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Abstract

We consider a transfer-learning problem by using the parameter transfer approach,
where a suitable parameter of feature mapping is learned through one task and ap-
plied to another objective task. Then, we introduce the notion of the local stability
and parameter transfer learnability of parametric feature mapping, and thereby
derive a learning bound for parameter transfer algorithms. As an application of
parameter transfer learning, we discuss the performance of sparse coding in self-
taught learning. Although self-taught learning algorithms with plentiful unlabeled
data often show excellent empirical performance, their theoretical analysis has not
been studied. In this paper, we also provide the first theoretical learning bound for
self-taught learning.

1 Introduction

In traditional machine learning, it is assumed that data are identically drawn from a single distribu-
tion. However, this assumption does not always hold in real-world applications. Therefore, it would
be significant to develop methods capable of incorporating samples drawn from different distribu-
tions. In this case, transfer learning provides a general way to accommodate these situations. In
transfer learning, besides the availability of relatively few samples related with an objective task,
abundant samples in other domains that are not necessarily drawn from an identical distribution, are
available. Then, transfer learning aims at extracting some useful knowledge from data in other do-
mains and applying the knowledge to improve the performance of the objective task. In accordance
with the kind of knowledge that is transferred, approaches to solving transfer-learning problems can
be classified into cases such as instance transfer, feature representation transfer, and parameter trans-
fer (Pan and Yang (2010)). In this paper, we consider the parameter transfer approach, where some
kind of parametric model is supposed and the transferred knowledge is encoded into parameters.
Since the parameter transfer approach typically requires many samples to accurately learn a suitable
parameter, unsupervised methods are often utilized for the learning process. In particular, trans-
fer learning from unlabeled data for predictive tasks is known as self-taught learning (Raina et al.
(2007)), where a joint generative model is not assumed to underlie unlabeled samples even though
the unlabeled samples should be indicative of a structure that would subsequently be helpful in pre-
dicting tasks. In recent years, self-taught learning has been intensively studied, encouraged by the
development of strong unsupervised methods. Furthermore, sparsity-based methods such as sparse
coding or sparse neural networks have often been used in empirical studies of self-taught learning.

Although many algorithms based on the parameter transfer approach have empirically demonstrated
impressive performance in self-taught learning, some fundamental problems remain. First, the theo-
retical aspects of the parameter transfer approach have not been studied, and in particular, no learning
bound was obtained. Second, although it is believed that a large amount of unlabeled data help to
improve the performance of the objective task in self-taught learning, it has not been sufficiently
clarified how many samples are required. Third, although sparsity-based methods are typically em-
ployed in self-taught learning, it is unknown how the sparsity works to guarantee the performance
of self-taught learning.



The aim of the research presented in this paper is to shed light on the above problems. We first
consider a general model of parametric feature mapping in the parameter transfer approach. Then,
we newly formulate the local stability of parametric feature mapping and the parameter transfer
learnability for this mapping, and provide a theoretical learning bound for parameter transfer learn-
ing algorithms based on the notions. Next, we consider the stability of sparse coding. Then we
discuss the parameter transfer learnability by dictionary learning under the sparse model. Applying
the learning bound for parameter transfer learning algorithms, we provide a learning bound of the
sparse coding algorithm in self-taught learning.

This paper is organized as follows. In the remainder of this section, we refer to some related studies.
In Section 2, we formulate the stability and the parameter transfer learnability of the parametric
feature mapping. Then, we present a learning bound for parameter transfer learning. In Section 3,
we show the stability of the sparse coding under perturbation of the dictionaries. Then, by imposing
sparsity assumptions on samples and by considering dictionary learning, we derive the parameter
transfer learnability for sparse coding. In particular, a learning bound is obtained for sparse coding
in the setting of self-taught learning. In Section 4, we conclude the paper.

