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Abstract

Many real world graphs, such as the graphs of molecules, exhibit structure at mul-
tiple different scales, but most existing kernels between graphs are either purely
local or purely global in character. In contrast, by building a hierarchy of nested
subgraphs, the Multiscale Laplacian Graph kernels (MLG kernels) that we define
in this paper can account for structure at a range of different scales. At the heart
of the MLG construction is another new graph kernel, called the Feature Space
Laplacian Graph kernel (FLG kernel), which has the property that it can lift a
base kernel defined on the vertices of two graphs to a kernel between the graphs.
The MLG kernel applies such FLG kernels to subgraphs recursively. To make the
MLG kernel computationally feasible, we also introduce a randomized projection
procedure, similar to the Nyström method, but for RKHS operators.

1 Introduction

There is a wide range of problems in applied machine learning from web data mining [1] to pro-
tein function prediction [2] where the input space is a space of graphs. A particularly important
application domain is chemoinformatics, where the graphs capture the structure of molecules. In
the pharmaceutical industry, for example, machine learning algorithms are regularly used to screen
candidate drug compounds for safety and efficacy against specific diseases [3].

Because kernel methods neatly separate the issue of data representation from the statistical learning
component, it is natural to formulate graph learning problems in the kernel paradigm. Starting with
[4], a number of different graph kernels have appeared in the literature (for an overview, see [5]). In
general, a graph kernel k(G1,G2) must satisfy the following requirements:
1. The kernel should capture the right notion of similarity between G1 and G2. For example, if G1

and G2 are social networks, then k might capture to what extent their clustering structure, degree
distribution, etc. match. If, on the other hand, G1 and G2 are molecules, then we are probably
more interested in what functional groups are present, and how they are arranged relative to each
other.

2. The kernel is usually computed from the adjacency matrices A1 and A2 of the two graphs, but it
must be invariant to the ordering of the vertices. In other words, writing the kernel explicitly in
terms of A1 and A2, we must have k(A1, A2) = k(A1,PA2P

>) for any permutation matrix P .
Permutation invariance has proved to be the central constraint around which much of the graph
kernels literature is organized, effectively stipulating that graph kernels must be built out of graph
invariants. Efficiently computable graph invariants offered by the mathematics literature tend to fall
in one of two categories:
1. Local invariants, which can often be reduced to simply counting some local properties, such as

the number of triangles, squares, etc. that appear in G as subgraphs.
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2. Spectral invariants, which can be expressed as functions of the eigenvalues of the adjacency
matrix or the graph Laplacian.

Correspondingly, while different graph kernels are motivated in very different ways from random
walks [4] through shortest paths [6, 7] to Fourier transforms on the symmetric group [8], most graph
kernels in the literature ultimately reduce to computing a function of the two graphs that is either
purely local or purely spectral. Any of the kernels based on the “subgraph counting” idea (e.g., [9])
are local. On the other hand, most of the random walk based kernels are reducible to a spectral form
involving the eigenvalues of either the two graphs individually, or their Kronecker product [5] and
therefore are really only sensitive to the large scale structure of graphs.

In practice, it would be desirable to have a kernel that can take structure into account at multiple
different scales. A kernel between molecules, for example, should not only be sensitive to the overall
large-scale shape of the graphs (whether they are more like a chain, a ring, a chain that branches,
etc.), but also to what smaller structures (e.g., functional groups) are present in the graphs, and how
they are related to the global structure (e.g., whether a particular functional group is towards the
middle or one of the ends of a chain).

For the most part, such a multiscale graph kernel has been missing from the literature. Two notable
exceptions are the Weisfeiler–Lehman kernel [10] and Propagation Kernel [11]. The WL kernel
uses a combination of message passing and hashing to build summaries of the local neighborhoods
of vertices at different scales. While shown to be effective, the Weisfeiler–Lehman kernel’s hashing
step is somewhat ad-hoc; perturbing the edges by a small amount leads to completely different hash
features. Similarly, the propagation kernel monitors how the distribution of node/edge labels spreads
through the graph and then uses locality sensitivity hashing to efficiently bin the label distributions
into feature vectors.

Most recently, structure2vec[12] attempts to represent each graph with a latent variable model and
then embeds them into a feature space, using the inner product as a kernel. This approach compares
favorably to the standard kernel methods in both accuracy and computational efficiency.

