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Abstract

In recent years, structured matrix recovery problems have gained considerable
attention for its real world applications, such as recommender systems and computer
vision. Much of the existing work has focused on matrices with low-rank structure,
and limited progress has been made on matrices with other types of structure. In
this paper we present non-asymptotic analysis for estimation of generally structured
matrices via the generalized Dantzig selector based on sub-Gaussian measurements.
We show that the estimation error can always be succinctly expressed in terms of a
few geometric measures such as Gaussian widths of suitable sets associated with
the structure of the underlying true matrix. Further, we derive general bounds on
these geometric measures for structures characterized by unitarily invariant norms,
a large family covering most matrix norms of practical interest. Examples are
provided to illustrate the utility of our theoretical development.

1 Introduction

Structured matrix recovery has found a wide spectrum of applications in real world, e.g., recommender
systems [22], face recognition [9], etc. The recovery of an unknown structured matrix Θ∗ ∈ Rd×p
essentially needs to consider two aspects: the measurement model, i.e., what kind of information
about the unknown matrix is revealed from each measurement, and the structure of the underlying
matrix, e.g., sparse, low-rank, etc. In the context of structured matrix estimation and recovery, a
widely used measurement model is the linear measurement, i.e., one has access to n observations
of the form yi = 〈〈Θ∗, Xi〉〉 + ωi for Θ∗, where 〈〈·, ·〉〉 denotes the matrix inner product, i.e.,
〈〈A,B〉〉 = Tr(ATB) for any A,B ∈ Rd×p, and ωi’s are additive noise. In the literature, various
types of measurement matrices Xi has been investigated, for example, Gaussian ensemble where Xi

consists of i.i.d. standard Gaussian entries [11], rank-one projection model where Xi is randomly
generated with constraint rank(Xi) = 1 [7]. A special case of rank-one projection is the matrix
completion model [8], in which Xi has a single entry equal to 1 with all the rest set to 0, i.e., yi
takes the value of one entry from Θ∗ at each measurement. Other measurement models include
row-and-column affine measurement [34], exponential family matrix completion [21, 20], etc.

Previous work has shown that low-complexity structure of Θ∗, often captured by a small value of
some norm R(·), can significantly benefit its recovery [11, 26]. For instance, one of the popular
structures of Θ∗ is low-rank, which can be approximated by a small value of trace norm (i.e., nuclear
norm) ‖ · ‖tr. Under the low-rank assumption of Θ∗, recovery guarantees have been established for
different measurement matrices using convex programs, e.g., trace-norm regularized least-square
estimator [10, 27, 26, 21],

min
Θ∈Rd×p

1

2

n∑
i=1

(yi − 〈〈Xi,Θ〉〉)2
+ βn‖Θ∗‖tr , (1)
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and constrained trace-norm minimization estimators [10, 27, 11, 7, 20], such as

min
Θ∈Rd×p

‖Θ‖tr s.t.

∥∥∥∥∥
n∑
i=1

(〈〈Xi,Θ〉〉 − yi)Xi

∥∥∥∥∥
op

≤ λn , (2)

where βn, λn are tuning parameters, and ‖ · ‖op denotes the operator (spectral) norm. Among the
convex approaches, the exact recovery guarantee of a matrix-form basis-pursuit [14] estimator was
analyzed for the noiseless setting in [27], under certain matrix-form restricted isometry property
(RIP). In the presence of noise, [10] also used matrix RIP to establish the recovery error bound for
both regularized and constraint estimators, i.e., (1) and (2). In [7], a variant of estimator (2) was
proposed and its recovery guarantee was built on a so-called restricted uniform boundedness (RUB)
condition, which is more suitable for the rank-one projection based measurement model. Despite
the fact that the low-rank structure has been well studied, only a few works extend to more general
structures. In [26], the regularized estimator (1) was generalized by replacing the trace norm with a
decomposable norm R(·) for other structures. [11] extended the estimator in [27] with ‖ · ‖tr replaced
by a norm from a broader class called atomic norm, but the consistency of the estimator is only
available when the noise vector is bounded.