1.1 Related Works

Approaches to transfer learning can be classified into some cases based on the kind of knowledge
being transferred (Pan and Yang (2010)). In this paper, we consider the parameter transfer approach.
This approach can be applied to various notable algorithms such as sparse coding, multiple kernel
learning, and deep learning since the dictionary, weights on kernels, and weights on the neural net-
work are regarded as parameters, respectively. Then, those parameters are typically trained or tuned
on samples that are not necessarily drawn from a target region. In the parameter transfer setting, a
number of samples in the source region are often needed to accurately estimate the parameter to be
transferred. Thus, it is desirable to be able to use unlabeled samples in the source region.

Self-taught learning corresponds to the case where only unlabeled samples are given in the source
region while labeled samples are available in the target domain. In this sense, self-taught learning is
compatible with the parameter transfer approach. Actually, in Raina et al. (2007) where self-taught
learning was first introduced, the sparse coding-based method is employed and the parameter trans-
fer approach is already used regarding the dictionary learnt from images as the parameter to be
transferred. Although self-taught learning has been studied in various contexts (Dai et al. (2008);
Lee et al. (2009); Wang et al. (2013); Zhu et al. (2013)), its theoretical aspects have not been suffi-
ciently analyzed. One of the main results in this paper is to provide a first theoretical learning bound
in self-taught learning with the parameter transfer approach. We note that our setting differs from
the environment-based setting (Baxter (2000), Maurer (2009)), where a distribution on distributions
on labeled samples, known as an environment, is assumed. In our formulation, the existence of the
environment is not assumed and labeled data in the source region are not required.

Self-taught learning algorithms are often based on sparse coding. In the seminal paper by Raina et al.
(2007), they already proposed an algorithm that learns a dictionary in the source region and trans-
fers it to the target region. They also showed the effectiveness of the sparse coding-based method.
Moreover, since remarkable progress has been made in unsupervised learning based on sparse neural
networks (Coates et al. (2011), Le (2013)), unlabeled samples of the source domain in self-taught
learning are often preprocessed by sparsity-based methods. Recently, a sparse coding-based gen-
eralization bound was studied (Mehta and Gray (2013); Maurer et al. (2012)) and the analysis in
Section 3.1 is based on (Mehta and Gray (2013)).

2 Learning Bound for Parameter Transfer Learning

2.1 Problem Setting of Parameter Transfer Learning

We formulate parameter transfer learning in this subsection. We first briefly introduce notations and
terminology in transfer learning (Pan and Yang (2010)). Let X and Y be a sample space and a label
space, respectively. We refer to a pair of Z := X × Y and a joint distribution P (x, y) on Z as a
region. Then, a domain comprises a pair consisting of a sample space X and a marginal probability
of P (x) on X and a task consists of a pair containing a label set Y and a conditional distribution
P (y|x). In addition, let H = {h : X → Y} be a hypothesis space and ℓ : Y × Y → R≥0
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represent a loss function. Then, the expected risk and the empirical risk are defined by R(h) :=

E(x,y)∼P [ℓ(y, h(x))] and R̂n(h) := 1
n

∑n
j=1 ℓ(yj , h(xj)), respectively. In the setting of transfer

learning, besides samples from a region of interest known as a target region, it is assumed that
samples from another region known as a source region are also available. We distinguish between
the target and source regions by adding a subscript T or S to each notation introduced above, (e.g.
PT , RS). Then, the homogeneous setting (i.e., XS = XT ) is not assumed in general, and thus, the
heterogeneous setting (i.e., XS ̸= XT ) can be treated. We note that self-taught learning, which is
treated in Section 3, corresponds to the case when the label space YS in the source region is the set
of a single element.

