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Abstract

Joint matrix triangularization is often used for estimating the joint eigenstructure
of a set M of matrices, with applications in signal processing and machine learning.
We consider the problem of approximate joint matrix triangularization when the
matrices in M are jointly diagonalizable and real, but we only observe a set M’
of noise perturbed versions of the matrices in M. Our main result is a first-order
upper bound on the distance between any approximate joint triangularizer of the
matrices in M’ and any exact joint triangularizer of the matrices in M. The bound
depends only on the observable matrices in M’ and the noise level. In particular, it
does not depend on optimization specific properties of the triangularizer, such as its
proximity to critical points, that are typical of existing bounds in the literature. To
our knowledge, this is the first a posteriori bound for joint matrix decomposition.
We demonstrate the bound on synthetic data for which the ground truth is known.

1 Introduction

Joint matrix decomposition problems appear frequently in signal processing and machine learning,
with notable applications in independent component analysis [7], canonical correlation analysis [20],
and latent variable model estimation [5, 4]. Most of these applications reduce to some instance of
a tensor decomposition problem, and the growing interest in joint matrix decomposition is largely
motivated by such reductions. In particular, in the past decade several ‘matricization’ methods have
been proposed for factorizing tensors by computing the joint decomposition of sets of matrices
extracted from slices of the tensor (see, e.g., [10, 22, 17, 8]).

In this work we address a standard joint matrix decomposition problem, in which we assume a set of
Jjointly diagonalizable ground-truth (unobserved) matrices

Mo = {M, = Vdiag([An1,..., Apa)V "L, V eR> A e RNXON (1)
which have been corrupted by noise and we observe their noisy versions:
Mo = {Mn = Mn + O'Rny Mn S Moa Rn S RdXd7 ||Rn|| S 1}7]7\,;1 . (2)

The matrices M,, € M, are the only observed quantities. The scalar o > 0 is the noise level, and
the matrices R,, are arbitrary noise matrices with Frobenius norm ||R,,|| < 1. The key problem
is to estimate from the observed matrices in M, the joint eigenstructure V, A of the ground-truth
matrices in M,. One way to address this estimation problem is by trying to approximately jointly
diagonalize the observed matrices in M, for instance by directly searching for an invertible matrix
that approximates V" in (1). This approach is known as nonorthogonal joint diagonalization [23, 15,
18], and is often motivated by applications that reduce to nonsymmetric CP tensor decomposition
(see, e.g., [20]).
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An alternative approach to the above estimation problem (in the general case of nonorthogonal V') is
via joint triangularization, also known as joint or simultaneous Schur decomposition [1, 13, 11, 12,
22, 8]. Under mild conditions [14], the ground-truth matrices in M, can be jointly triangularized,
that is, there exists an orthogonal matrix U, that simultaneously renders all matrices U." M,, U, upper
triangular:

low(UJ M,U,) = 0, forall n=1,...N, (3)

where low(A) is the strictly lower triangular part of A, i.e., [low(A)];; = A;; if ¢ > j and 0 otherwise.
On the other hand, when o > 0 the observed matrices in M, can only be approximately jointly
triangularized, for instance by solving the following optimization problem

N

1 N
Juin, L(U), where L(U) = & ; [low (U T MU, &)
where || -|| denotes Frobenius norm and optimization is over the manifold O(d) of orthogonal matrices.
The optimization problem can be addressed by Jacobi-like methods [13], or Newton-like methods that
optimize directly on the Q(d) manifold [8]. For any feasible U in (4), the joint eigenvalues A in (1)

can be estimated from the diagonals of U T M, U. This approach has been used in nonsymmetric CP
tensor decomposition [22, 8] and other applications [9, 13].

We also note two related problems. In the special case that the ground-truth matrices M,, in M, are
symmetric, the matrix V' in (1) is orthogonal, and the estimation problem is known as orthogonal joint
diagonalization [7]. Our results apply to this special case too. Another problem is joint diagonalization
by congruence [6, 3, 17], in which the matrix V' ~! in (1) is replaced by V7. In that case the matrix A
in (1) does not contain the joint eigenvalues, and our results do not apply directly.