In this work, we make two key contributions. First, we present a general framework for estimation of
structured matrices via the generalized Dantzig sector (GDS) [12, 6] as follows

Θ̂ = argmin
Θ∈Rd×p

R(Θ) s.t. R∗

(
n∑
i=1

(〈〈Xi,Θ〉〉 − yi)Xi

)
≤ λn , (3)

in which R(·) can be any norm and its dual norm is R∗(·). GDS has been studied in the context of
structured vectors [12], so (3) can be viewed as a natural generalization to matrices. Note that the
estimator (2) is a special case of the formulation above, as operator norm is dual to trace norm. Our
deterministic analysis of the estimation error ‖Θ̂−Θ∗‖F relies on a condition based on a suitable
choice of λn and the restricted strong convexity (RSC) condition [26, 3]. By assuming sub-Gaussian
Xi and ωi, we show that these conditions are satisfied with high probability, and the recovery error
can be expressed in terms of certain geometric measures of sets associated with Θ∗. Such a geometric
characterization is inspired by related advances in recent years [26, 11, 3]. One key ingredient in
such characterization is the Gaussian width [18], which measures the size of sets in Rd×p. Related
advances can be found in [11, 12, 6], but they all rely on the Gaussian measurements, to which
classical concentration results [18] are directly applicable. In contrast, our work allows general
sub-Gaussian measurement matrices and noise, by suitably using ideas from generic chaining [30], a
powerful geometric approach to bounding stochastic processes. Our results can also be extended to
heavy tailed measurement and noise, following recent advances [28]. Recovery guarantees of the
GDS were analyzed for general norms in matrix completion setting [20], but it is different from our
work since its measurement model is not sub-Gaussian as we consider.

Our second contribution is motivated by the fact that though certain existing analyses end up with
the geometric measures such as Gaussian widths, limited attention has been paid in bounding these
measures in terms of more easily understandable quantities especially for matrix norms. Here our key
novel contribution is deriving general bounds for those geometric measures for the class of unitarily
invariant norms, which are invariant under any unitary transformation, i.e., for any matrix Θ ∈ Rd×p,
its norm value is equal to that of UΘV if both U ∈ Rd×d and V ∈ Rp×p are unitary matrices. The
widely-used trace norm, spectral norm and Frobenius norm all belong to this class. A well-known
result is that any unitarily invariant matrix norm is equivalent to some vector norm applied on the
set of singular values [23] (see Lemma 1 for details), and this equivalence allows us to build on the
techniques developed in [13] for vector norms to derive the bounds of the geometric measures for
unitarily invariant norms. Previously these general bounds were not available in the literature for the
matrix setting, and bounds were only in terms the geometric measures, which can be hard to interpret
or bound in terms of understandable quantities. We illustrate concrete versions of the general bounds
using the trace norm and the recently proposed spectral k-support norm [24].

The rest of the paper is organized as follows: we first provide the deterministic analysis in Section 2.
In Section 3, we introduce some probability tools, which are used in the later analysis. In Section 4,
we present the probabilistic analysis for sub-Gaussian measurement matrices and noise, along with
the general bounds of the geometric measures for unitarily invariant norms. Section 5 is dedicated to
the examples for the application of general bounds, and we conclude in Section 6.
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2 Deterministic Recovery Guarantees

To evaluate the performance of GDS (3), we focus on the Frobenius-norm error, i.e., ‖Θ̂ − Θ∗‖F .
Throughout the paper, w.l.o.g. we assume that d ≤ p. For convenience, we denote the collection of
Xi’s by X = {Xi}ni=1, and let ω = [ω1, ω2, . . . , ωn]T be the noise vector. In the following theorem,
we provide a deterministic bound for ‖Θ̂−Θ∗‖F under some standard assumptions on λn and X.

Theorem 1 Define the set ER(Θ∗) = cone{ ∆ ∈ Rd×p | R(∆ + Θ∗) ≤ R(Θ∗)} . Assume that

λn ≥ R∗
(

n∑
i=1

ωiXi

)
, and

n∑
i=1

〈〈Xi,∆〉〉2/ ‖∆‖2F ≥ α > 0, ∀ ∆ ∈ ER(Θ∗) . (4)

Then the estimation ‖Θ̂−Θ∗‖F error satisfies

‖Θ̂−Θ∗‖F ≤
2ΨR(Θ∗)λn

α
, (5)

where ΨR(·) is the restricted compatibility constant defined as ΨR(Θ∗) = sup∆∈ER(Θ∗)
R(∆)
‖∆‖F .