We consider the parameter transfer approach, where the knowledge to be transferred is encoded into
a parameter. The parameter transfer approach aims to learn a hypothesis with low expected risk for
the target task by obtaining some knowledge about an effective parameter in the source region and
transfer it to the target region. In this paper, we suppose that there are parametric models on both
the source and target regions and that their parameter spaces are partly shared. Then, our strategy
is to learn an effective parameter in the source region and then transfer a part of the parameter to
the target region. We describe the formulation in the following. In the target region, we assume that
YT ⊂ R and there is a parametric feature mapping ψθ : XT → Rm on the target domain such that
each hypothesis hT ,θ,w : XT → YT is represented by

hT ,θ,w(x) := ⟨w, ψθ(x)⟩ (1)

with parameters θ ∈ Θ and w ∈ WT , where Θ is a subset of a normed space with a norm ∥ · ∥ and
WT is a subset of Rm. Then the hypothesis set in the target region is parameterized as

HT = {hT ,θ,w|θ ∈ Θ,w ∈ WT }.

In the following, we simply denote RT (hT ,θ,w) and R̂T (hT ,θ,w) by RT (θ,w) and R̂T (θ,w),
respectively. In the source region, we suppose that there exists some kind of parametric model such
as a sample distribution PS,θ,w or a hypothesis hS,θ,w with parameters θ ∈ Θ and w ∈ WS , and
a part Θ of the parameter space is shared with the target region. Then, let θ∗

S ∈ Θ and w∗
S ∈ WS

be parameters that are supposed to be effective in the source region (e.g., the true parameter of the
sample distribution, the parameter of the optimal hypothesis with respect to the expected risk RS);
however, explicit assumptions are not imposed on the parameters. Then, the parameter transfer
algorithm treated in this paper is described as follows. Let N - and n-samples be available in the
source and target regions, respectively. First, a parameter transfer algorithm outputs the estimator
θ̂N ∈ Θ of θ∗

S by using N -samples. Next, for the parameter

w∗
T := argmin

w∈WT

RT (θ∗
S ,w)

in the target region, the algorithm outputs its estimator

ŵN,n := argmin
w∈WT

R̂T ,n(θ̂N ,w) + ρr(w)

by using n-samples, where r(w) is a 1-strongly convex function with respect to ∥ · ∥2 and ρ > 0.
If the source region relates to the target region in some sense, the effective parameter θ∗

S in the
source region is expected to also be useful for the target task. In the next subsection, we regard
RT (θ∗

S ,w
∗
T ) as the baseline of predictive performance and derive a learning bound.

2.2 Learning Bound Based on Stability and Learnability

We newly introduce the local stability and the parameter transfer learnability as below. These notions
are essential to derive a learning bound in Theorem 1.
Definition 1 (Local Stability). A parametric feature mapping ψθ is said to be locally stable if there
exist ϵθ : X → R>0 for each θ ∈ Θ and Lψ > 0 such that for θ′ ∈ Θ

∥θ − θ′∥ ≤ ϵθ(x) ⇒ ∥ψθ(x)− ψθ′(x)∥2 ≤ Lψ∥θ − θ′∥.

We term ϵθ(x) the permissible radius of perturbation for θ at x. For samples Xn = {x1, . . .xn},
we denote as ϵθ(Xn) := minj∈[n] ϵθ(xj), where [n] := {1, . . . , n} for a positive integer n. Next,
we formulate the parameter transfer learnability based on the local stability.
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Definition 2 (Parameter Transfer Learnability). Suppose that N -samples in the source domain and
n-samples Xn in the target domain are available. Let a parametric feature mapping {ψθ}θ∈Θ be
locally stable. For δ̄ ∈ [0, 1), {ψθ}θ∈Θ is said to be parameter transfer learnable with probability
1 − δ̄ if there exists an algorithm that depends only on N -samples in the source domain such that,
the output θ̂N of the algorithm satisfies

Pr
[
∥θ̂N − θ∗

S∥ ≤ ϵθ∗
S
(Xn)

]
≥ 1− δ̄.

