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Abstract

Several recent works have shown that state-of-the-art classifiers are vulnerable to
worst-case (i.e., adversarial) perturbations of the datapoints. On the other hand,
it has been empirically observed that these same classifiers are relatively robust
to random noise. In this paper, we propose to study a semi-random noise regime
that generalizes both the random and worst-case noise regimes. We propose
the first quantitative analysis of the robustness of nonlinear classifiers in this
general noise regime. We establish precise theoretical bounds on the robustness of
classifiers in this general regime, which depend on the curvature of the classifier’s
decision boundary. Our bounds confirm and quantify the empirical observations that
classifiers satisfying curvature constraints are robust to random noise. Moreover,
we quantify the robustness of classifiers in terms of the subspace dimension in
the semi-random noise regime, and show that our bounds remarkably interpolate
between the worst-case and random noise regimes. We perform experiments and
show that the derived bounds provide very accurate estimates when applied to
various state-of-the-art deep neural networks and datasets. This result suggests
bounds on the curvature of the classifiers’ decision boundaries that we support
experimentally, and more generally offers important insights onto the geometry of
high dimensional classification problems.

1 Introduction

State-of-the-art classifiers, especially deep networks, have shown impressive classification perfor-
mance on many challenging benchmarks in visual tasks [9]] and speech processing [[7]. An equally
important property of a classifier that is often overlooked is its robustness in noisy regimes, when
data samples are perturbed by noise. The robustness of a classifier is especially fundamental when
it is deployed in real-world, uncontrolled, and possibly hostile environments. In these cases, it
is crucial that classifiers exhibit good robustness properties. In other words, a sufficiently small
perturbation of a datapoint should ideally not result in altering the estimated label of a classifier.
State-of-the-art deep neural networks have recently been shown to be very unstable to worst-case
perturbations of the data (or equivalently, adversarial perturbations) [17]. In particular, despite
the excellent classification performances of these classifiers, well-sought perturbations of the data
can easily cause misclassification, since data points often lie very close to the decision boundary
of the classifier. Despite the importance of this result, the worst-case noise regime that is studied
in [[17] only represents a very specific type of noise. It furthermore requires the full knowledge of the
classification model, which may be a hard assumption in practice.

In this paper, we precisely quantify the robustness of nonlinear classifiers in two practical noise
regimes, namely random and semi-random noise regimes. In the random noise regime, datapoints are

*The first two authors contributed equally to this work.
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perturbed by noise with random direction in the input space. The semi-random regime generalizes this
model to random subspaces of arbitrary dimension, where a worst-case perturbation is sought within
the subspace. In both cases, we derive bounds that precisely describe the robustness of classifiers in
function of the curvature of the decision boundary. We summarize our contributions as follows:

e In the random regime, we show that the robustness of classifiers behaves as V/d times the
distance from the datapoint to the classification boundary (where d denotes the dimension
of the data) provided the curvature of the decision boundary is sufficiently small. This
result highlights the blessing of dimensionality for classification tasks, as it implies that
robustness to random noise in high dimensional classification problems can be achieved,
even at datapoints that are very close to the decision boundary.

o This quantification notably extends to the general semi-random regime, where we show
that the robustness precisely behaves as /4/m times the distance to boundary, with m the
dimension of the subspace. This result shows in particular that, even when m is chosen as a
small fraction of the dimension d, it is still possible to find small perturbations that cause
data misclassification.

e We empirically show that our theoretical estimates are very accurately satisfied by state-
of-the-art deep neural networks on various sets of data. This in turn suggests quantitative
insights on the curvature of the decision boundary that we support experimentally through
the visualization and estimation on two-dimensional sections of the boundary.