In this paper we present a new graph kernel, the Multiscale Laplacian Graph Kernel (MLG kernel),
which, we believe, is the first kernel in the literature that can truly compare structure in graphs
simultaneously at multiple different scales. We begin by introducing the Feature Space Laplacian
Graph Kernel(FLG kernel) in Section 2. The FLG kernel operates at a single scale, while combining
information from the nodes’s vertex features with topological information through its Laplacian.
An important property of the FLG kernel is that it can work with vertex labels provided as a “base
kernel” on the vertices, which allows us to apply the FLG kernel recursively.

The MLG kernel, defined in Section 3, uses the FLG kernel’s recursive property to build a hierarchy
of subgraph kernels that are sensitive to both the topological relationships between individual ver-
tices, and between subgraphs of increasing sizes. Each kernel is defined in terms of the preceding
kernel in the hierarchy. Efficient computability is a major concern in our paper, and recursively
defined kernels on combinatorial data structures, can be very expensive. Therefore, in Section 4
we describe a strategy based on a combination of linearizing each level of the kernel (relative to a
given dataset) and a randomized low rank projection step, which reduces every stage of the kernel
computation to simple operations involving small matrices, leading to a very fast algorithm. Finally,
section 5 presents experimental comparisons of our kernel with competing methods.

2 Laplacian Graph Kernels

Let G be a weighted undirected graph with vertex set V = {v1, . . . , vn} and edge set E. Recall that
the graph Laplacian of G is an n× n matrix LG , with

LGi,j =


−wi,j if {vi, vj} ∈E∑
j : {vi,vj}∈E wi,j if i= j

0 otherwise,

wherewi,j is the weight of edge {vi, vj}. The graph Laplacian is positive semi-definite, and in terms
of the adjacency matrix A and the weighted degree matrix D it can be expressed as L=D−A.
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Spectral graph theory tells us that the low eigenvalue eigenvectors of LG are informative about the
overall shape of G. One way of seeing this is to note that for any vector z∈Rn

z>LG z =
∑
{i,j}∈E

wi,j(zi − zj)2,

so the low eigenvalue eigenvectors are the smoothest functions on G, in the sense that they vary the
least between adjacent vertices. An alternative interpretation emerges if we use G to construct a
Gaussian graphical model (Markov Random Field or MRF) over n variables x1, . . . , xn with clique
potentials φ(xi, xj) = e−wi,j(xi−xj)

2/2 for each edge and ψ(xi) = e−ηx
2
i /2 for each vertex. The

joint distribution of x = (x1, . . . , xn)
> is then

p(x) ∝
( ∏
{vi,vj}∈E

e−wi,j(xi−xj)
2/2
)( ∏

vi∈V
e−ηx

2
i /2
)

= e−x
>(L+ηI)x/2, (1)

showing that the covariance matrix of x is (LG + ηI)−1. Note that the ψ factors were added to
ensure that the distribution is normalizable, and η is typically just a small constant “regularizer”:
LG actually has a zero eigenvalue eigenvector (namely the constant vector n−1/2(1, 1, . . . , 1)>), so
without adding ηI we would not be able to invert it. In the following we will call LG + ηI the
regularized Laplacian, and denote it simply by L.

Both the above views suggest that if we want define a kernel between graphs that is sensitive to
their overall shape, comparing the low eigenvalue eigenvectors of their Laplacians is a good place
to start. Previous work by [13] also used the graph Laplacian for constructing a similarity function
on graphs. Following the MRF route, given two graphs G1 and G2 of n vertices, we can define the
kernel between them to be a kernel between the corresponding distributions p1 = N (0, L−11 ) and
p2 =N (0, L−12 ). Specifically, we will use the Bhattacharyya kernel [14]

k(p1, p2) =

∫ √
p1(x)

√
p2(x) dx, (2)

because for Gaussian distributions it can be computed in closed form, giving

k(p1, p2) =

∣∣( 1
2L1 + 1

2L2

)−1 ∣∣1/2∣∣L−11

∣∣1/4 ∣∣L−12

∣∣1/4 .