In the following, we assume that parametric feature mapping is bounded as ∥ψθ(x)∥2 ≤ Rψ for
arbitrary x ∈ X and θ ∈ Θ and linear predictors are also bounded as ∥w∥2 ≤ RW for any w ∈ W .
In addition, we suppose that a loss function ℓ(·, ·) is Lℓ-Lipschitz and convex with respect to the
second variable. We denote as Rr := supw∈W |r(w)|. Then, the following learning bound is
obtained, where the strong convexity of the regularization term ρr(w) is essential.
Theorem 1 (Learning Bound). Suppose that the parametric feature mapping ψθ is locally stable
and an estimator θ̂N learned in the source region satisfies the parameter transfer learnability with

probability 1− δ̄. When ρ = LℓRψ

√
8(32+log(2/δ))

Rrn
, the following inequality holds with probability

1− (δ + 2δ̄):

RT

(
θ̂N , ŵN,n

)
−RT (θ∗

S ,w
∗
T )

≤ LℓRψ

(
RW

√
2 log(2/δ) + 2

√
2Rr(32 + log(2/δ))

) 1√
n
+ LℓLψRψ

∥∥∥θ̂N − θ∗
S

∥∥∥
+Lℓ

√
LψRWRψ

(
Rr

2(32 + log(2/δ))

) 1
4

n
1
4

√∥∥∥θ̂N − θ∗
S

∥∥∥. (2)

If the estimation error ∥θ̂N − θ∗
S∥ can be evaluated in terms of the number N of samples, Theorem

1 clarifies which term is dominant, and in particular, the number of samples required in the source
domain such that this number is sufficiently large compared to the samples in the target domain.

2.3 Proof of Learning Bound

We prove Theorem 1 in this subsection. In this proof, we omit the subscript T for simplicity. In
addition, we denote θ∗

S simply by θ∗. We set as

ŵ∗
n := argmin

w∈W

1

n

n∑
j=1

ℓ(yj , ⟨w, ψθ∗(xj)⟩) + ρr(w).

Then, we have

RT

(
θ̂N , ŵN,n

)
−RT (θ∗,w∗)

= E(x,y)∼P

[
ℓ(y, ⟨ŵN,n, ψθ̂N

(x)⟩)
]
− E(x,y)∼P [ℓ(y, ⟨ŵN,n, ψθ∗(x)⟩)]

+E(x,y)∼P [ℓ(y, ⟨ŵN,n, ψθ∗(x)⟩)]− E(x,y)∼P [ℓ(y, ⟨ŵ∗
n, ψθ∗(x)⟩)] (3)

+E(x,y)∼P [ℓ(y, ⟨ŵ∗
n, ψθ∗(x)⟩)]− E(x,y)∼P [ℓ(y, ⟨w∗, ψθ∗(x)⟩)] .

In the following, we bound three parts of (3). First, we have the following inequality with probability
1− (δ/2 + δ̄):

E(x,y)∼P

[
ℓ(y, ⟨ŵN,n, ψθ̂N

(x)⟩)
]
− E(x,y)∼P [ℓ(y, ⟨ŵN,n, ψθ∗(x)⟩)]

≤ LℓRWE(x,y)∼P

[∥∥∥ψθ̂N
(x)− ψθ∗(x)

∥∥∥]
≤ LℓRW

1

n

n∑
j=1

∥∥∥ψθ̂N
(xj)− ψθ∗(xj)

∥∥∥+ LℓRWRψ

√
2 log(2/δ)

n

≤ LℓLψRW

∥∥∥θ̂N − θ∗
∥∥∥+ LℓRWRψ

√
2 log(2/δ)

n
,

4



where we used Hoeffding’s inequality as the third inequality, and the local stability and parameter
transfer learnability in the last inequality. Second, we have the following inequality with probability
1− δ̄:

E(x,y)∼P [ℓ(y, ⟨ŵN,n, ψθ∗(x)⟩)]− E(x,y)∼P [ℓ(y, ⟨ŵ∗
n, ψθ∗(x)⟩)]

≤ LℓE(x,y)∼P [|⟨ŵN,n, ψθ∗(x)⟩ − ⟨ŵ∗
n, ψθ∗(x)⟩|]