Contributions We are addressing the joint matrix triangularization problem defined via (4), under
the model assumptions (1), (2), and (3). The optimization problem (4) is nonconvex, and hence it
is expected to be hard to solve to global optimality in general. Therefore, error bounds are needed
that can assess the quality of a solution produced by some algorithm that tries to solve (4). Our
main result (Theorem 1) is an error bound that allows to directly assess a posteriori the quality of
any feasible triangularizer U in (4), in terms of its proximity to the (unknown) exact trangularizer
of the ground-truth matrices in M, regardless of the algorithm used for optimization. The bound
depends only on observable quantities and the noise parameter o in (2). The parameter o can often be
bounded by a function of the sample size, as in problems involving empirical moment matching [4].

Our approach draws on the perturbation analysis of the Schur decomposition of a single matrix [16].
To our knowledge, our bound in Theorem 1 is the first a posteriori error bound for joint matrix
decomposition problems. Existing bounds in the literature have a dependence on the ground-truth
(and hence unobserved) matrices [11, 17], the proximity of a feasible U to critical points of the
objective function [6], or the amount of collinearity between the columns of the matrix A in (1) [3].
Our error bound is free of such dependencies. Outside the context of joint matrix decomposition, a
posteriori error bounds have found practical uses in nonconvex optimization [19] and the design of
algorithms [21].

Notation All matrices, vectors, and numbers are real. When the context is clear we use 1 to
denote the identity matrix. We use || - || for matrix Frobenius norm and vector I norm. Q(d) is the
manifold of orthogonal matrices U such that U T U = 1. The matrix commutator [A, B] is defined
by [4, B] = AB — BA. We use ® for Kronecker product. For a matrix A, we denote by \;(A) its
ith eigenvalue, A,y (A) its smallest eigenvalue, k(A) its condition number, vec(A) its columnwise
vectorization, and low(A) and up(A) its strictly lower triangular and strictly upper triangular parts,
respectively. Low is a binary diagonal matrix defined by vec(low(A)) = Low vec(A). Skew is a
skew-symmetric projector defined by Skew vec(A) = vec(A — AT). Proyw isad(d —1)/2 x d?
binary matrix with orthogonal rows, which projects to the subspace of vectorized strictly lower

triangular matrices, such that P, P, = 1and P P; . = Low. Forexample, for d = 3, one
has Low = diag([0,1,1,0,0,1,0,0,0]) and
010 000O0O0O0OO0
Pow = 00100O0O0O0O0].
00 0O0O0T1O0TO0O0



2 Perturbation of joint triangularizers

The objective function (4) is continuous in the parameter ¢. This implies that, for o small enough,
the approximate joint triangularizers of the observed matrices M, € M, can be expected to be
perturbations of the exact triangularizers of the ground-truth matrices M,, € M. To formalize this,
we express each feasible triangularizer U in (4) as a function of some exact triangularizer U, of the
ground-truth matrices, as follows:

U=Ue™, where X=-X", ||X]|=1, a>0, (5)

where e denotes matrix exponential and X is a skew-symmetric matrix. Such an expansion holds for
any pair U, U, of orthogonal matrices with det(U) = det(U,) (see, e.g., [2]). The scalar « in (5) can
be interpreted as the ‘distance’ between the matrices U and U,. Our main result is an upper bound on
this distance:

Theorem 1. Let M, and M, be the sets of matrices defined in (1) and (2), respectively. Let U be a
feasible solution of the optimization problem (4), with corresponding value L(U). Then there exists
an orthogonal matrix U, that is an exact joint triangularizer of M, such that U can be expressed as
a perturbation of U, according to (5), with o obeying

a< “i\(U)(—i:)U + 0(a?), where (6)
min\7

N
- 1 AT ; T TorT T
= Wﬂ; TT,  Tn=Pow(1® UM, U) — (UTM]U)@ 1) Skew Bl (7)

