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Abstract

Over the last years, many variations of the quadratic k-means clustering procedure
have been proposed, all aiming to robustify the performance of the algorithm in
the presence of outliers. In general terms, two main approaches have been devel-
oped: one based on penalized regularization methods, and one based on trimming
functions. In this work, we present a theoretical analysis of the robustness and
consistency properties of a variant of the classical quadratic k-means algorithm,
the robust k-means, which borrows ideas from outlier detection in regression. We
show that two outliers in a dataset are enough to breakdown this clustering pro-
cedure. However, if we focus on “well-structured” datasets, then robust k-means
can recover the underlying cluster structure in spite of the outliers. Finally, we
show that, with slight modifications, the most general non-asymptotic results for
consistency of quadratic k-means remain valid for this robust variant.

1 Introduction

Let φ : R → R+ be a lower semi-continuous (lsc) and symmetric function with minimum value
φ(0). Given a set of points Xn = {x1, . . . , xn} ⊂ Rp, consider the generalized k-means problem
(GKM) [7]

min
c1,...,ck

Rn(c1, . . . , ck) =
n∑

i=1

min
1≤l≤k

φ(||xi − cl||2)

subject to cl ∈ Rp, l ∈ {1, . . . , k}.
(GKM)

Our aim is to find a set of k centers {c1, . . . , ck} that minimize the clustering risk Rn. These centers
define a partition of Xn into k clusters A = {A1, . . . , Ak}, defined as

Al =
{
x ∈ Xn : l = argmin1≤j≤k φ(||x− cj ||2)

}
, (1)

where ties are broken randomly. Varying φ beyond the usual quadratic function (φ(t) = t2) we
expect to gain some robustness against the outliers [9]. When φ is upper bounded by δ, the clusters
are defined as follows. For l ≤ k, let

Al =
{
x ∈ Xn : l = argmin1≤j≤k φ(||x− cj ||2) and φ(||x− cl||2) ≤ δ

}
, (2)

and define the extra cluster

Ak+1 =
{
x ∈ Xn : min

1≤j≤k
φ(||x− cj ||2) > δ

}
. (3)

This extra cluster contains points whose distance from their closest center, when measured according
to φ(||x−cl||2), is larger than δ and, as will become clear later, it represents the set of outliers. From
now on, given a set of centers {c1, . . . , ck}, we write just A = {A1, . . . , Ak} and implicitly mean
A ∪Ak+1 when φ is bounded.1

1 For a similar definition for the set of clusters induced by a bounded φ see also Section 4 in [2].
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Now, consider the following instance of (GKM), for the same set of points Xn,

min
c1,...,ck

R′
n(c1, . . . , ck) =

n∑

i=1

min
1≤l≤k

{
min
oi

1

2
||xi − cl − oi||22 + fλ(||oi||2)

︸ ︷︷ ︸
φ(||xi−cl||2)

}

subject to cl ∈ Rp, l = 1, . . . , k,

oi ∈ Rp, i = 1, . . . , n,

(RKM)

where fλ : R→ R+ is a symmetric, lsc, proper2 and bounded from below function, with minimum
value fλ(0), and λ a non-negative parameter. This problem is called robust k-means (RKM) and,
as we show later, it takes the form of (GKM) when φ equals the Moreau envelope of fλ. The
problem (RKM) [5, 24] describes the following simple model: we allow each observation xi to take
on an “error” term oi and we penalize the errors, using a group penalty, in order to encourage most
of the observations’ errors to be equal to zero. We consider functions fλ where the parameter λ ≥ 0
has the following effect: for λ = 0, all oi’s may become arbitrary large (all observations are outliers),
while, for λ→∞, all oi’s become zero (no outliers); non-trivial cases occur for intermediate values
0 < λ <∞. Our interest is in understanding the robustness and consistency properties of (RKM).

Robustness: Although robustness is an important notion, it has not been given a standard technical
definition in the literature. Here, we focus on the finite sample breakdown point [18], which counts
how many outliers a dataset may contain without causing significant damage in the estimates of
the centers. Such damage is reflected to an arbitrarily large magnitude of at least one center. In
Section 3, we show that two outliers in a dataset are enough to breakdown some centers. On the other
hand, if we restrict our focus on some “well structured” datasets, then (RKM) has some remarkable
robustness properties even if there is a considerable amount of contamination.