The robustness of classifiers to noise has been the subject of intense research. The robustness proper-
ties of SVM classifiers have been studied in [[19] for example, and robust optimization approaches for
constructing robust classifiers have been proposed to minimize the worst possible empirical error
under noise disturbance [1} [L0]. More recently, following the recent results on the instability of
deep neural networks to worst-case perturbations [17]], several works have provided explanations of
the phenomenon [3} (3, 14, [18]], and designed more robust networks [6} 8} 120, [13} [15 [12]. In [18]],
the authors provide an interesting empirical analysis of the adversarial instability, and show that
adversarial examples are not isolated points, but rather occupy dense regions of the pixel space. In
[4], state-of-the-art classifiers are shown to be vulnerable to geometrically constrained adversarial
examples. Our work differs from these works, as we provide a theoretical study of the robustness of
classifiers to random and semi-random noise in terms of the robustness to adversarial noise. In [3], a
formal relation between the robustness to random noise, and the worst-case robustness is established
in the case of linear classifiers. Our result therefore generalizes [3] in many aspects, as we study
general nonlinear classifiers, and robustness to semi-random noise. Finally, it should be noted that
the authors in [5]] conjecture that the “high linearity” of classification models explains their instability
to adversarial perturbations. The objective and approach we follow here is however different, as we
study theoretical relations between the robustness to random, semi-random and adversarial noise.

2 Definitions and notations

Let f : R — R” be an L-class classifier. Given a datapoint 2y € R?, the estimated label is obtained
by k(o) = argmax;, fi(x0), where fi () is the k™ component of f(a) that corresponds to the k™
class. Let S be an arbitrary subspace of R? of dimension m. Here, we are interested in quantifying the
robustness of f with respect to different noise regimes. To do so, we define r to be the perturbation
in S of minimal norm that is required to change the estimated label of f at a:o

75 (o) :argrr;inHng st k(xo + 1) # k(o). 1)
re
Note that 7% (o) can be equivalently written

rs(zg) = argn;in 7|2 s.t. Ik # k(xo) : fulxo+7) > Sii(ao) (To + 7). 2
re

When S = R?, r*(xg) := r34(x0) is the adversarial (or worst-case) perturbation defined in [[17],
which corresponds to the (unconstrained) perturbation of minimal norm that changes the label of the

ZPerturbation vectors sending a datapoint exactly to the boundary are assumed to change the estimated label
of the classifier.



datapoint x. In other words, ||7*(2¢)||2 corresponds to the minimal distance from x to the classifier
boundary. In the case where S C R?, only perturbations along S are allowed. The robustness of f at
xo along S is naturally measured by the norm |75 ()||2. Different choices for S permit to study
the robustness of f in two different regimes:

e Random noise regime: This corresponds to the case where S is a one-dimensional subspace
(m = 1) with direction v, where v is a random vector sampled uniformly from the unit
sphere S~1. Writing it explicitly, we study in this regime the robustness quantity defined
by min [t[ s.t. Ik # k(xo), fr(@o +1v) > fj (4, (@0 + tv), where v is a vector sampled
uniformly at random from the unit sphere S?~1.

o Semi-random noise regime: In this case, the subspace S is chosen randomly, but can be of
arbitrary dimension m/’| We use the semi-random terminology as the subspace is chosen
randomly, and the smallest vector that causes misclassification is then sought in the subspace.
It should be noted that the random noise regime is a special case of the semi-random regime
with a subspace of dimension m = 1. We differentiate nevertheless between these two
regimes for clarity.

In the remainder of the paper, the goal is to establish relations between the robustness in the random
and semi-random regimes on the one hand, and the robustness to adversarial perturbations ||7*(x¢)||2
on the other hand. We recall that the latter quantity captures the distance from x to the classifier
boundary, and is therefore a key quantity in the analysis of robustness.

In the following analysis, we fix g to be a datapoint classified as I%(:co). To simplify the notation,
we remove the explicit dependence on x in our notations (e.g., we use r instead of 75 (xo) and k

instead of Iz:(azo)), and it should be implicitly understood that all our quantities pertain to the fixed
datapoint x.

3 Robustness of affine classifiers
We first assume that f is an affine classifier, i.e., f(x) = W Tx + b for a given W = [w; ... wy]
and b € RE.

The following result shows a precise relation between the robustness to semi-random noise,
and the robustness to adversarial perturbations, ||7*||2.