The proof is deferred to the supplement. The convex cone ER(Θ∗) plays a important role in character-
izing the error bound, and its geometry is determined by R(·) and Θ∗. The recovery bound assumes
no knowledge of the norm R(·) and true matrix Θ∗, thus allowing general structures. The second
condition in 4 is often referred to as restricted strong convexity [26]. In this work, we are particularly
interested in R(·) from the class of unitarily invariant matrix norm, which essentially satisfies the fol-
lowing property, R(Θ) = R(UΘV ) for any Θ ∈ Rd×p and unitary matrices U ∈ Rd×d, V ∈ Rp×p.
A useful result for such norms is given in Lemma 1 (see [23, 4] for details).

Lemma 1 Suppose that the singular values of a matrix Θ ∈ Rd×p are given by σ =
[σ1, σ2, . . . , σd]

T . A unitarily invariant norm R : Rd×p 7→ R can be characterized by some symmet-
ric gauge function1 f : Rd 7→ R as R(Θ) = f(σ), and its dual norm is given by R∗(Θ) = f∗(σ).

As the sparsity of σ equals the rank of Θ, the class of unitarily invariant matrix norms is useful in
structured low-rank matrix recovery and includes many widely used norms, e.g., trace norm with
f(·) = ‖ · ‖1, Frobenius norm with f(·) = ‖ · ‖2, Schatten p-norm with f(·) = ‖ · ‖p, Ky Fan k-norm
when f(·) is the `1 norm of the largest k elements in magnitude, etc.

Before proceeding with the analysis, we introduce some notations. For the rest of paper, we denote
by σ(Θ) ∈ Rd the vector of singular values (sorted in descending order) of matrix Θ ∈ Rd×p,
and may use the shorthand σ∗ for σ(Θ∗). For any θ ∈ Rd, we define the corresponding |θ|↓ by
arranging the absolute values of elements of θ in descending order. Given any matrix Θ ∈ Rd×p
and subspaceM⊆ Rd×p, we denote by ΘM the orthogonal projection of Θ ontoM. Besides we
let colsp(Θ) (rowsp(Θ)) be the subspace spanned by columns (rows) of Θ. The notation Sdp−1

represents the unit sphere of Rd×p, i.e., the set {Θ|‖Θ‖F = 1}. The unit ball of norm R(·) is denoted
by ΩR = {Θ | R(Θ) ≤ 1}. Throughout the paper, the symbols c, C, c0, C0, etc., are reserved for
universal constants, which may be different at each occurrence.

In the rest of our analysis, we will frequently use the so-called ordered weighted `1 (OWL) norm
for Rd [17], which is defined as ‖θ‖w , 〈|θ|↓, |w|↓〉, where w ∈ Rd is a predefined weight vector.
Noting that the OWL norm is a symmetric gauge, we define the spectral OWL norm for Θ as:
‖Θ‖w , ‖σ(Θ)‖w, i.e., applying the OWL norm on σ(Θ).

3 Background and Preliminaries

The tools for our probabilistic analysis include the notion of Gaussian width [18], sub-Gaussian
random matrices, and generic chaining [30]. Here we briefly introduce the basic ideas and results for
each of them as needed for our analysis.

1Symmetric gauge function is a norm that is invariant under sign-changes and permutations of the elements.
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3.1 Gaussian width and sub-Gaussian random matrices

The Gaussian width can be defined for any subset A ⊆ Rd×p as follows [18, 19],

w(A) , EG
[

sup
Z∈A

〈〈G,Z〉〉
]
, (6)

where G is a random matrix with i.i.d. standard Gaussian entries, i.e., Gij ∼ N(0, 1). The Gaussian
width essentially measures the size of the set A, and some of its properties can be found in [11, 1].

A random matrix X is sub-Gaussian with |||X|||ψ2
≤ κ if |||〈〈X,Z〉〉|||ψ2

≤ κ for any Z ∈ Sdp−1,

where the ψ2 norm for sub-Gaussian random variable x is defined as |||x|||ψ2
= supq≥1 q

− 1
2 (E|x|q)

1
q

(see [31] for more details of ψ2 norm). One nice property of sub-Gaussian random variable is the
thin tail, i.e., P(|x| > ε) ≤ e · exp(−cε2/‖x‖2ψ2

), in which c is a constant.