Consistency: Much is known about the consistency of (GKM) when the function φ is lsc and
increasing [11, 15]. It turns out that this case also includes the case of (RKM) when fλ is convex
(see Section 3.1 for details). In Section 4, we show that the known non-asymptotic results about
consistency of quadratic k-means may remain valid even when fλ is non-convex.

2 Preliminaries and some technical remarks

We start our analysis with a few technical tools from variational analysis [19]. Here, we introduce
the necessary notation and a lemma (the proofs are in the appendix). The Moreau envelope eµf (x)
with parameter µ > 0 (Definition 1.22 in [19]) of an lsc, proper, and bounded from below function
f : Rp → R and the associated (possibly multivalued) proximal map Pµ

f : Rp →→ Rp are

eµf (x) = min
z∈Rp

1

2µ
||x− z||22 + f(z) and Pµ

f (x) = argminz∈Rp

1

2µ
||x− z||22 + f(z), (4)

respectively. In order to simplify the notation, in the following, we fix µ to 1 and suppress the
superscript. The Moreau envelope is a continuous approximation from below of f having the same
set of minimizers while the proximal map gives the (possibly non-unique) minimizing arguments
in (4). For (GKM), we define Φ : Rp → R as Φ(x) := φ(||x||2). Accordingly, for (RKM), we
define Fλ : Rp → R as Fλ(x) := fλ(||x||2). Thus, we obtain the following pairs:

efλ(x) := min
o∈R

1

2
(x− o)2 + fλ(o), Pfλ(x) := argmino∈Refλ(x), x ∈ R (5a)

eFλ(x) := min
o∈Rp

1

2
||x− o||22 + Fλ(o), PFλ(x) := argmino∈RpeFλ(x), x ∈ Rp. (5b)

Obviously, (RKM) is equivalent to (GKM) when Φ(x) = eFλ(x). Every map P : R→→ R throughout
the text is assumed to be i) odd, i.e., P(−x) = −P(x), ii) compact-valued, iii) non-decreasing, and
iv) have a closed graph. We know that for any such map there exists at least one function fλ such
that P = Pfλ (Proposition 3 in [26]).3 Finally, for our purposes (outlier detection), it is natural

2We call f proper if f(x) < ∞ for at least one x ∈ Rn, and f(x) > −∞ for all x ∈ Rn; in words, if the
domain of f is a nonempty set on which f is finite (see page 5 in [19]).

3 Accordingly, for a general function φ : R → [0,∞) to be a Moreau envelope, i.e., φ(·) = efλ(·) as
defined in (5a) for some function fλ, we require that φ(·)− 1

2 | · |
2 is a concave function (Proposition 1 in [26]).
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to require that v) P is a shrinkage rule, i.e., P(x) ≤ x, ∀x ≥ 0. The following corollary is quite
straightforward and useful in the sequel.
Corollary 1. Using the notation in definitions (5a) and (5b), we have

PFλ(x) =
x

||x||2
Pfλ(||x||2) and eFλ(x) = efλ(||x||2). (6)

Passing from a model of minimization in terms of a single problem, like (GKM), to a model in which
a problem is expressed in a particular parametric form, like (RKM) with the Moreau envelope, the
description of optimality conditions is opened to the incorporation of the multivalued map PFλ . The
next lemma describes the necessary conditions for a center cl to be (local) optimal for (RKM). Since
we deal with the general case, well known results, such as smoothness of the Moreau envelope or
convexity of its subgradients, can no longer be taken for granted.