≤ LℓRψ ∥ŵN,n − ŵ∗
n∥2

≤ LℓRψ

√
2LℓLψRW

ρ

∥∥∥θ̂N − θ∗
∥∥∥, (4)

where the last inequality is derived by the strong convexity of the regularizer ρr(w) in the Appendix.
Third, the following holds by Theorem 1 of Sridharan et al. (2009) with probability 1− δ/2:

E(x,y)∼P [ℓ(y, ⟨ŵ∗
n, ψθ∗(x)⟩)]− E(x,y)∼P [ℓ(y, ⟨w∗, ψθ∗(x)⟩)]

= E(x,y)∼P [ℓ(y, ⟨ŵ∗
n, ψθ∗(x)⟩) + ρr(ŵ∗

n)]

−E(x,y)∼P [ℓ(y, ⟨w∗, ψθ∗(x)⟩) + ρr(w∗)] + ρ(r(w∗)− r(ŵ∗
n))

≤

(
8L2

ℓR
2
ψ(32 + log(2/δ))

ρn

)
+ ρRr.

Thus, when ρ = LℓRψ

√
8(32+log(2/δ))

Rrn
, we have (2) with probability 1− (δ + 2δ̄).

3 Stability and Learnability in Sparse Coding

In this section, we consider the sparse coding in self-taught learning, where the source region es-
sentially consists of the sample space XS without the label space YS . We assume that the sample
spaces in both regions are Rd. Then, the sparse coding method treated here consists of a two-stage
procedure, where a dictionary is learnt on the source region, and then a sparse coding with the learnt
dictionary is used for a predictive task in the target region.

First, we show that sparse coding satisfies the local stability in Section 3.1 and next explain that
appropriate dictionary learning algorithms satisfy the parameter transfer learnability in Section 3.4.
As a consequence of Theorem 1, we obtain the learning bound of self-taught learning algorithms
based on sparse coding. We note that the results in this section are useful independent of transfer
learning.

We here summarize the notations used in this section. Let ∥ · ∥p be the p-norm on Rd. We define as
supp(a) := {i ∈ [m]|ai ̸= 0} for a ∈ Rm. We denote the number of elements of a set S by |S|.
When a vector a satisfies ∥a∥0 = |supp(a)| ≤ k, a is said to be k-sparse. We denote the ball with
radius R centered at 0 by BRd(R) := {x ∈ Rd|∥x∥2 ≤ R}. We set as D := {D = [d1, . . . ,dm] ∈
BRd(1)m| ∥dj∥2 = 1 (i = 1, . . . ,m)} and each D ∈ D a dictionary with size m.

Definition 3 (Induced matrix norm). For an arbitrary matrix E = [e1, . . . , em] ∈ Rd×m, 1) the
induced matrix norm is defined by ∥E∥1,2 := maxi∈[m] ∥ei∥2.

We adopt ∥ · ∥1,2 to measure the difference of dictionaries since it is typically used in the framework
of dictionary learning. We note that ∥D− D̃∥1,2 ≤ 2 holds for arbitrary dictionaries D, D̃ ∈ D.

3.1 Local Stability of Sparse Representation

We show the local stability of sparse representation under a sparse model. A sparse representation
with dictionary parameter D of a sample x ∈ Rd is expressed as follows:

φD(x) := argmin
z∈Rm

1

2
∥x−Dz∥22 + λ∥z∥1,

1) In general, the (p, q)-induced norm for p, q ≥ 1 is defined by ∥E∥p,q := supv∈Rm,∥v∥p=1 ∥Ev∥q . Then,
∥ · ∥1,2 in this general definition coincides with that in Definition 3 by Lemma 17 of Vainsencher et al. (2011).
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where λ > 0 is a regularization parameter. This situation corresponds to the case where θ = D
and ψθ = φD in the setting of Section 2.1. We prepare some notions to the stability of the sparse
representation. The following margin and incoherence were introduced by Mehta and Gray (2013).
Definition 4 (k-margin). Given a dictionary D = [d1, . . . ,dm] ∈ D and a point x ∈ Rd, the
k-margin of D on x is

Mk(D,x) := max
I⊂[m],|I|=m−k

min
j∈I

{λ− |⟨dj ,x−DφD(x)⟩|} .