3.2 Generic chaining

Generic chaining is a powerful tool for bounding the supreme of stochastic processes [30]. Suppose
{Zt}t∈T is a centered stochastic process, where each Zt is a centered random variable. We assume
the index set T is endowed with some metric s(·, ·). In order to use generic chaining bound,
the critical condition for {Zt}t∈T to satisfy is that, for any u, v ∈ T , P (|Zu − Zv| ≥ ε) ≤ c1 ·
exp

(
−c2ε2/s2(u, v)

)
, where c1 and c2 are constants. Under this condition, we have

E[sup
t∈T

Zt] ≤ c0γ2 (T , s) , (7)

P
(

sup
u,v∈T

|Zu − Zv| ≥ C1 (γ2(T , s) + ε · diam (T , s))
)
≤ C2 exp

(
−ε2

)
, (8)

where diam (T , s) is the diameter of set T w.r.t. the metric s(·, ·). (7) is often referred to as generic
chaining bound (see Theorem 2.2.18 and 2.2.19 in [30]), and (8) is the Theorem 2.2.27 in [30]. The
functional γ2(T , s) essentially measures the geometric size of the set T under the metric s(·, ·). To
avoid unnecessary complications, we omit the definition of γ2(T , s) here (see Chapter 2 of [30] for
an introduction if one is interested), but provide two of its properties below,

γ2(T , s1) ≤ γ2(T , s2) if s1(u, v) ≤ s2(u, v) ∀ u, v ∈ T , (9)
γ2(T , ηs) = η · γ2(T , s) for any η > 0 . (10)

The important aspect of γ2-functional is the following majorizing measure theorem [29, 30].

Theorem 2 Given any Gaussian process {Yt}t∈T , define s(u, v) =
√

E|Yu − Yv|2 for u, v ∈ T .
Then γ2(T , s) can be upper bounded by γ2(T , s) ≤ C0E [supt∈T Yt].

This theorem is essentially Theorem 2.4.1 in [30]. For our purpose, we simply focus on the Gaussian
process {Y∆ = 〈〈G,∆〉〉}∆∈A, in which A ⊆ Rd×p and G is a standard Gaussian random matrix.
Given Theorem 2, the metric s(U, V ) =

√
E|〈〈G,U − V 〉〉|2 = ‖U − V ‖F . Therefore we have

γ2 (A, ‖ · ‖F ) ≤ C0E[ sup
∆∈A
〈〈G,∆〉〉] = C0w(A) , (11)

4 Error Bounds with Sub-Gaussian Measurement and Noise

Though the deterministic recovery bound (5) in Section 2 applies to any measurement X and noise
ω as long as the assumptions in (4) are satisfied, it is of practical interest to express the bound in
terms of the problem parameters, e.g., d, p and n, for random X and ω sampled from some general
and widely used family of distributions. For this work, we assume that Xi’s in X are i.i.d. copies of
a zero-mean random vector X , which is sub-Gaussian with |||X|||ψ2

≤ κ for a constant κ, and the
noise ω contains i.i.d. centered random variables with ‖ωi‖ψ2 ≤ τ for a constant τ . In this section,
we show that each quantity in (5) can be bounded using certain geometric measures associated with
the true matrix Θ∗. Further, we show that for unitarily invariant norms, the geometric measures can
themselves be bounded in terms of d, p, n, and structures associated with Θ∗.
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4.1 Bounding restricted compatibility constant

Given the definition of restricted compatibility constant in Theorem 1, it involves no randomness and
purely depends on R(·) and the geometry of ER(Θ∗). Hence we directly work on its upper bound for
unitarily invariant norms. In general, characterizing the error cone ER(Θ∗) is difficult, especially for
non-decomposable R(·). To address the issue, we first define the seminorm below.

Definition 1 Given two orthogonal subspacesM1,M2 ⊆ Rd×p and two vectors w, z ∈ Rd, the
subspace spectral OWL seminorm for Rd×p is defined as ‖Θ‖w,z , ‖ΘM1

‖w + ‖ΘM2
‖z , where

ΘM1
and ΘM2

are the orthogonal projections of Θ ontoM1 andM2, respectively.