Proof. Let U, be the exact joint triangularizer of M, that is the nearest to U and det U = det U,.
Then U = U,e®X for some unit-norm skew-symmetric matrix X and scalar o > 0. Using the
expansion e*X = I + aX + O(a?) and the fact that X is skew-symmetric, we can write, for any
n=1,...,N,

UM, U = U MU, + a[U] M,U,, X] + O(a?), (8)
where [-, -] denotes matrix commutator. Applying the low(-) operator and using the facts that
aU] MU, = aU T M,U + O(a?) and low (U M, U,) = 0, forany n = 1,..., N, we can write

alow([UT M,U, X]) = low(U " M,U) — o low(U, R,U,) + O(c?). 9)

Stacking (9) over n, then taking Frobenius norm, and applying the triangle inequality together with
the fact [[low(UJ R, U,)|| < |US R Us|| = || R|| < 1foralln =1,..., N, we get

N 3
a(Z [low([U T M, U, X])||2> < /NL(U) + oV N + 0(a?), (10)

n=1

where we used the definition of £(U) from (4). The rest of the proof involves computing a lower
bound of the left-hand side of (10) that holds for all X. Since ||low(A)|| = || Piowvec(A)]|, we can
rewrite the argument of each norm in the left-hand side of (10) as

low([UT M,U,X]) = Piow vec([U' M,U, X)) (11)
= Pow(1®UTM,U) - (UM, U)® 1) vec(X), (12)
and, due to the skew-symmetry of X, we can write
vec(X) = vec(low(X) +up(X)) = vec(low(X) — low(X) ") (13)
= Skew Low vec(X) = Skew P,/ P, vec(X). (14)
Hence, foralln = 1,..., N, we can write |[low([UT M, U, X))||? = ||T,,z||? = T T,] T, x, where

2 = Plow vec(X) and T, is defined in (7). The inequality in (6) then follows by using the inequality
2" Az > ||z]|* Amin(A), which holds for any symmetric matrix A, and noting that ||z||* = £ (since
x contains the lower triangular part of X and || X[|? = 1). O



For general M, an analytical expression of A, (7) in (6) is not available. However, it is straight-
forward to compute A, (7) numerically since all quantities in (7) are observable. Moreover, it
is possible to show (see Theorem 2) that in the limit ¢ — 0 and under certain conditions on the
ground-truth matrices in M., the operator 7 = lim,_,o 7 is nonsingular, i.e., Apin(7) > 0. Since
both 7 and L are continuous in ¢ for ¢ — 0, the boundedness of the right-hand side of (6) is
guaranteed, for o small enough, by eigenvalue perturbation theorems.

Theorem 2. The operator 7 defined in (7) obeys

VT
. A >
Hm v/ Auin (7) > SV (15)
where T' = min;> ; 555 7]:]:1()\7;(Mn) — X\;(My))?, and the matrix V is defined in (1).

The proof is given in the Appendix. The quantity I" can be interpreted as a ‘joint eigengap’ of M,, (see
also [17] for a similar definition in the context of joint diagonalization by congruence). Theorem 2
implies that lim,_,¢ Amin (7) > 0if I" > 0, and the latter is guaranteed under the following condition:

Condition 1. Foreveryi # j, i,j5 =1,...,d, there exists at leastn € {1,..., N} such that
Xi(My) # A;(M,,), where M, € M,. (16)

3 Experiments

To assess the tightness of the inequality in (6), we created a set of synthetic problems in which
the ground truth is known, and we evaluated the bounds obtained from (6) against the true values.
Each problem involved the approximate triangularization of a set of randomly generated nearly joint

diagonalizable matrices of the form M,, = VA,V ! + o R, with A,, diagonal and || R, || = 1, for

n=1,...,N. For each set M, = {M, }_,, two approximate joint triangularizers were computed
by optimizing (4) using two different iterative algorithms, the Gauss-Newton algorithm [8], and the
Jacobi algorithm [13] (our implementation), initialized with the same random orthogonal matrix. The
obtained solutions U (which may not be the global optima) were then used to compute the empirical
bound « from (6), as well as the actual distance parameter o, = || log U'u, |I, with U, being the
global optimum of the unperturbed problem (o = 0) that is closest to U and has the same determinant.
Locating the closest U, to the given U required checking all 2¢d! possible exact triangularizers of M.,
thus we restricted our empirical evaluation to the case d = 5. We considered two settings, N = 5
and N = 100, and several different noise levels obtained by varying the perturbation parameter o.