Definition 5 (µ-incoherence). A dictionary matrix D = [d1, . . . ,dm] ∈ D is termed µ-incoherent
if |⟨di,dj⟩| ≤ µ/

√
d for all i ̸= j.

Then, the following theorem is obtained.

Theorem 2 (Sparse Coding Stability). Let D ∈ D be µ-incoherent and ∥D− D̃∥1,2 ≤ λ. When

∥D− D̃∥1,2 ≤ ϵk,D(x) :=
Mk,D(x)2λ

64max{1, ∥x∥}4
, (5)

the following stability bound holds:

∥φD(x)− φD̃(x)∥
2
≤ 4∥x∥2

√
k

(1− µk/
√
d)λ

∥D− D̃∥1,2.

From Theorem 2, ϵk,D(x) becomes the permissible radius of perturbation in Definition 1.

Here, we refer to the relation with the sparse coding stability (Theorem 4) of Mehta and Gray (2013),
who measured the difference of dictionaries by ∥ · ∥2,2 instead of ∥ · ∥1,2 and the permissible radius
of perturbation is given by Mk,D(x)2λ except for a constant factor. Applying the simple inequality
∥E∥2,2 ≤

√
m∥E∥1,2 for E ∈ Rd×m, we can obtain a variant of the sparse coding stability with the

norm ∥ · ∥1,2. However, then the dictionary size m affects the permissible radius of perturbation and
the stability bound of the sparse coding stability. On the other hand, the factor of m does not appear
in Theorem 2, and thus, the result is effective even for a large m. In addition, whereas ∥x∥ ≤ 1
is assumed in Mehta and Gray (2013), Theorem 2 does not assume that ∥x∥ ≤ 1 and clarifies the
dependency for the norm ∥x∥.

In existing studies related to sparse coding, the sparse representation φD(x) is modified as φD(x)⊗
x (Mairal et al. (2009)) or φD(x) ⊗ (x − DφD(x)) (Raina et al. (2007)) where ⊗ is the tensor
product. By the stability of sparse representation (Theorem 2), it can be shown that such modified
representations also have local stability.

3.2 Sparse Modeling and Margin Bound

In this subsection, we assume a sparse structure for samples x ∈ Rd and specify a lower bound
for the k-margin used in (5). The result obtained in this section plays an essential role to show the
parameter transfer learnability in Section 3.4.
Assumption 1 (Model). There exists a dictionary matrix D∗ such that every sample x is indepen-
dently generated by a representation a and noise ξ as

x = D∗a+ ξ.

Moreover, we impose the following three assumptions on the above model.
Assumption 2 (Dictionary). The dictionary matrix D∗ = [d1, . . . ,dm] ∈ D is µ-incoherent.
Assumption 3 (Representation). The representation a is a random variable that is k-sparse (i.e.,
∥a∥0 ≤ k) and the non-zero entries are lower bounded by C > 0 (i.e., ai ̸= 0 satisfy |ai| ≥ C).
Assumption 4 (Noise). The noise ξ is independent across coordinates and sub-Gaussian with pa-
rameter σ/

√
d on each component.