If some of the eigenvalues of L−11 or L−12 are zero or very close to zero, along certain directions
in space the two distributions in (2) become very flat, leading to vanishingly small kernel values
(unless the “flat” directions of the two Gaussians are perfectly aligned). To remedy this problem,
similarly to [15], we “soften” (or regularize) the kernel by adding some small constant γ times the
identity to L−11 and L−12 . This leads to what we call the Laplacian Graph Kernel.
Definition 1. Let G1 and G2 be two graphs with n vertices with (regularized) Laplacians L1 and
L2, respectively. We define the Laplacian graph kernel (LG kernel) with parameter γ between G1
and G2 as

kLG(G1,G2) =

∣∣( 1
2S
−1
1 + 1

2S
−1
2

)−1 ∣∣1/2
|S1 |1/4 |S2 |1/4

, (3)

where S1 =L−11 +γI and S2 =L−12 +γI .

By virtue of (2), the LG kernel is positive semi-definite, and because the value of the overlap integral
is largely determined by the extent to which the subspaces spanned by the largest eigenvalue eigen-
vectors of L−11 and L−12 are aligned, it effectively captures similarity between the overall shapes
of G1 and G2. However, the LG kernel does suffer from three major limitations: it assumes that
both graphs have the same number of vertices, it is only sensitive to the overall structure of the two
graphs, and it is not invariant to permuting the vertices. Our goal for the rest of this paper is to
overcome each of these limitations, while retaining the LG kernel’s attractive spectral interpretation.

2.1 The feature space Laplacian graph kernel (FLG kernel)

In the probabilistic view of the LG kernel, every graph generates random vectors x = (x1, . . . , xn)
>

according to (1), and the kernel between two graphs is determined by comparing the corresponding
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distributions. The invariance problem arises because the ordering of the variables x1, . . . , xn is
arbitrary: even if G1 and G2 are topologically the same, kLG(G1,G2) might be low if their vertices
happen to be numbered differently.

One of the central ideas of this paper is to address this issue by transforming from the “vertex space
variables” x1, . . . , xn to “feature space variables” y1, . . . , ym, where yi =

∑
j ti,j(xj), and each

ti,j function may only depend on j through local and reordering invariant properties of vertex vj . If
we then compute an analogous kernel to the LG kernel, but now between the distributions of the y’s
rather than the x’s, the resulting kernel will be permutation invariant.

In the simplest case, the ti,j functions are linear, i.e., ti,j(xj) = φi(vj) · xj , where (φ1, . . . , φm) is
a collection of m local (and permutation invariant) vertex features. For example, φi(vj) may be the
degree of vertex vj , or the value of hβ(vj , vj), where h is the diffusion kernel on G with length scale
parameter β (c.f., [16]). In the chemoinformatics setting, the φi’s might be some way of encoding
what type of atom is located at vertex vj .

The linear transform of a multivariate normal random variable is multivariate normal. In our case,
defining Ui,j = φi(vj)i,j and y = Ux, we have E(y) = 0 and Cov(y,y) = U Cov(x,x)U> =
UL−1U>, leading to the following kernel, which is the workhorse of the present paper.
Definition 2. Let G1 and G2 be two graphs with regularized LaplaciansL1 andL2, respectively, γ ≥
0 a parameter, and (φ1, . . . , φm) a collection of m local vertex features. Define the corresponding
feature mapping matrices

[U1]i,j = φi(vj) [U2]i,j = φi(v
′
j),

where vj is the j’th vertex of G1 and v′j is the j’th vertex of G2. The corresponding Feature space
Laplacian graph kernel (FLG kernel) is defined

kFLG(G1,G2) =

∣∣( 1
2S
−1
1 + 1

2S
−1
2

)−1 ∣∣1/2
|S1 |1/4 |S2 |1/4

, (4)

where S1 =U1L
−1
1 U>1 +γI and S2 =U2L

−1
2 U>2 +γI .

Since the φ1, . . . , φm vertex features, by definition, are local and invariant to vertex renumbering,
the FLG kernel is permutation invariant. Moreover, the distributions now live in the space of features
rather than the space defined by the vertices, so we can apply the kernel to two graphs with different
numbers of vertices. The major remaining shortcoming of the FLG kernel is that it cannot take into
account structure at multiple different scales.