Next we will construct such a seminorm based on a subgradient θ∗ of the symmetric gauge f
associated with R(·) at σ∗, which can be obtained by solving the so-called polar operator [32]

θ∗ ∈ argmax
x:f∗(x)≤1

〈x, σ∗〉 . (12)

Given that σ∗ is sorted, w.l.o.g. we may assume that θ∗ is nonnegative and sorted because 〈σ∗, θ∗〉 ≤
〈σ∗, |θ∗|↓〉 and f∗(θ∗) = f∗(|θ∗|↓). Also, we denote by θ∗max (θ∗min) the largest (smallest) element
of the θ∗, and define ρ = θ∗max/θ

∗
min (if θ∗min = 0, we define ρ = +∞). Throughout the paper, we

will frequently use these notations. As shown in the lemma below, a constructed seminorm based on
θ∗ will induce a set E ′ that contains ER(Θ∗) and is considerably easier to work with.

Lemma 2 Assume that rank(Θ∗) = r and its compact SVD is given by Θ∗ = UΣV T , where
U ∈ Rd×r, Σ ∈ Rr×r and V ∈ Rp×r. Let θ∗ be any subgradient of f(σ∗), w =
[θ∗1 , θ

∗
2 , . . . , θ

∗
r , 0, . . . , 0]T ∈ Rd, z = [θ∗r+1, θ

∗
r+2, . . . , θ

∗
d, 0, . . . , 0]T ∈ Rd, U = colsp(U)

and V = rowsp(V T ), and define M1, M2 as M1 = {Θ | colsp(Θ) ⊆ U , rowsp(Θ) ⊆
V}, M2 = {Θ | colsp(Θ) ⊆ U⊥, rowsp(Θ) ⊆ V⊥}, where U⊥, V⊥ are orthogonal comple-
ments of U and V respectively. Then the specified subspace spectral OWL seminorm ‖ · ‖w,z satisfies
ER(Θ∗) ⊆ E ′ , cone{∆ | ‖∆ + Θ∗‖w,z ≤ ‖Θ∗‖w,z}

The proof is given in the supplementary. Base on the superset E ′, we are able to bound the restricted
compatibility constant for unitarily invariant norms by the following theorem.

Theorem 3 Assume there exist η1 and η2 such that the symmetric gauge f for R(·) satisfies f(δ) ≤
max {η1‖δ‖1, η2‖δ‖2} for any δ ∈ Rd. Then given a rank-rΘ∗, the restricted compatibility constant
ΨR(Θ∗) is upper bounded by

ΨR(Θ∗) ≤ 2Φf (r) + max
{
η2, η1(1 + ρ)

√
r
}
, (13)

where ρ = θ∗max/θ
∗
min, and Φf (r) = sup‖δ‖0≤r f(δ)/‖δ‖2 is called sparse compatibility constant.

Remark: The assumption for Theorem 3 might seem cumbersome at the first glance, but the different
combinations of η1 and η2 give us more flexibility. In fact, it trivially covers two cases, η2 = 0 along
with f(δ) ≤ η1‖δ‖1 for any δ, and the other way around, η1 = 0 along with f(δ) ≤ η2‖δ‖2.

4.2 Bounding restricted convexity α

The second condition in (4) is equivalent to
∑n
i=1〈〈Xi,∆〉〉2 ≥ α > 0, ∀∆ ∈ ER(Θ∗) ∩ Sdp−1. In

the following theorem, we express the restricted convexity α in terms of Gaussian width.

Theorem 4 Assume that Xi’s are i.i.d. copies of a centered isotropic sub-Gaussian random
matrix X with |||X|||ψ2

≤ κ, and let AR(Θ∗) = ER(Θ∗) ∩ Sdp−1. With probability at least
1− exp(−ζw2(AR(Θ∗))), the following inequality holds with absolute constant ζ and ξ,

inf
∆∈A

1

n

n∑
i=1

〈〈Xi,∆〉〉2 ≥ 1− ξκ2 · w(AR(Θ∗))√
n

. (14)
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The proof is essentially an application of generic chaining [30] and the following theorem from [25].
Related line of works can be found in [15, 16, 5].