We note that the assumptions do not require the representation a or noise ξ to be identically dis-
tributed while those components are independent. This is essential because samples in the source
and target domains cannot be assumed to be identically distributed in transfer learning.
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Theorem 3 (Margin Bound). Let 0 < t < 1. We set as

δt,λ :=
2σ

(1− t)
√
dλ

exp

(
− (1− t)2dλ2

8σ2

)
+

2σm√
dλ

exp

(
−dλ

2

8σ2

)
+

4σk

C
√
d(1− µk/

√
d)

exp

(
−C

2d(1− µk/
√
d)

8σ2

)
+

8σ(d− k)√
dλ

exp

(
− dλ2

32σ2

)
. (6)

We suppose that d ≥
{(

1 + 6
(1−t)

)
µk
}2

and λ = d−τ for arbitrary 1/4 ≤ τ ≤ 1/2. Under
Assumptions 1-4, the following inequality holds with probability 1− δt,λ at least:

Mk,D∗(x) ≥ tλ. (7)

We refer to the regularization parameter λ. An appropriate reflection of the sparsity of samples
requires the regularization parameter λ to be set suitably. According to Theorem 4 of Zhao and Yu
(2006)2), when samples follow the sparse model as in Assumptions 1-4 and λ ∼= d−τ for 1/4 ≤ τ ≤
1/2, the representation φD(x) reconstructs the true sparse representation a of sample x with a small
error. In particular, when τ = 1/4 (i.e., λ ∼= d−1/4) in Theorem 3, the failure probability δt,λ ∼=
e−

√
d on the margin is guaranteed to become sub-exponentially small with respect to dimension d

and is negligible for the high-dimensional case. On the other hand, the typical choice τ = 1/2 (i.e.,
λ ∼= d−1/2) does not provide a useful result because δt,λ is not small at all.

3.3 Proof of Margin Bound

We give a sketch of proof of Theorem 3. We denote the first term, the second term and the sum of
the third and fourth terms of (6) by δ1, δ2 and δ3, respectively From Assumptions 1 and 3, a sample
is represented as x = D∗a + ξ and ∥a∥0 ≤ k. Without loss of generality, we assume that the first
m− k components of a are 0 and the last k components are not 0. Since

Mk,D∗(x) ≥ min
1≤j≤m−k

λ− ⟨dj ,x−D∗φD(x)⟩ = min
1≤j≤m−k

λ− ⟨dj , ξ⟩ − ⟨D∗⊤dj ,a− φD(x)⟩,

it is enough to show that the following holds an arbitrary 1 ≤ j ≤ m− k to prove Theorem 3:

Pr[⟨dj , ξ⟩+ ⟨D∗⊤dj ,a− φD(x)⟩ > (1− t)λ] ≤ δt,λ. (8)

Then, (8) follows from the following inequalities:

Pr

[
⟨dj , ξ⟩ >

1− t

2
λ

]
≤ δ1, (9)

Pr

[
⟨D∗⊤dj ,a− φD(x)⟩ > 1− t

2
λ

]
≤ δ2 + δ3. (10)

The inequality (9) holds since ∥dj∥ = 1 by the definition and Assumption 4. Thus, all we have to
do is to show (10). We have

⟨D∗⊤dj ,a− φD(x)⟩ = ⟨[⟨d1,dj⟩, . . . , ⟨dm,dj⟩]⊤,a− φD(x)⟩
= ⟨(1supp(a−φD(x)) ◦ [⟨d1,dj⟩, . . . , ⟨dm,dj⟩])⊤,a− φD(x)⟩
≤ ∥1supp(a−φD(x)) ◦ [⟨d1,dj⟩, . . . , ⟨dm,dj⟩]∥2∥a− φD(x)∥2,(11)

where u ◦ v is the Hadamard product (i.e. component-wise product) between u and v, and 1A for a
set A ⊂ [m] is a vector whose i-th component is 1 if i ∈ A and 0 otherwise.

Applying Theorem 4 of Zhao and Yu (2006) and using the condition for λ, the following holds with
probability 1− δ3:

supp(a) = supp(φD(x)). (12)
2)Theorem 4 of Zhao and Yu (2006) is stated for Gaussian noise. However, it can be easily generalized to

sub-Gaussian noise as in Assumption 4. Our setting corresponds to the case in which c1 = 1/2, c2 = 1, c3 =

(log κ + log log d)/ log d for some κ > 1 (i.e., ed
c3 ∼= dκ) and c4 = c in Theorem 4 of Zhao and Yu (2006).