2.2 The “kernelized” FLG kernel

The key to boosting kFLG to a multiscale kernel is that it itself can be “kernelized”, i.e., it can be
computed from just the inner products between the feature vectors of the vertices (which we call the
base kernel) without having to know the actual φi(vj) features values.

Definition 3. Given a collection φ = (φ1, . . . , φm)> of local vertex features, we define the corre-
sponding base kernel κ between two vertices v and v′ as the dot product of their feature vectors:
κ(v, v′) =φ(v)>φ(v′).

Note that in this definition v and v′ may be two vertices of the same graph, or of two different graphs.
We first show that, similarly to other kernel methods [17], to compute kFLG(G1,G2) one only needs
to consider the subspace of Rm spanned by the feature vectors of their vertices.
Proposition 1. Let G1 and G2 be two graphs with vertex sets V1 = {v1 . . . vn1

} and V2 =
{v′1 . . . v′n2

}, and let {ξ1, . . . , ξp} be an orthonormal basis for the subspace
W = span

{
φ(v1), . . . ,φ(vn1

),φ(v′1), . . . ,φ(v′n2
)
}
.

dim(W ) = p. Then, (4) can be rewritten as

kFLG(G1,G2) =

∣∣( 1
2S
−1
1 + 1

2S
−1
2

)−1 ∣∣1/2
|S1 |1/4 |S2 |1/4

, (5)

where [S1]i,j = ξ>i S1ξj and [S2]i,j = ξ>i S2ξj . In other words, S1 and S2 are the projections of S1

and S2 to W .
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Similarly to kernel PCA [18] or the Bhattacharyya kernel [15], the easiest way to construct the basis
{ξ1, . . . , ξp} required by (5) is to compute the eigendecomposition of the joint Gram matrix of the
vertices of the two graphs.

Proposition 2. Let G1 and G be as in Proposition 1, V = {v1, . . . , vn1+n2
} be the union of their

vertex sets (where it is assumed that the first n1 vertices are {v1, . . . , vn1} and the second n2 vertices
are
{
v′1, . . . , v

′
n2

}
), and define the joint Gram matrix K ∈R(n1+n2)×(n1+n2) as

Ki,j = κ(vi, vj) = φ(vi)
>φ(vj).

Let u1, . . . ,up be a maximal orthonormal set of the non-zero eigenvalue eigenvectors of K with
corresponding eigenvalues. Then the vectors

ξi =
1√
λi

n1+n2∑
`=1

[ui]` φ(v`) (6)

form an orthonormal basis for W . Moreover, defining Q = [λ
1/2
1 u1, . . . , λ

1/2
p up] ∈ Rp×p and

setting Q1 = Q1:n1, : and Q2 = Qn1+1:n2, : (the first n1 and remaining n2 rows of Q, respectively),
the matrices S1 and S2 appearing in (5) can be computed as

S1 = Q>1 L
−1
1 Q1 + γI, S2 = Q>2 L

−1
2 Q2 + γI. (7)

Proofs of these two propositions are given in the Supplemental Material. As in other kernel methods,
the significance of Propositions 1 and 2 is not just that they show how kFLG(G1,G2) can be efficiently
computed when φ is very high dimensional, but that they make it clear that the FLG kernel may
be induced from any base kernel. For completeness, we close this section with the generalized
definition of the FLG kernel.
Definition 4. Let G1 and G2 be two graphs. Assume that each of their vertices comes from an
abstract vertex space V and that κ : V × V → R is a symmetric positive semi-definite kernel on V .
The generalized FLG kernel induced from κ is then defined as

kκFLG(G1,G2) =

∣∣( 1
2S
−1
1 + 1

2S
−1
2

)−1 ∣∣1/2
|S1 |1/4 |S2 |1/4

, (8)

where S1 and S2 are as defined in Proposition 2.