Remark 1. Let Φ(·) = eFλ(·). The usual subgradient, denoted as ∂̂Φ(x), is not sufficient to
characterize the differentiability properties of R′

n in (RKM). Instead, we use the (generalized) subd-
ifferential ∂Φ(x) (Definition 8.3 in [19]). For all x, we have ∂̂Φ(x) ⊆ ∂Φ(x). Usually, the previous
two sets coincide at a point x. In this case, Φ is called regular at x. However, it is common in
practice that the sets ∂̂Φ(x) and ∂Φ(x) are different (for a detailed exposition on subgradients see
Chapter 8 in [19]; see also Example 1 in Appendix A.9).
Lemma 1. Let PFλ : Rp →→ Rp be a proximal map and set Φ(·) = eFλ(·). The necessary (general-
ized) first order conditions for the centers {c1, . . . , ck} ⊂ Rp to be optimal for (RKM) are

0 ∈ ∂
{∑

i∈Al

Φ(xi − cl)
}
⊆
∑

i∈Al

∂Φ(xi − cl) ⊆
∑

i∈Al

(cl − xi + PFλ(xi − cl)) , l ∈ {1, . . . , k}.

(7)

The interpretation of the set inclusion above is the following: for any center cl ∈ Rp, every subgra-
dient vector in ∂Φ(xi − cl) must be a vector associated with a vector in PFλ(xi − cl) (Theorem
10.13 in [19]). However, in general, the converse does not hold true. We note that when the proximal
map is single-valued and continuous, which happens for example not only when fλ is convex, but
also for many popular non-convex penalties, both set inclusions become equalities and the converse
holds, i.e., every vector in PFλ(xi − cl) is a vector associated with a subgradient in ∂Φ(xi − cl)
(Theorem 10.13 in [19] and Proposition 7 in [26]).

We close this section with some useful remarks on the properties of the Moreau envelope as a map
between two spaces of functions. There exist cases where two different functions, fλ ̸= f ′

λ, have
equal Moreau envelopes, efλ = ef ′

λ
(Proposition 1 in [26]), implying that two different forms

of (RKM) correspond to the same φ in (GKM). For example, the proximal hull of fλ, defined as
hµ
fλ
(x) := −eµ(−eµfλ

)(x), is a function different from fλ but has the same Moreau envelope as fλ

(see also Example 1.44 in [19], Proposition 2 and Example 3 in [26]). This is the main reason we
preferred the proximal map instead of the penalty function point of view for the analysis of (RKM).

3 On the breakdown properties of robust k-means

In this section, we study the finite sample breakdown point of (RKM) and, more specifically, its
universal breakdown point. Loosely speaking, the breakdown point measures the minimum fraction
of outliers that can cause excessive damage in the estimates of the centers. Here, it will become clear
how the interplay between the two forms, (GKM) and (RKM), helps the analysis. Given a dataset
Xn = {x1, . . . , xn} and a nonnegative integer m ≤ n, we say that Xn

m is an m-modification if it
arises from Xn after replacing m of its elements by arbitrary elements x′

i ∈ Rp [6]. Denote as r(λ)
the non-outlier samples, as counted after solving (RKM), for a dataset Xn and some λ ≥ 0, i.e., 4

r(λ) :=
∣∣∣{xi ∈ Xn : ||oi||2 = 0, i = 1, . . . , n}

∣∣∣. (8)

Then, the number of estimated outliers is q(λ) = n − r(λ). In order to simplify notation, we drop
the dependence of r and q on λ. With this notation, we proceed to the following definition.

4More than one λ can yield the same r, but this does not affect our analysis.
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Definition 1 (universal breakdown point for the centers [6]). Let n, r, k be such that n ≥ r ≥ k+1.
Given a dataset Xn

m in Rp, let {c1, . . . , ck} denote the (global) optimal set of centers for (RKM).
The universal breakdown value of (RKM) is

β(n, r, k) := min
Xn

min
1≤m≤n

{m
n

: sup
Xn

m

max
1≤l≤k

||cl||2 =∞
}
. (9)

Here, Xn = {x1, . . . , xn} ⊂ Rp while Xn
m ⊂ Rp runs over all m-modifications of Xn.

According to the concept of universal breakdown point, (RKM) breaks down at the first integer m
for which there exists a set Xn such that the estimates of the cluster centers become arbitrarily bad
for a suitable modification Xn

m. Our analysis is based on Pfλ and considers two cases: those of
biased and unbiased proximal maps. The former corresponds to the class of convex functions fλ,
while the latter corresponds to a class of non-convex fλ.