752

Theorem 1. Let 6 > 0, S be a random m-dimensional subspace of R, and f be a L-class affine

classifier. Let
—1
C1(m, 6) = <1+2 ln(;/(;) + 2ln(1/5)> : 3)

m

Ca(m,8) = <max ((1/6)52/’“, 1—4/2(1— 52/m)>)_1 . (4)

The following inequalities hold between the robustness to semi-random noise ||r’%
ness to adversarial perturbations ||r*||a:

d d
\/Cl(mﬁ)\/;”r*llz < |lslle < \/Cz(mﬁ)\/;IT*za ()

with probability exceeding 1 — 2(L + 1)0.

o, and the robust-

The proof can be found in the appendix. Our upper and lower bounds depend on the functions
¢1(m, ¢) and (2(m, §) that control the inequality constants (for m, § fixed). It should be noted that
¢1(m, &) and (2(m, 6) are independent of the data dimension d. Fig.[I]shows the plots of ¢;(m, §)
and (2(m, ¢) as functions of m, for a fixed d. It should be noted that for sufficiently large m, {1 (m, J)
and (2(m, d) are very close to 1 (e.g., ¢1(m,d) and (2(m, ) belong to the interval [0.8,1.3] for
m > 250 in the settings of Fig.[1). The interval [¢; (m, 6), (2(m, 6)] is however (unavoidably) larger
when m = 1.

3 A random subspace is defined as the span of m independent vectors drawn uniformly at random from S~



The result in Theorem [I] shows that in the random and 10
semi-random noise regimes, the robustness to noise is
precisely related to ||r*||2 by a factor of y/4/m. Specif-
ically, in the random noise regime (m = 1), the mag- 102
nitude of the noise required to misclassify the datapoint

behaves as ©(V/d||7*||2) with high probability, with con- o L

4 (M. 3)
,(m.9)

e

stants in the interval [(1(1,6), (2(1, d)]. Our results there- 10
fore show that, in high dimensional classification set-
tings, affine classifiers can be robust to random noise,
even if the datapoint lies very closely to the decision 442 ‘ ‘ ‘ ‘
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boundary (i.e., ||r*||2 is small). In the semi-random noise m
regime with m sufficiently large (e.g., m > 250), we have
l7%5lla & \/4/m||r*||2 with high probability, as the con-
stants (1(m, d) =~ (2(m,d) = 1 for sufficiently large m.
Our bounds therefore “interpolate” between the random
noise regime, which behaves as v/d||7*||2, and the worst-case noise ||7*||o. More importantly, the
square root dependence is also notable here, as it shows that the semi-random robustness can remain
small even in regimes where m is chosen to be a very small fraction of d. For example, choosing a
small subspace of dimension m = 0.01d results in semi-random robustness of 10||r*||2 with high
probability, which might still not be perceptible in complex visual tasks. Hence, for semi-random
noise that is mostly random and only mildly adversarial (i.e., the subspace dimension is small), affine
classifiers remain vulnerable to such noise.

Figure 1: ¢;(m, d) and (3(m, d) in func-
tion of m [§ = 0.05] .

4 Robustness of general classifiers

4.1 Curvature of the decision boundary

We now consider the general case where f is a nonlinear classifier. We derive relations between
the random and semi-random robustness ||7%||2 and worst-case robustness ||7*||2 using properties
of the classifier’s boundary. Let i and j be two arbitrary classes; we define the pairwise boundary
%, ; as the boundary of the binary classifier where only classes ¢ and j are considered. Formally, the
decision boundary is given by %, ; := {x € R?: fi(x) — f;(z) = 0}. The boundary %; ; separates
between two regions of R4, namely R; and R ;, where the estimated label of the binary classifier is
respectively ¢ and j.

We assume for the purpose of this analysis that the boundary %; ; is smooth. We are now interested
in the geometric properties of the boundary, namely its curvature. Many notions of curvature can
be defined on hypersurfaces [[L1]. In the simple case of a curve in a two-dimensional space, the
curvature is defined as the inverse of the radius of the so-called oscullating circle. One way to define
curvature for high-dimensional hypersurfaces is by taking normal sections of the hypersurface, and
measuring the curvature of the resulting planar curve (see Fig. [2). We however introduce a notion of
curvature that is specifically suited to the analysis of the decision boundary of a classifier. Informally,
our curvature captures the global bending of the decision boundary by inscribing balls in the regions
separated by the decision boundary. For a given p € %; ;, we define ¢, || ;(p) to be the radius of the
largest open ball included in the region R; that intersects with %; ; at p; i.e.,

¢ (p) = sup {||z = pll2: B(z, ||z — pll2) S Ri}, ()
z€eR

where B(z,||z — p||2) is the open ball in R? of center z and radius ||z — p||2. An illustration
of this quantity in two dimensions is provided in Fig. [2] (b). It is not hard to see that any ball
B(z*,||z* — pl|2) centered in z* and included in R; will have its tangent space at p coincide with
the tangent of the decision boundary at the same point.