3 The multiscale Laplacian graph kernel (MLG kernel)

By multiscale graph kernel we mean a kernel that is able to capture similarity between graphs not
just based on the topological relationships between their individual vertices, but also the topological
relationships between subgraphs. The key property of the FLG kernel that allows us to build such a
kernel is that it can be applied recursively. In broad terms, the construction goes as follows:
1. Given a graph G, associate each vertex with a subgraph centered around it and compute the FLG

kernel between every pair of these subgraphs.
2. Reinterpret the FLG kernel between these subgraphs as a new base kernel between the center

vertices of the subgraphs.
3. Consider larger subgraphs centered at each vertex, compute the FLG kernel between them in-

duced from the new base kernel constructed in the previous step, and recurse.
To compute the actual multiscale graph kernel K between G and another graph G′, we follow the
same process for G′ and then set K(G,G′) equal to the FLG kernel induced from their top level base
kernels. The following definitions formalize this construction.
Definition 5. Let G be a graph with vertex set V , and κ a positive semi-definite kernel on V . Assume
that for each v ∈ V we have a nested sequence of L neighborhoods

v ∈N1(v) ⊆ N2(v) ⊆ . . . ⊆ NL(v) ⊆ V, (9)

and for eachN`(v), letG`(v) be the corresponding induced subgraph of G. We define the Multiscale
Laplacian Subgraph Kernels (MLS kernels), K1, . . . ,KL : V × V → R as follows:
1. K1 is just the FLG kernel kκFLG induced from the base kernel κ between the lowest level subgraphs:

K1(v, v′) = kκFLG(G1(v), G1(v′)).
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2. For ` = 2, 3, . . . , L, K` is the FLG kernel induced from K`−1 between G`(v) and G`(v′):

K`(v, v
′) = k

K`−1

FLG (G`(v), G`(v
′)).

Definition 5 defines the MLS kernel as a kernel between different subgraphs of the same graph G.
However, if two graphs G1 and G2 share the same base kernel, the MLS kernel can also be used to
compare any subgraph of G1 with any subgraph of G2. This is what allows us to define an L+1’th
FLG kernel, which compares the two full graphs.
Definition 6. Let G be a collection of graphs such that all their vertices are members of an abstract
vertex space V endowed with a symmetric positive semi-definite kernel κ : V ×V → R. Assume that
the MLS kernels K1, . . . ,KL are defined as in Definition 5, both for pairs of subgraphs within the
same graph and across pairs of different graphs. We define the Multiscale Laplacian Graph Kernel
(MLG kernel) between any two graphs G1,G2 ∈G as

K(G1,G2) = kKL

FLG(G1,G2).

Definition 5 leaves open the question of how the neighborhoodsN1(v), . . . , NL(v) are to be defined.
In the simplest case, we set N`(v) to be the ball Br(v) (i.e., the set of vertices at a distance at most
r from v), where r = r0d

`−1 for some d> 1.

3.1 Computational complexity

Definitions 5 and 6 suggest a recursive approach to computing the MLG kernel: computing
K(G1,G2) first requires computing KL(v, v′) between all

(
n1+n2

2

)
pairs of top level subgraphs across

G1 and G2; each of these kernel evaluations requires computing KL−1(v, v′) between up to O(n2)
level L− 1 subgraphs, and so on. Following this recursion blindly would require up to O(n2L+2)
kernel evaluations, which is clearly infeasible.

The recursive strategy is wasteful because it involves evaluating the same kernel entries over and
over again in different parts of the recursion tree. An alternative solution that requires only O(Ln2)
kernel evaluations would be to first compute K1(v, v′) for all (v, v′) pairs, then compute K2(v, v′)
for all (v, v′) pairs and so on.

4 Linearized Kernels and Low Rank Approximation

Computing the MLG kernel between two graphs, as described in the previous section, may in-
volve O(Ln2) kernel evaluations. At the top levels of the hierarchy each G`(v) might have Θ(n)
vertices, so the cost of a single FLG kernel evaluation can be as high as O(n3). Somewhat pes-
simistically, this means that the overall cost of computing kFLG(G1,G2) is O(Ln5). Given a dataset
of M graphs, computing their Gram matrix requires repeating this for all {G1,G2} pairs, giving
O(LM2n5), which is even more problematic. The solution that we propose in this section is to
compute for each level ` = 1, 2, . . . , L+ 1 a single joint basis for all subgraphs at the given level
across all graphs G1, . . . ,GM . For concreteness, we go back to the definition of the FLG kernel.
Definition 7. Let G = {G1, . . . ,GM} be a collection of graphs, V1, . . . , VM their vertex sets, and
assume that V1, . . . , VM ⊆ V for some general vertex space V . Further, assume that κ : V ×V → R
is a positive semi-definite kernel on V ,Hκ is its Reproducing Kernel Hilbert Space, and φ : V → Hκ
is the corresponding feature map satisfying κ(v, v′) = 〈φ(v), φ(v′)〉 for any v, v′ ∈ V . The joint
vertex feature space of {G1, . . . ,GM} is then WG = span

{⋃M
i=1

⋃
v∈Vi
{φ(v)}

}
.