Theorem 5 (Theorem D in [25]) There exist absolute constants c1, c2, c3 for which the following
holds. Let (Ω, µ) be a probability space,H be a subset of the unit sphere of L2(µ), i.e.,H ⊆ SL2

=
{h : |||h|||L2

= 1}, and assume suph∈H |||h|||ψ2
≤ κ. Then, for any β > 0 and n ≥ 1 satisfying

c1κγ2(H, |||·|||ψ2
) ≤ β

√
n, with probability at least 1− exp(−c2β2n/κ4), we have

sup
h∈H

∣∣∣∣∣ 1n
n∑
i=1

h2(Xi)− E
[
h2
]∣∣∣∣∣ ≤ β . (15)

Proof of Theorem 4: For simplicity, we use A as shorthand for AR(Θ∗). Let (Ω, µ) be the
probability space that X is defined on, and construct

H = {h(·) = 〈〈·,∆〉〉 |∆ ∈ A} .

|||X|||ψ2
≤ κ immediately implies that suph∈H |||h|||ψ2

≤ κ. AsX is isotropic, i.e., E[〈〈X,∆〉〉2] = 1

for any ∆ ∈ A ⊆ Sdp−1, thusH ⊆ SL2
and E[h2] = 1 for any h ∈ H. Given h1 = 〈〈·,∆1〉〉, h2 =

〈〈·,∆2〉〉 ∈ H, where ∆1,∆2 ∈ A, the metric induced by ψ2 norm satisfies |||h1 − h2|||ψ2
=

|||〈〈X,∆1 −∆2〉〉|||ψ2
≤ κ‖∆1 −∆2‖F . Using the properties of γ2-functional and the majorizing

measure theorem in Section 3, we have

γ2(H, |||·|||ψ2
) ≤ κγ2(A, ‖ · ‖F ) ≤ κc4w(A) ,

where c4 is an absolute constant. Hence, by choosing β = c1c4κ
2w(A)/

√
n, we can guarantee that

condition c1κγ2(H, |||·|||ψ2
) ≤ β

√
n holds forH. Applying Theorem 5 to thisH, with probability at

least 1− exp(−c2c21c24w2(A)), we have suph∈H
∣∣ 1
n

∑n
i=1 h

2(Xi)− 1
∣∣ ≤ β, which implies

inf
∆∈A

1

n

n∑
i=1

〈〈Xi,∆〉〉2 ≥ 1− β .

Letting ζ = c2c
2
1c

2
4, ξ = c1c4, we complete the proof.

The bound (14) involves the Gaussian width of set AR(Θ∗), i.e., the error cone intersecting with unit
sphere. For unitarily invariant R, the theorem below provides a general way to bound w(AR(Θ∗)).

Theorem 6 Under the setting of Lemma 2, let ρ = θ∗max/θ
∗
min and rank(Θ∗) = r. The Gaussian

width w(AR(Θ∗)) satisfies

w(AR(Θ∗)) ≤ min
{√

dp,
√

(2ρ2 + 1) (d+ p− r) r
}
. (16)

The proof of Theorem 6 is included in the supplementary material, which relies on a few specific
properties of Gaussian random matrix [1, 11].

4.3 Bounding regularization parameter λn

In view of Theorem 1, we should choose the λn large enough to satisfy the condition in (4). Hence
we an upper bound for random quantity R∗ (

∑n
i=1 ωiXi), which holds with high probability.

Theorem 7 Assume that X = {Xi}ni=1 are i.i.d. copies of a centered isotropic sub-Gaussian
random matrix X with |||X|||ψ2

≤ κ, and the noise ω consists of i.i.d. centered entries with
|||ωi|||ψ2

≤ τ . Let ΩR be the unit ball of R(·) and η = sup∆∈ΩR
‖∆‖F . With probability at least

1− exp(−c1n)− c2 exp
(
−w2(ΩR)/c23η

2
)
, the following inequality holds

R∗

(
n∑
i=1

ωiXi

)
≤ c0κτ ·

√
nw(ΩR) . (17)
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Proof: For each entry in ω, we have
√
E[ω2

i ] ≤
√

2|||ωi|||ψ2
=
√

2τ , and
∣∣∣∣∣∣ω2

i − E[ω2
i ]
∣∣∣∣∣∣
ψ1
≤

2
∣∣∣∣∣∣ω2

i

∣∣∣∣∣∣
ψ1
≤ 4|||ωi|||2ψ2

≤ 4τ2, where we use the definition of ψ2 norm and its relation to ψ1 norm
[31]. By Bernstein’s inequality, we get

P(‖ω‖22 − 2τ2 ≥ ε) ≤ P
(
‖ω‖22 − E[‖ω‖22] ≥ ε

)
≤ exp

(
−c1 min

(
ε2/16τ4n, ε/4τ2

))
.