The first two graphs in Figure 1 show the value of the noise level o against the values of e = Qurye (U)
and the corresponding empirical bounds « = «a(U) from (6), where U are the solutions found by the
Gauss-Newton algorithm. (Very similar results were obtained using the Jacobi algorithm.) All values
are obtained by averaging over 10 equivalent experiments, and the errorbars show the corresponding
standard deviations. For the same set of solutions U, the third graph in Figure 1 shows the ratios ﬁ

The experiments show that, at least for small NV, the bound (6) produces a reasonable estimate of
the true perturbation parameter ay,.. However, our bound does not fully capture the concentration
that is expected (and observed in practice) for large sets of nearly jointly decomposable matrices
(note, for instance, the average value of a,,. in Figure 1, for N = 5 vs NV = 100). This is most likely
due to the introduced approximation ||low(U. R,,Us,)|| < 1 and the use of the triangle inequality in
(10) (see proof of Theorem 1), which are needed to separate the observable terms U TM,U from the
unobservable terms UJ R, Uy in the right-hand side of (9). Extra assumptions on the distribution of
the random matrices R,, can possibly allow obtaining tighter bounds in a probabilistic setting.

4 Conclusions

We addressed a joint matrix triangularization problem that involves finding an orthogonal matrix that
approximately triangularizes a set of noise-perturbed jointly diagonalizable matrices. The setting can
have many applications in statistics and signal processing, in particular in problems that reduce to a
nonsymmetric CP tensor decomposition [4, 8, 20]. The joint matrix triangularization problem can be
cast as a nonconvex optimization problem over the manifold of orthogonal matrices, and it can be
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Figure 1: The empirical bound « from (6) vs the true distance oy, on synthetic experiments.

solved numerically but with no success guarantees. We have derived a posteriori upper bounds on
the distance between any approximate triangularizer (obtained by any algorithm) and the (unknown)
solution of the underlying unperturbed problem. The bounds depend only on empirical quantities
and hence they can be used to asses the quality of any feasible solution, even when the ground truth
is not known. We established that, under certain conditions, the bounds are well defined when the
noise is small. Synthetic experiments suggest that the obtained bounds are tight enough to be useful
in practice.

In future work, we want to apply our analysis to related problems, such as nonnegative tensor
decomposition and simultaneous generalized Schur decomposition [11], and to empirically validate
the obtained bounds in machine learning applications [4].

A Proof of Theorem 2

The proof consists of two steps. The first step consists of showing that in the limit o — 0 the operator
7 defined in (7) tends to a simpler operator, 7, which depends on ground-truth quantities only. The
second step is to derive a lower bound on the smallest eigenvalue of the operator 7.

Let 7 be defined by
1 N
T T TagT
7= ﬁ;T Tpo  To = Pow(1® (U MuUo) = (US M, Us) ©1) e, (17)

where M,, € M., and U, is the exact joint triangularizer of M, that is closest to, and has the same
determinant as, U, the approximate joint triangularizer that is used to define 7. Proving that 7 — 7
as o — 0 is equivalent to showing that

To| = Pow(1®@(UTMU)~ (UM U)®1)Skew P,[,| =T,. (18)
= o=0
Since foralln = 1,..., N, one has M,, — M, when o — 0, we need to prove that U — U, and

that we can remove the Skew operator on the right.