WG is just the generalization of the W space defined in Proposition 1 from two graphs to M . The
following generalization of Propositions 1 and 2 is then immediate.

Proposition 3. Let N =
∑M
i=1 |Vi |, V = (v1, . . . , vN ) be the concatenation of the vertex sets

V1, . . . , VM , and K the corresponding joint Gram matrix Ki,j = κ(vi, vj) = 〈φ(vi), φ(vj)〉 . Let
u1, . . . ,uP be a maximal orthonormal set of non-zero eigenvalue eigenvectors of K with corre-
sponding eigenvalues λ1, . . . , λP , and P = dim(WG). Then the vectors

ξi =
1√
λi

N∑
`=1

[ui]` φ(v`) i = 1, . . . , P

6



form an orthonormal basis for WG. Moreover, defining Q = [λ
1/2
1 u1, . . . , λ

1/2
p uP ] ∈ RP×P , and

setting Q1 to be the submatrix of Q composed of its first |V1| rows; Q2 be the submatrix composed
of the next |V2| rows, and so on, for any Gi,Gj ∈ G, the generalized FLG kernel induced from κ
(Definition 4) can be expressed as

kFLG(Gi,Gj) =

∣∣( 1
2S
−1
i + 1

2S
−1
j

)−1 ∣∣1/2
|Si |1/4 |Sj |1/4

, (10)

where Si = Q>i L
−1
i Qi + γI and Sj = Q>j L

−1
j Qj + γI .

The significance of Proposition 3 is that S1, . . . , SM are now fixed matrices that do not need to be
recomputed for each kernel evaluation. Once we have constructed the joint basis {ξ1, . . . , ξP }, the
Si matrix of each graph Gi can be computed independently, as a precomputation step, and individual
kernel evaluations reduce to just plugging them into (10). At a conceptual level, Proposition 3
linearizes the kernel κ by projecting everything down to WG. In particular, it replaces the {φ(vi)}
RKHS vectors with explicit finite dimensional feature vectors given by the corresponding rows of
Q, just like we had in the “unkernelized” FLG kernel of Definition 2.

For our multiscale kernels this is particularly important, because linearizing not just kκFLG, but also
kK1

FLG, k
K2

FLG, . . ., allows us to compute the MLG kernel level by level, without recursion. After lin-
earizing the base kernel κ, we attach explicit, finite dimensional vectors to each vertex of each graph.
Then we compute compute kK1

FLG between all pairs of lowest level subgraphs, and linearizing this ker-
nel as well, each vertex effectively just gets an updated feature vector. Then we repeat the process
for kK2

FLG . . . k
KL

FLG, and finally we compute the MLG kernel K(G1,G2).

4.1 Randomized low rank approximation

The difficulty in the above approach of course is that at each level (3) is a Gram matrix between all
vertices of all graphs, so storing it is already very costly, let along computing its eigendecomposition.
Morever, P = dim(WG) is also very large, so managing the S1, . . . , SM matrices (each of which is
of size P×P ) becomes infeasible. The natural alternative is to replaceWG by a smaller, approximate
joint features space, defined as follows.

Definition 8. Let G, κ,Hκ and φ be defined as in Definition 7. Let Ṽ = (ṽ1, . . . , ṽÑ ) be Ñ �N

vertices sampled from the joint vertex set V = (v1, . . . , vN ). Then the corresponding subsampled
vertex feature space is

W̃G = span{ φ(ṽ) | ṽ ∈ Ṽ }.

Let P̃ = dim(W̃G). Similarly to before, we construct an orthonormal basis {ξ1, . . . , ξP̃ } for W̃G

by forming the (now much smaller) Gram matrix K̃i,j = κ(ṽi, ṽj), computing its eigenvalues and

eigenvectors, and setting ξi = 1√
λi

∑Ñ
`=1[ui]` φ(ṽ`). The resulting approximate FLG kernel is

kFLG(Gi,Gj) =

∣∣( 1
2 S̃
−1
i + 1

2 S̃
−1
j

)−1 ∣∣1/2
|S̃i |1/4 |S̃j |1/4

, (11)

where S̃i = Q̃>i L
−1
i Q̃i + γI and S̃j = Q̃>j L

−1
j Q̃j + γI are the projections of Si and Sj to W̃G.