Taking ε = 4τ2n, we have P
(
‖ω‖2 ≥ τ

√
6n
)
≤ exp (−c1n). Denote Yu =

∑n
i=1 uiXi for u ∈ Rn.

For any u ∈ Sn−1, we get |||Yu|||ψ2
≤ cκ due to

|||〈〈Yu,∆〉〉|||ψ2
=

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

ui〈〈Xi,∆〉〉

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
ψ2

≤ c

√√√√ n∑
i=1

u2
i |||〈〈Xi,∆〉〉|||2ψ2

≤ cκ for any ∆ ∈ Sdp−1.

For the rest of the proof, we may drop the subscript of Yu for convenience. We construct the stochastic
process {Z∆ = 〈〈Y,∆〉〉}∆∈ΩR

, and note that any ZU and ZV from this process satisfy

P (|ZU − ZV | ≥ ε) = P (|〈〈Y, U − V 〉〉| ≥ ε) ≤ e · exp
(
−Cε2/κ2‖U − V ‖2F

)
,

for some universal constant C due to the sub-Gaussianity of Y . As ΩR is symmetric, it follows that

sup
U,V ∈ΩR

|ZU − ZV | = 2 sup
∆∈ΩR

Z∆ , sup
U,V ∈ΩR

‖U − V ‖F = 2 sup
∆∈ΩR

‖∆‖F = 2η .

Let s(·, ·) be the metric induced by norm κ‖ · ‖F and T = ΩR. Using deviation bound (8), we have

P
(

2 sup
∆∈ΩR

Z∆ ≥ c4κ (γ2(ΩR, ‖ · ‖F ) + ε · 2η)

)
≤ c2 exp

(
−ε2

)
,

where c2 and c4 are absolute constant. By (11), there exist constants c3 and c5 such that

P (2R∗(Y ) ≥ c5κ (w(ΩR) + ε)) = P
(

2 sup
∆∈ΩR

Z∆ ≥ c5κ (w(ΩR) + ε)

)
≤ c2 exp

(
−ε2/c23η2

)
.

Letting ε = w(ΩR), we have P (R∗(Yu) ≥ c5κw(ΩR)) ≤ c2 exp
(
− (w(ΩR)/c3η)

2
)

for any u ∈
Sn−1. Combining this with the bound for ‖ω‖2 and letting c0 =

√
6c5, by union bound, we have

P

(
R∗

(
n∑
i=1

ωiXi

)
≥ c0κτ

√
nw(ΩR)

)
≤ P

(
R∗ (Yω)

‖ω‖2
≥ c5κw(ΩR)

)
+ P

(
‖ω‖2 ≥ τ

√
6n
)

≤ sup
u∈Sn−1

P (R∗ (Yu) ≥ c5κw(ΩR)) + P
(
‖ω‖2 ≥ τ

√
6n
)
≤ c2 exp

(
−w2(ΩR)/c23η

2
)

+ exp (−c1n) ,

which completes the proof.

The theorem above shows that the lower bound of λn depends on the Gaussian width of the unit ball
of R(·). Next we give its general bound for the unitarily invariant matrix norm.

Theorem 8 Suppose that the symmetric gauge f associated with R(·) satisfies f(·) ≥ ν‖ · ‖1. Then
the Gaussian width w(ΩR) is upper bounded by

w(ΩR) ≤
√
d+
√
p

ν
. (18)

5 Examples

Combining results in Section 4, we have that if the number of measurements n > O(w2(AR(Θ∗))),
then the recovery error, with high probability, satisfies ‖Θ̂−Θ∗‖F ≤ O (ΨR(Θ∗)w(ΩR)/

√
n). Here

we give two examples based on the trace norm [10] and the recently proposed spectral k-support
norm [24] to illustrate how to bound the geometric measures and obtain the error bound.
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5.1 Trace norm

Trace norm has been widely used in low-rank matrix recovery. The trace norm of Θ∗ is basically
the `1 norm of σ∗, i.e., f = ‖ · ‖1. Now we turn to the three geometric measures. Assuming that
rank(Θ∗) = r � d, one subgradient of ‖σ∗‖1 is θ∗ = [1, 1, . . . , 1]T .