It should further be noted that the definition in Eq. (6) is not symmetric in ¢ and j. We therefore
define the following symmetric quantity ¢; ;(p), where the worst-case ball inscribed in any of the
two regions R; and R ; is considered:

¢ij(p) = min (g | ;(P), ¢; | +«(P)) -
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Figure 2: (a) Normal section of the boundary Z; ; with respect to plane I/ = span(n, u), where n is
the normal to the boundary at p, and w is an arbitrary in the tangent space T, (%; ;). (b) Illustration
of the quantities introduced for the definition of the curvature of the decision boundary.

To measure the global curvature, the worst-case radius is taken over all points on the decision
boundary, i.e., ¢(%; ;) = infpem, ; ¢, j(p). The curvature £ (%; ;) is then defined as the inverse of
the worst-case radius: (%, ;) = Ya(.,;).

In the case of affine classifiers, we have k(%; ;) = 0, as it is possible to inscribe balls of infinite
radius inside each region of the space. When the classification boundary is a union of (sufficiently
distant) spheres with equal radius R, the curvature x(%; ;) = 1/r. In general, the quantity x(%; ;)
provides an intuitive way of describing the nonlinearity of the decision boundary by fitting balls
inside the classification regions.

4.2 Robustness to random and semi-random noise

We now establish bounds on the robustness to random and semi-random noise in the binary classifi-
cation case. Let x( be a datapoint classified as k= lAf(a:O). We first study the binary classification
problem, where only classes k and k € {1,..., L}\{k} are considered. To simplify the notation,
we let By, := 2, ; be the decision boundary between classes k and k. In the case of the binary
classification problem where classes &k and k are considered, the semi-random perturbation defined in
Eq. @) can be re-written as follows:

vk = argumin ol s2. (o +7) > fil@o+ 7). ™

r

The worst case perturbation (obtained with S = R%) is denoted by r*. It should be noted that the
global quantities 75 and 7 are obtained from 7'"} and r* by taking the vectors with minimum norm
over all classes k.

k
The following result gives upper and lower bounds on the ratio HL;,% in function of the curvature of

the boundary separating class k and k.

Theorem 2. Let S be a random m-dimensional subspace of R%. Let r := r(%y). Assuming that the
curvature satisfies

e C m
= Ga(m, 0)||rF]2 d”

the following inequality holds between the semi-random robustness ||r%||2 and the adversarial
robustness |7 ||2:

d d k , .
<1 . ClHrk”MQE) \/a\/; = % = (1 +C’2||7’k||2l<:C2E) \/4_2\/; 9)

with probability larger than 1 — 46. We recall that (; = (1(m, §) and (o = (2(m, ) are defined in
Eq. BIH). The constants are C = 0.2,C; = 0.625,C, = 2.25.

®)

R

The proof can be found in the appendix. This result shows that the bounds relating the robustness to
random and semi-random noise to the worst-case robustness can be extended to nonlinear classifiers,



provided the curvature of the boundary x(%},) is sufficiently small. In the case of linear classifiers,
we have k(%) = 0, and we recover the result for affine classifiers from Theorem

To extend this result to multi-class classification, special care has to be taken. In particular, if &
denotes a class that has no boundary with class k, ||7*|2 can be very large and the previous curvature
condition is not satisfied. It is therefore crucial to exclude such classes that have no boundary in
common with class I%, or more generally, boundaries that are far from class k. We define the set A of
excluded classes k where ||7" || is large

d
A= {k|rfs = 1-45\/C2(m,5)\/;7’*|2}- (10)

Note that A is independent of S, and depends only on d, m and . Moreover, the constants in
were chosen for simplicity of exposition.