We first show that U = U,e®X — U, thatis, « — 0 as o — 0. Assume that the descent algorithm
used to obtain U is initialized with Uyj,;; obtained from the Schur decomposition of M* € M,. Let
U, be the exact triangularizer of M, closest to Uini, and Uyp be the local optimum of the joint
triangularization objective closest to Usyi;. Then, as o — 0 one has U, — U,, by continuity of the
objective in o, and also Ujniy, — U, due to the perturbation properties of the Schur decomposition.
This implies U — U,, and hence o« — 0.

Then, it is easy to prove that Py (1 ® (U M, Us) — (US M,JU,) @ 1) Skew Pl . = Piow(1 ®
(UJ M,U,) — (UM, U,) @ 1)P by considering the action of the two operators on z =

Piowvec(X), with X = —X 7. One has
Pow(1® (Uy M,Us) — (UJ M, Us) ® 1) Skew P, = P/ vec (low[U, M, Us, X))
= P,/ vee (low[U) M, Us,low(X)]) = Pow(1 ® (UJ M,Us) — (U M, Us) @ )Pl (19)

where in the second line we used the fact that U, M, U, is upper triangular. This shows that 7 — 7
aso — 0.



The second part of the proof consists of bounding the smallest eigenvalue of 7. We will make use of
the following identity that holds when A and C' are upper triangular:

low(ABC) = low(Alow(B) C), (20)
from which we get the following identity when A and C' are upper triangular:
Low vec(ABC) = Low (C'T ® A) Low vec(B) . (21)

In particular, one has P} T,z = Lowvec([UJ] M, Us,low(X)]) = Lowvec(UJ M, Uslow(X) —
low(X)U, M,,U,) and it can be shown that!

Low vec(VA,V tow(X)) = Low (VT @ V) Low (I ® A,) Low (VT ® V1) Low vec(X) (29)
and

Low vec(low(X)VA, V™) = Low (VT @ V) Low (A, ® I) Low (V' ® V1) Low vec(X) (30)
where V and V! are upper triangular matrices defined by U, M,,U, = VA, V~1. Now, since

V= UJ V, where V is defined via the spectral decomposition M,, = V'A,,V =1, we can rewrite the
operator T, as

T, = PowUJVTRUV)Low(1®A, — A, @ Low(VIU, @ V7IU)R!,, (31)
and use the following inequality for the smallest eigenvalue of 7 = ﬁ ij:l TIT,:
1
Ami]ﬂ (7—) Z ﬁ )\min(A) )\min(B) Ami]ﬂ(C()y (32)
where
A = Pn(UVeU VTR, (33)
N
B = Plow (Z(l ® An - A" ® 1)2> ]DIIW7 (34)
n=1
C = Pow(V 0o @ VTU) Py (35)

Now, it is easy to show that Apin(A) = Amin(C) > W since the d(d—1)/2 x d(d—1)/2 matrices

A and C are obtained by deleting certain rows and columns of U] V@ U VT and V- 1U, @ VTU,
respectively. The matrix B is a diagonal matrix with entries given by

N i—1
[Bler = Y _(Anlii — [Anlj)?,  k=j—i+ Y (d—a), (36)
n=1 a=1
with 0 < i < jand j = 1,...d. This implies Ain(B) = min;<; S0 (A (My) — A;(M,))? and
. . r
Yo Anin () > - (37)
where I' = min;~ ; 75 25:1 (Xi(M,,) —X;(M,,))? is a ‘joint eigengap’ of the ground-truth matrices
M, € M. O
"For any matrix Y one has
Low vec(VA,V ) = (22)
Low vec(VA ViyvvTh) = (23)
Low (V" ® V) Low vec(A VY V) = (24)
Low (V" ® V) Low (I ® A,) Low vec(V 'Y V) = (25)
Low (V™" ® V) Low (I ® A,,) Low (V' ®@ V1) Low vec(Y) (26)
and similarly
Low vec(YVA, V') = 27
Low (VT ® V) Low (A, ® I) Low (V' ® V') Low vec(Y) (28)
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