training episodes
is less than or equal
to 6000. In this case,
the encoded state rep-
resentation wound up
having less than 203
effective parameters
because the SVD in

the pseudoinverse found lower dimensional structure that explained most of the variation and
discarded the rest as noise because the singular values were below threshold. This put the encoder in
the favorable side of the bias-variance trade off when training data were scarce. When the number of
training episodes becomes larger, the indicator function outperforms the linear encoder, which is
consistent with its asymptotically optimal property. Furthermore, the performance of the encoder
becomes worse as κ is larger. This matches our expectation that a larger κ means that a state would
be mapped to more possible digits and thus extracting features for the same state becomes more
difficult. Finally, we notice that our proposed encoder is more robust to noise, when compared with
random projection: Encoder-Image-10 outperforms Random-Image-10 with remarkable margins,
measured in both relative value error and action error.

6 Conclusions and Future Work

We provide a theory of feature encoding for reinforcement learning that provides guidance on how
to reduce a rich, raw state to a lower-dimensional representation suitable for linear value function
approximation. Our results are most compelling in the linear case, where we provide a framework
and algorithm that enables linear value function approximation using a linear encoding of raw images.
Although our framework aligns with practice for deep learning [7], our results indicate that future
work is needed to elucidate the additional conditions that are needed to extend theory to guarantee
good performance in the non-linear case.

Acknowledgements

We thank the anonymous reviewers for their helpful comments and suggestions. This research was
supported in part by ARO, DARPA, DOE, NGA, ONR and NSF.

8

References
[1] G. Tesauro, “TD-Gammon, a self-teaching backgammon program, achieves master-level play,” Neural

Computation, 1994.

[2] R. Parr, C. Painter-Wakefield, L. Li, and M. Littman, “Analyzing feature generation for value-function
approximation,” in ICML, 2007.

[3] S. Mahadevan and M. Maggioni, “Proto-value functions: A Laplacian framework for learning representation
and control in Markov decision processes,” JMLR, 2007.

[4] R. Parr, L. Li, G. Taylor, C. Painter-Wakefield, and M. L. Littman, “An analysis of linear models, linear
value-function approximation, and feature selection for reinforcement learning,” in ICML, 2008.

[5] C. Painter-wakefield and R. Parr, “Greedy algorithms for sparse reinforcement learning,” in ICML, 2012.

[6] V. Mnih et al., “Human-level control through deep reinforcement learning,” Nature, 2015.

[7] J. Oh, X. Guo, H. Lee, R. L. Lewis, and S. Singh, “Action-conditional video prediction using deep networks
in Atari games,” in NIPS, 2015.

[8] Y. Liang, M. C. Machado, E. Talvitie, and M. Bowling, “State of the art control of Atari games using
shallow reinforcement learning,” in AAMAS, 2016.

[9] R. J. Williams and L. C. Baird III, “Tight performance bounds on greedy policies based on imperfect value
functions,” Northeastern University, Tech. Rep., 1993.

[10] R. S. Sutton, “Learning to predict by the method of temporal differences,” Machine Learning, 1988.

[11] S. Bradtke and A. Barto, “Linear least-squares algorithms for temporal difference learning,” Machine
learning, 1996.

[12] H. Yu and D. P. Bertsekas, “Convergence results for some temporal difference methods based on least
squares,” IEEE TAC, 2009.

[13] A. Geramifard, T. J. Walsh, N. Roy, and J. How, “Batch iFDD: A scalable matching pursuit algorithm for
solving MDPs,” in UAI, 2013.

[14] A. M. Farahmand and D. Precup, “Value pursuit iteration,” in NIPS, 2012.

[15] R. Tibshirani, “Regression shrinkage and selection via the Lasso,” JRSSB, 1996.

[16] S. G. Mallat and Z. Zhang, “Matching pursuits with time-frequency dictionaries,” IEEE TSP, 1993.

[17] J. Z. Kolter and A. Y. Ng, “Regularization and feature selection in least-squares temporal difference
learning,” in ICML, 2009.

[18] M. Petrik, G. Taylor, R. Parr, and S. Zilberstein, “Feature selection using regularization in approximate
linear programs for Markov decision processes,” in ICML, 2010.

[19] J. Johns, C. Painter-Wakefield, and R. Parr, “Linear complementarity for regularized policy evaluation and
improvement,” in NIPS, 2010.

[20] R. Schoknecht, “Optimality of reinforcement learning algorithms with linear function approximation,” in
NIPS, 2002.

[21] R. S. Sutton, C. Szepesvári, A. Geramifard, and M. H. Bowling, “Dyna-style planning with linear function
approximation and prioritized sweeping,” in UAI, 2008.

[22] M. Lagoudakis and R. Parr, “Least-squares policy iteration,” JMLR, 2003.

[23] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press, 2004.

[24] P. C. Hansen, “The truncated SVD as a method for regularization,” BIT Numerical Mathematics, 1987.

[25] M. Ghavamzadeh, A. Lazaric, O. Maillard, and R. Munos, “LSTD with random projections,” in NIPS,
2010.

[26] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. The MIT Press, 1998.

9