Assuming a curvature constraint only on the close enough classes, the following result establishes a
simplified relation between ||7%||2 and |[r*||2.

Corollary 1. Let S be a random m-dimensional subspace of R%. Assume that, for all k ¢ A, the
curvature condition in Eq. (@) holds. Then, we have

d d
0.875+/¢1(m, )4/ %Hr*”g < |Irslle < 1.454/Ca(m, )4/ E”T*HQ (11)
with probability larger than 1 — 4(L + 2)0.

Under the curvature condition in on the boundaries between k and classes in A¢, our result
shows that the robustness to random and semi-random noise exhibits the same behavior that has
been observed earlier for linear classifiers in Theorem|1| In particular, ||r%]||2 is precisely related to

the adversarial robustness ||7*||2 by a factor of \/d/m. In the random regime (m = 1), this factor

becomes \/d, and shows that in high dimensional classification problems, classifiers with sufficiently
flat boundaries are much more robust to random noise than to adversarial noise. However, in the
semi-random, the factor is \/4/m and shows that robustness to semi-random noise might not be
achieved even if m is chosen to be a tiny fraction of d. In other words, if a classifier is highly
vulnerable to adversarial perturbations, then it is also vulnerable to noise that is overwhelmingly
random and only mildly adversarial.

It is important to note that the curvature condition in Corollary I]is not an assumption on the curvature
of the global decision boundary, but rather an assumption on the decision boundaries between pairs
of classes. The distinction here is significant, as junction points where two decision boundaries meet
might actually have a very large (or infinite) curvature (even in linear classification settings), and the
curvature condition in Corollary [I] typically does not hold for this global curvature definition. We
refer to our experimental section for a visualization of this phenomenon.

S Experiments

We now evaluate the robustness of different image classifiers to random and semi-random pertur-
bations, and assess the accuracy of our bounds on various datasets and state-of-the-art classifiers.
Specifically, our theoretical results show that the robustness || (x)||2 of classifiers satisfying the

curvature property precisely behaves as /d/m||r* (x)||2. We first check the accuracy of these results
in different classification settings. For a given classifier f and subspace dimension m, we define

B(f;m) = Mﬁ Y e M, where S is chosen randomly for each sample « and 2 de-

notes the test set. This quantity provides indication to the accuracy of our \/4/m||7*(z)||2 estimate of
the robustness, and should ideally be equal to 1 (for sufficiently large m). Since 3 is a random quantity
(because of §), we report both its mean and standard deviation for different networks in Table
It should be noted that finding ||7%||> and ||7*||2 involves solving the optimization problem in (1))
We have used a similar approach to [13]] to find subspace minimal perturbations. For each network,
we estimate the expectation by averaging 5(f;m) on 1000 random samples, with S also chosen
randomly for each sample. Observe that [ is suprisingly close to 1, even when m is a small fraction
of d. This shows that our quantitative analysis provide very accurate estimates of the robustness to
semi-random noise. We visualize the robustness to random noise, semi-random noise (with m = 10)



Table 1: S(f;m) for different classifiers f and different subspace dimensions m. The VGG-F and
VGG-19 are respectively introduced in [2, [16].

m/d
Classifier s 16 1136 o4 Y100
LeNet (MNIST) 1.00£0.06 1.01+£0.12 1.03+£0.20 1.01+0.26 1.05+0.34

LeNet (CIFAR-10) 1.01+0.03 1.02+0.07 1.04£0.10 1.06+0.14 1.10+0.19
VGG-F (ImageNet) 1.00£0.01 1.024+0.02 1.03+0.04 1.03£0.05 1.04+0.06
VGG-19 (ImageNet) 1.00£0.01 1.02+0.03 1.02+0.05 1.03£0.06 1.04=+0.08

@ ) © @

Figure 3: (a) Original image classified as “Cauliflower”. Fooling perturbations for VGG-F network:
(b) Random noise, (c) Semi-random perturbation with m = 10, (d) Worst-case perturbation, all
wrongly classified as “Artichoke”.