3.1 Biased proximal maps: the case of convex fλ

If fλ is convex, then Φ = eFλ is also convex while PFλ is continuous, single-valued, and satis-
fies [19]

||x− PFλ(x)||2 →∞ as ||x||2 →∞. (10)
Proximal maps with this property are called biased since, as the l2-norm of x increases, so does the
norm of the difference in (10). In this case, for each xi ∈ Al, from Lemma 1 and expression (10),
we have

||∇Φ(xi−cl)||2 = ||∇eFλ(xi−cl)||2 = ||cl−xi+PFλ(xi−cl)||2 →∞ as ||xi−cl||2 →∞. (11)

The supremum value of ||∇Φ(x− cl)||2 is closely related to the gross error sensitivity of an estima-
tor [9]. It is interpreted as the worst possible influence which a sample x can have on cl [7]. In view
of (11) and the definition of the clusters in (1), (RKM) is extremely sensitive. Although it can detect
an outlier, i.e., a sample xi with a nonzero estimate for ||oi||2, it does not reject it since the influence
of xi on its closest center never vanishes.5 The l1-norm, fλ(x) = λ|x|, which has Moreau envelope
equal to the Huber loss-function [24], is the limiting case for the class of convex penalty functions
that, although it keeps the difference ||x − PFλ(x)||2 in (10) constant and equal to λ, introduces a
bias term proportional to λ in the estimate cl. The following proposition shows that (RKM) with a
biased PFλ has breakdown point equal to 1

n , i.e., one outlier suffices to breakdown a center.
Proposition 1. Assume k ≥ 2, k + 1 < r ≤ n. Given a biased proximal map, there exist a dataset
Xn and a modification Xn

1 such that (RKM) breaks down.

3.2 Unbiased proximal maps: the case of non-convex fλ

Consider now the l0-(pseudo)norm on R, fλ(z) := λ|z|0 = λ2

2 {z ̸=0}, and the associated hard-
thresholding proximal operator Pλ|·|0 : R→→ R,

Pλ|·|0(x) = argminz∈R
1
2 (x− z)2 + fλ(z) =

⎧
⎨

⎩

0, |x| < λ,
{0, x}, |x| = λ,
x, |x| > λ.

(12)

According to Lemma 1, for p = 1 (scalar case), we have

∂Φ(xi − cl) ⊆ cl − xi + Pλ|·|0(xi − cl)
(12)
= {0} for |xi − cl| > λ, xi ∈ Al, (13)

implying that Φ(xi − cl), as a function of cl, remains constant for |xi − cl| > λ. As a consequence
of (13), if cl is local optimal, then 0 ∈ ∂{

∑
i∈Al

Φ(xi − cl)} and

0 ∈
∑

i∈Al,
|xi−cl|<λ

(cl − xi) +
∑

i∈Al,
|xi−cl|=λ

(
cl − xi + Pλ|·|(xi − cl)

)
.

(14)

Depending on the value of λ, (RKM) with the l0-norm is able to ignore samples with distance from
their closest center larger than λ. This is done since Pλ|·|0(xi−cl) = xi−cl whenever |xi−cl| > λ

5See the analysis in [7] about the influence function of (GKM) when φ is convex.
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and the influence of xi vanishes. In fact, there is a whole family of non-convex fλ’s whose proximal
map Pfλ satisfies

Pfλ(x) = x, for all |x| > τ, (15)

for some τ > 0. These are called unbiased proximal maps [13, 20] and have the useful property
that, as one observation is arbitrarily modified, all estimated cluster centers remain bounded by a
constant that depends only on the remaining unmodified samples. Under certain circumstances, the
proof of the following proposition reveals that, if there exists one outlier in the dataset, then robust
k-means will reject it.

Proposition 2. Assume k ≥ 2, k + 1 < r ≤ n, and consider the dataset Xn = {x1, . . . , xn}
along with its modification by one replacement y, Xn

1 = {x1, . . . , xn−1, y}. If we solve (RKM) with
Xn

1 and an unbiased proximal map satisfying (15), then all estimates for the cluster centers remain
bounded by a constant that depends only on the unmodified samples of Xn.

Next, we show that, even for this class of maps, there always exists a dataset that causes one of the
estimated centers to breakdown as two particular observations are suitably replaced.