Restricted compatibility constant Ψtr(Θ
∗): It is obvious that assumption in Theorem 3 will hold

for f by choosing η1 = 1 and η2 = 0, and we have ρ = 1. The sparse compatibility constant Φ`1(r)
is
√
r because ‖δ‖1 ≤

√
r‖δ‖2 for any r-sparse δ. Using Theorem 3, we have Ψtr(Θ

∗) ≤ 4
√
r.

Gaussian width w(Atr(Θ
∗)): As ρ = 1, Theorem 6 implies that w(Atr(Θ

∗)) ≤
√

3r(d+ p− r).

Gaussian width w(Ωtr): Using Theorem 8 with ν = 1, it is easy to see that w(Ωtr) ≤
√
d+
√
p.

Putting all the results together, we have ‖Θ̂ − Θ∗‖F ≤ O(
√
rd/n +

√
rp/n) holds with high

probability when n > O(r(d+ p− r)), which matches the bound in [8].

5.2 Spectral k-support norm

The k-support norm proposed in [2] is defined as

‖θ‖spk , inf
{∑

i

‖ui‖2
∣∣∣ ‖ui‖0 ≤ k, ∑

i

ui = θ
}
, (19)

and its dual norm is simply given by ‖θ‖sp∗k = ‖|θ|↓1:k‖2. It is shown that k-support norm has similar
behavior as elastic-net regularizer [33]. Spectral k-support norm (denoted by ‖ · ‖sk) of Θ∗ is defined
by applying the k-support norm on σ∗, i.e., f = ‖ · ‖spk , which has demonstrated better performance
than trace norm in matrix completion task [24]. For simplicity, We assume that rank(Θ∗) = r = k

and ‖σ∗‖2 = 1. One subgradient of ‖σ∗‖spk can be θ∗ = [σ∗1 , σ
∗
2 , . . . , σ

∗
r , σ
∗
r , . . . , σ

∗
r ]
T .

Restricted compatibility constant Ψsk(Θ∗): The following relation has been shown for k-support
norm in [2],

max{‖ · ‖2, ‖ · ‖1/
√
k} ≤ ‖ · ‖spk ≤

√
2 max{‖ · ‖2, ‖ · ‖1/

√
k} . (20)

Hence the assumption in Theorem 3 will hold for η1 =
√

2
k and η2 =

√
2, and we have ρ = σ∗1/σ

∗
r .

The sparse compatibility constant Φspk (r) = Φspk (k) = 1 because ‖δ‖spk = ‖δ‖2 for any k-sparse δ.
Using Theorem 3, we have Ψsk(Θ∗) ≤ 2

√
2 +
√

2 (1 + σ∗1/σ
∗
r ) =

√
2 (3 + σ∗1/σ

∗
r ).

Gaussian width w(Ask(Θ∗)): Theorem 6 implies w(Ask(Θ∗)) ≤
√
r(d+ p− r) [2σ∗21 /σ∗2r + 1].

Gaussian width w(Ωsk): The relation above for k-support norm shown in [2] also implies that
ν = 1/

√
k = 1/

√
r. By Theorem 8, we get w(Ωsk) ≤

√
r(
√
d+
√
p).

Given the upper bounds for geometric measures, with high probability, we have ‖Θ̂ − Θ∗‖F ≤
O(
√
rd/n+

√
rp/n) when n > O(r(d+ p− r)). The spectral k-support norm was first introduced

in [24], in which no statistical results are provided. Although [20] investigated the statistical aspects
of spectral k-support norm in matrix completion setting, the analysis was quite different from our
setting. Hence this error bound is new in the literature.

6 Conclusions

In this work, we present the recovery analysis for matrices with general structures, under the setting
of sub-Gaussian measurement and noise. Base on generic chaining and Gaussian width, the recovery
guarantees can be succinctly summarized in terms of some geometric measures. For the class
of unitarily invariant norms, we also provide novel general bounds of these measures, which can
significantly facilitate the analysis in future.
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