and worst-case perturbations on a sample image in Fig. 5] While random noise is clearly perceptible
due to the v/d ~ 400 factor, semi-random noise becomes much less perceptible even with a relatively
small value of m = 10, thanks to the 1/\/m factor that attenuates the required noise to misclassify
the datapoint. It should be noted that the robustness of neural networks to adversarial perturbations
has previously been observed empirically in [17], but we provide here a quantitative and generic
explanation for this phenomenon. The high accuracy of our bounds for different state-of-the-art
classifiers, and different datasets suggest that the decision boundaries of these classifiers have limited
curvature (%), as this is a key assumption of our theoretical findings. To support the validity of this
curvature hypothesis in practice, we visualize two-dimensional sections of the classifiers’ boundary
in Fig. @in three different settings. Note that we have opted here for a visualization strategy rather
than the numerical estimation of x(48), as the latter quantity is difficult to approximate in practice in
high dimensional problems. In Fig. ] @ is chosen randomly from the test set for each data set, and
the decision boundaries are shown in the plane spanned by 7* and 7%, where S is a random direction
(i.e., m = 1). Different colors on the boundary correspond to boundaries with different classes. It
can be observed that the curvature of the boundary is very small except at “junction” points where
the boundary of two different classes intersect. Our curvature assumption, which only assumes a

bound on the curvature of the decision boundary between pairs of classes I%(:co) and k (but not on the
global decision boundary that contains junctions with high curvature) is therefore adequate to the
decision boundaries of state-of-the-art classifiers according to Fig.[d] Interestingly, the assumption in
Corollary T]is satisfied by taking « to be an empirical estimate of the curvature of the planar curves in
Fig. Ié-_ll (a) for the dimension of the subspace being a very small fraction of d; e.g., m = 10~3d. While
not reflecting the curvature x(%,) that drives the assumption of our theoretical analysis, this result
still seems to suggest that the curvature assumption holds in practice.

We now show a simple demonstration of the vulnerability of classifiers to semi-random noise in Fig.[5]
where a structured message is hidden in the image and causes data misclassification. Specifically, we
consider S to be the span of random translated and scaled versions of words “NIPS”, “SPAIN” and
“2016” in an image, such that |4/m | = 228. The resulting perturbations in the subspace are therefore
linear combinations of these words with different intensitiesEl The perturbed image o + 5 shown in

*This example departs somehow from the theoretical framework of this paper, where random subspaces
were considered. However, this empirical example suggests that the theoretical findings in this paper seem to
approximately hold when the subspace S have statistics that are close to a random subspace.
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(a) VGG-F (ImageNet) (b) LeNet (CIFAR) (c) LeNet (MNIST)

Figure 4: Boundaries of three classifiers near randomly chosen samples. Axes are normalized by the
corresponding ||7*||2 as our assumption in the theoretical bound depends on the product of ||7*||2x.
Note the difference in range between x and y axes. Note also that the range of horizontal axis in (c)
is much smaller than the other two, hence the illustrated boundary is more curved.

(a) Image of a “Potflower” (b) Perturbation (c) Classified as “Pineapple”

Figure 5: A fooling hidden message. S is the span of random translations and scales of the words
“NIPS”, “SPAIN”, and “2016”.

Fig.[|(c) is clearly indistinguishable from Fig.[5](a). This shows that imperceptibly small structured
messages can be added to an image causing data misclassification.

6 Conclusion

In this work, we precisely characterized the robustness of classifiers in a novel semi-random noise
regime that generalizes the random noise regime. Specifically, our bounds relate the robustness
in this regime to the robustness to adversarial perturbations. Our bounds depend on the curvature
of the decision boundary, the data dimension, and the dimension of the subspace to which the
perturbation belongs. Our results show, in particular, that when the decision boundary has a small
curvature, classifiers are robust to random noise in high dimensional classification problems (even if
the robustness to adversarial perturbations is relatively small). Moreover, for semi-random noise that
is mostly random and only mildly adversarial (i.e., the subspace dimension is small), our results show
that state-of-the-art classifiers remain vulnerable to such perturbations. To improve the robustness to
semi-random noise, our analysis encourages to impose geometric constraints on the curvature of the
decision boundary, as we have shown the existence of an intimate relation between the robustness of
classifiers and the curvature of the decision boundary.
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