Theorem 1 (Universal breakdown point for (RKM)). Assume k ≥ 2 and n ≥ r ≥ k + 2. Given an
unbiased proximal map satisfying (15), there exist a dataset Xn and a modification Xn

2 , such that
(RKM) breaks down.

Figure 1: The top subfigure is the unmodified
dataset X 9. Theorem 1 states that every subset of
the modification X 9

2 (bottom subfigure) with size
8 contains an outlier.

Hence, the universal breakdown point of
(RKM) with an unbiased proximal map is 2

n . In
Figure 1, we give a visual interpretation of The-
orem 1. The top subfigure depicts the unmod-
ified initial dataset X 9 = {x1, . . . , x9} (black
circles) with a clear two-cluster structure; the
bottom subfigure shows the modification X 9

2
(dashed line arrows). Theorem 1 states that
(RKM) on X 9

2 fails to be robust since, every
subset of X 9

2 with r = 8 points has a cluster
containing an outlier.

3.3 Restricted robustness of robust k-means for well-clustered data

The result of Theorem 1 is disappointing but it is not (RKM) to be blamed for the poor perfor-
mance but the tight notion of the definition about the breakdown point [6, 7]; allowing any kind of
contamination in a dataset is a very general assumption.

In this section, we place two restrictions: i) we consider datasets where inlier samples can be covered
by unions of balls with centers that are “far apart” each other, and ii) we ask a question different
from the finite sample breakdown point. We want to exploit as much as possible the results of [2]
concerning a new quantitative measure of noise robustness which compares the output of (RKM) on
a contaminated dataset to its output on the uncontaminated version of the dataset. Our aim is to show
that (RKM), with a certain class of proximal maps and datasets that are well-structured ignores the
influence of outliers when grouping the inliers.

First, we introduce Corollary 2 which states the form that Pfλ should have in order the results
of [2] to apply to (RKM) and, second, we give details about the datasets which we consider as well-
structured. Using this corollary we are able to design proximal maps for which Theorems 3, 4, and
5 in [2] apply; otherwise, it is not clear how the analysis of [2] is valid for (RKM).

Let h : R→ R be a continuous function with the following properties:

1. h is odd and non-decreasing (h+(·) is used to denote its restriction on [0,∞));

2. h is a shrinkage rule: 0 ≤ h+(x) ≤ x, ∀x ∈ [0,∞);

3. the difference x− h+(x) is non-decreasing, i.e., for 0 ≤ x1 ≤ x2 we have x1 − h+(x1) ≤
x2 − h+(x2).
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Define the map

Pfλ(x) :=

⎧
⎨

⎩

h(x), |x| < λ,
{h(x), x}, |x| = λ,
x, |x| > λ.

(16)

Multivaluedness of Pfλ at |x| = λ signals that efλ is non-smooth at these points. An immediate
consequence for the Moreau envelope associated with the previous map is the following.
Corollary 2. Let the function g : [0,∞)→ [0,∞) be defined as

g(x) :=

∫ x

0
(u− h(u))du, x ∈ [0,∞). (17)

Then, the Moreau envelope associated with Pfλ in (16) is

efλ(x) = min{g(|x|), g(λ)} = g(min{|x|,λ}). (18)

Next, we define what it means for a dataset to be (ρ1, ρ2)-balanced; this is the class of datasets
which we consider to be well-structured.
Definition 2 ((ρ1, ρ2) balanced dataset [2]). Assume that a set Xn ⊂ Rp has a subset I (inliers),
with at least n

2 samples, and the following properties:

1. I =
⋃k

l=1 Bl, where Bl = B(bl, r) is a ball in Rp with bounded radius r and center bl;

2. ρ1|I| ≤ |Bl| ≤ ρ2|I| for every l, where |Bl| is the number of samples in Bl and ρ1,ρ2 > 0;

3. ||bl − bl′ ||2 > v for every l ̸= l′, i.e., the centers of the balls are at least v > 0 apart.

Then, Xn is a (ρ1, ρ2)-balanced dataset.