Note that our regularization parameter λ corresponds to λd/d in (Zhao and Yu (2006)).
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Moreover, under (12), the following holds with probability 1 − δ2 by modifying Corollary 1 of
Negahban et al. (2009) and using the condition for λ:

∥a− φD(x)∥2 ≤ 6
√
kλ

1− µk√
d

. (13)

Thus, if both of (12) and (13) hold, the right hand side of (11) is bounded as follows:
∥1supp(a−φD(x)) ◦ [⟨d1,dj⟩, . . . , ⟨dm,dj⟩]∥2∥a− φD(x)∥2

≤
√
|supp(a− φD(x))| µ√

d

6
√
kλ

1− µk√
d

=
6µk√
d− µk

λ ≤ 1− t

2
λ,

where we used Assumption 2 in the first inequality, (12) and Assumption 3 in the equality and the
condition for d in the last inequality. From the above discussion, the left hand side of (10) is bounded
by the sum of the probability δ3 that (12) does not hold and the probability δ2 that (12) holds but
(13) does not hold.

3.4 Transfer Learnability for Dictionary Learning

When the true dictionary D∗ exists as in Assumption 1, we show that the output D̂N of a suitable
dictionary learning algorithm fromN -unlabeled samples satisfies the parameter transfer learnability
for the sparse coding φD. Then, Theorem 1 guarantees the learning bound in self-taught learning
since the discussion in this section does not assume the label space in the source region. This
situation corresponds to the case where θ∗

S = D∗, θ̂N = D̂N and ∥ · ∥ = ∥ · ∥1,2 in Section 2.1.

We show that an appropriate dictionary learning algorithm satisfies the parameter transfer learnabil-
ity for the sparse coding φD by focusing on the permissible radius of perturbation in (5) under some
assumptions. When Assumptions 1-4 hold and λ = d−τ for 1/4 ≤ τ ≤ 1/2, the margin bound (7)
for x ∈ X holds with probability 1− δt,λ, and thus, we have

ϵk,D∗(x) ≥ t2λ3

64max{1, ∥x∥}4
= Θ(d−3τ ).

Thus, if a dictionary learning algorithm outputs the estimator D̂N such that

∥D̂N −D∗∥1,2 ≤ O(d−3τ ) (14)

with probability 1− δN , the estimator D̂N of D∗ satisfies the parameter transfer learnability for the
sparse coding φD with probability δ̄ = δN + nδt,λ. Then, by the local stability of the sparse repre-
sentation and the parameter transfer learnability of such a dictionary learning, Theorem 1 guarantees
that sparse coding in self-taught learning satisfies the learning bound in (2).

We note that Theorem 1 can apply to any dictionary learning algorithm as long as (14) is satisfied.
For example, Arora et al. (2015) show that, when k = O(

√
d/ log d), m = O(d), Assumptions 1-4

and some additional conditions are assumed, their dictionary learning algorithm outputs D̂N which
satisfies

∥D̂N −D∗∥1,2 = O(d−M )

with probability 1− d−M
′

for arbitrarily large M,M ′ as long as N is sufficiently large.

4 Conclusion

We derived a learning bound (Theorem 1) for a parameter transfer learning problem based on the
local stability and parameter transfer learnability, which are newly introduced in this paper. Then,
applying it to a sparse coding-based algorithm under a sparse model (Assumptions 1-4), we obtained
the first theoretical guarantee of a learning bound in self-taught learning. Although we only consider
sparse coding, the framework of parameter transfer learning includes other promising algorithms
such as multiple kernel learning and deep neural networks, and thus, our results are expected to
be effective to analyze the theoretical performance of these algorithms. Finally, we note that our
learning bound can be applied to different settings from self-taught learning because Theorem 1
includes the case in which labeled samples are available in the source region.
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