We now state the form that Theorem 3 in [2] takes for (RKM).
Theorem 2 (Restricted robustness of (RKM)). If i) efλ is as in Corollary 2, i.e., efλ(||x||2) =
g(min{||x||2,λ}), ii) Xn has a (ρ1, ρ2)-balanced subset of samples I with k balls, and
iii) the centers of the balls are at least v > 4r + 2g−1(ρ1+ρ2

ρ1
g(r)) apart, then for λ ∈[

v
2 , g

−1
(

|I|
|Xn\I| (ρ1g(

v
2 − 2r)− (ρ1 + ρ2)g(r))

))
the set of outliers Xn\I has no effect on the

grouping of inliers I. In other words, if {x, y} ∈ Bl and {c1, . . . , ck} are the optimal centers when
solving (RKM) for a λ as described before, then

l = argmin1≤j≤kefλ(||x− cj ||2) = argmin1≤j≤kefλ(||y − cj ||2).

For the sake of completeness, we give a proof of this theorem in the appendix. In a similar way, we
can recast the results of Theorems 4 and 5 in [2] to be valid for (RKM).

4 On the consistency of robust k-means

Let Xn be a set with n independent and identically distributed random samples xi from a fixed but
unknown probability distribution µ. Let Ĉ be the empirical optimal set of centers, i.e.,

Ĉ := argminc1...,ck∈RpR′
n(c1, . . . , ck). (19)

The population optimal set of centers is the set

C∗ := argminc1...,ck∈RpR′(c1, . . . , ck), (20)

where R′ is the population clustering risk, defined as

R′(c1, . . . , ck) :=

∫
min
1≤l≤k

{
min
o∈Rp

1

2
||x− cl − o||22 + fλ(||o||2)

︸ ︷︷ ︸
φ(||x−cl||2)=efλ (||x−cl||2)

}
µ(dx). (21)

Loss consistency and (simply) consistency for (RKM) require, respectively, that

R′
n(Ĉ)

n→∞−→ R′(C∗) and Ĉ n→∞−→ C∗. (22)
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In words, as the size n of the dataset Xn increases, the empirical clustering risk R′
n(Ĉ) converges

almost surely to the minimum population risk R′(C∗) and (for n large enough) Ĉ can effectively
replace the optimal set C∗ in quantizing the unknown probability measure µ.

For the case of convex fλ, non-asymptotic results describing the rate of convergence of R′
n to R

in (22) are already known ([11], Theorem 3). Noting that the Moreau envelope of a non-convex fλ
belongs to a class of functions with polynomial discrimination [16] (the shatter coefficient of this
class is bounded by a polynomial) we give a sketch proof of the following result.

Theorem 3 (Consistency of (RKM)). Let the samples xi ∈ Xn, i ∈ {1, . . . , n}, come from a fixed
but unknown probability measure µ. For any k ≥ 1 and any unbiased proximal map, we have

lim
n→∞

ER′(Ĉ)→ R′(C∗) and lim
n→∞

Ĉ → C∗ (convergence in probability). (23)

Theorem 3 reads like an asymptotic convergence result. However, its proof (given in the appendix)
uses combinatorial tools from Vapnik-Chervonenkis theory, revealing that the non-asymptotic rate
of convergence of ER′(Ĉ) to R′(C∗) is of order O(

√
log n/n) (see Corollary 12.1 in [4]).

5 Relating (RKM) to trimmed k-means

As the effectiveness of robust k-means on real world and synthetic data has already been evaluated [5,
24], the purpose of this section is to relate (RKM) to trimmed k-means (TKM) [7]. Trimmed k-
means is based on the methodology of “impartial trimming”, which is a combinatorial problem
fundamentally different from (RKM). Despite their differences, the experiments show that, both
(RKM) and (TKM) perform remarkably similar in practice. The solution of (TKM) (which is also
a set of k centers) is the solution of quadratic k-means on the subsample containing ⌈n(1 − α)⌉
points with the smallest mean deviation (0 < α < 1). The only common characteristic of (RKM)
and (TKM) is that they both have the same universal breakdown point, i.e., 2

n , for arbitrary datasets.

Trimmed k-means takes as input a dataset Xn, the number of clusters k, and a proportion of outliers
a ∈ (0, 1) to remove.6 A popular heuristic algorithm for (TKM) is the following. After the initial-
ization, each iteration of (TKM) consists of the following steps: i) the distance of each observation
from its closest center is computed, ii) the top ⌈an⌉ observations with larger distance from its clos-
est center are removed, iii) the remaining points are used to update the centers. The previous three
steps are repeated untill the centers converge.7 As for robust k-means, we solve the (RKM) problem
with a coordinate optimization procedure (see Appendix A.9 for details).

The synthetic data for the experiments come from a mixture of Gaussians with 10 components and
without any overlap between them.8 The number of inlier samples is 500 and each inlier xi ∈
[−1, 1]10 for i ∈ {1, . . . , 500}. On top of the inliers lie 150 outliers in R10 distributed uniformly
in general positions over the entire space. We consider two scenarios: in the first, the outliers lie
in [−3, 3]10 (call it mild-contamination), while, in the second, the outliers lie in [−6, 6]10 (call it
heavy-contamination). The parameter a in trimmed k-means (the percentage of outliers) is set to
a = 0.3, while the value of the parameter λ for which (RKM) yields 150 outliers is found through
a search over a grid on the set λ ∈ (0,λmax) (we set λmax as the maximum distance between two
points in a dataset). Both algorithms, as they are designed, require as input an initial set of k points;
these points form the initial set of centers. In all experiments, both (RKM) and (TKM) take the same
k vectors as initial centers, i.e., k points sampled randomly from the dataset.

The statistics we use for the comparison are: i) the rand-index for clustering accuracy [17] ii) the
cluster estimation error, i.e., the root mean square error between the estimated cluster centers and
the sample mean of each cluster, iii) the true positive outlier detection rate, and finally, iv) the false
positive outlier detection rate. In Figures 2-3, we plot the results for a proximal map Pf like the one
in (16) with h(x) = αx and α = 0.005; with this choice for h, we mimic the hard-thresholding
operator. The results for each scenario (accuracy, cluster estimation error, etc) are averages over 150
runs of the experiment. As seen, both algorithms share almost the same statistics in all cases.

6We use the implementation of trimmed k-means in the R package trimcluster [10].
7The previous three steps are performed also by another robust variant of k-means, the k-means− (see [3]).
8We use the R toolbox MixSim [14] that guarantees no overlap among the 10 mixtures.
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Figure 2: Performance of robust and trimmed k-means on a mixture of 10 Gaussians without overlap.
On top of the 500 samples from the mixture there are 150 outliers uniformly distributed in [−1, 1]10.
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Figure 3: The same setup as in Figure 2 except that the coordinates of each outlier lie in [−3, 3]10.
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Figure 4: Results on two spherical clusters with equal radius r, each one with 150 samples, and
centers are at least 4r apart. On top of the samples lie 150 outliers uniformly distributed in [−6, 6]10.

In Figure 4, we plot the results for the case of two spherical clusters in R10 with equal radius r, each
one with 150 samples, and centers that are at least 4r apart from each other. The inlier samples are
in [−3, 3]10. The outliers are 150 (half of the dataset is contaminated) and are uniformly distributed
in [−6, 6]10. The results (accuracy, cluster estimation error, etc) are averages over 150 runs of the
experiment. This configuration is a heavy contamination scenario but, due to the structure of the
dataset, as expected from Theorem 2, (RKM) performs remarkably well; the same holds for (TKM).

6 Conclusions

We provided a theoretical analysis for the robustness and consistency properties of a variation of
the classical quadratic k-means called robust k-means (RKM). As a by-product of the analysis, we
derived a detailed description of the optimality conditions for the associated minimization problem.
In most cases, (RKM) shares the computational simplicity of quadratic k-means, making it a “com-
putationally cheap” candidate for robust nearest neighbor clustering. We show that (RKM) cannot
be robust against any type of contamination and any type of datasets, no matter the form of the
proximal map we use. If we restrict our attention to “well-structured” datasets, then the algorithm
exhibits some desirable noise robustness. As for the consistency properties, we showed that most
general results for consistency of quadratic k-means still remain valid for this robust variant.
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