We introduce a further layer of approximation by restricting W̃G to be the space spanned by the
first P̂ < P̃ basis vectors (ordered by descending eigenvalue), effectively doing kernel PCA on
{φ(ṽ)}ṽ∈Ṽ , equivalently, a low rank approximation of K̃.

Assuming that vgj is the j’th vertex of Gg , in contrast to Proposition 2, now the j’th row of Q̃s
consists of the coordinates of the projection of φ(vgj ) onto W̃G, i.e.,

[Q̃g]j,i =
1√
λi

Ñ∑
`=1

[ui]`
〈
φ(vgj ), φ(ṽ`)

〉
=

1√
λi

Ñ∑
`=1

[ui]` κ(vgj , ṽ`).

The above procedure is similar to the popular Nyström approximation for kernel matrices [19, 20],
except that in our case the ultimate goal is not to approximate the Gram matrix (3), but the
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Table 1: Classification Results (Mean Accuracy ± Standard Deviation)
Method MUTAG[22] PTC[23] ENZYMES[2] PROTEINS[2] NCI1[24] NCI109[24]
WL 84.50(±2.16) 59.97(±1.60) 53.75(±1.37) 75.43(±1.95) 84.76(±0.32) 85.12(±0.29)
WL-Edge 82.94(±2.33) 60.18(±2.19) 52.00(±0.72) 73.63(±2.12) 84.65(±0.25) 85.32(±0.34)
SP 85.50(±2.50) 59.53(±1.71) 42.31(±1.37) 75.61(±0.45) 73.61(±0.36) 73.23(±0.26)
Graphlet 82.44(±1.29) 55.88(±0.31) 30.95(±0.73) 71.63(±0.33) 62.40(±0.27) 62.35(±0.28)
p–RW 80.33(±1.35) 59.85(±0.95) 28.17(±0.76) 71.67(±0.78) TIMED OUT TIMED OUT
MLG 84.21(±2.61) 63.62(±4.69) 57.92(±5.39) 76.14(±1.95) 80.83(±1.29) 81.30(±0.80)

S1, . . . , SM matrices used to form the FLG kernel. In practice, we found that the eigenvalues of
K usually drop off very rapidly, suggesting that W can be safely approximated by a surprisingly
small dimensional subspace (P̂ ∼ 10), and correspondingly the sample size Ñ can be kept quite
small as well (on the order of 100). The combination of these two factors makes computing the
entire stack of kernels feasible, reducing the complexity of computing the Gram matrix for a dataset
of M graphs of θ(n) vertices each to O(MLÑ2P̂ 3 + MLÑ3 + M2P̂ 3). It is also important to
note that this linearization step requires the graphs(not the labels) in the test set to be known during
training in order to project the features of the test graphs onto the low rank approximation of W̃G.

5 Experiments

We tested the efficacy of the MLG kernel by performing classification on benchmark bioinformatics
datasets using a binary C-SVM solver [21], and compared our classification results against those
from other representative graph kernels from the literature: the Weisfeiler–Lehman Kernel, the
Weisfeiler–Lehman Edge Kernel [9], the Shortest Path Kernel [6], the Graphlet Kernel [9], and
the p-random Walk Kernel [5].

We randomly selected 20% of each dataset to be used as a test set. On the other 80% we did 10 fold
cross validation to select the parameters for each kernel method to be used on the test set and repeated
this setup 10 times. For the Weisfeiler–Lehman kernels, the height parameter h is chosen from
{1, 2, ..., 5}, the random walk size p for the p-random walk kernel was chosen from {1, 2, ..., 5},
for the Graphlets kernel the graphlet size n was chosen from {3, 4, 5}. For the parameters of the
MLG kernel: we chose η from {0.01, 0.1, 1}, radius size n from {1, 2, 3}, number of levels l from
{1, 2, 3}, and fixed gamma to be 0.01. For the MLG kernel, we used the given discrete node labels to
create a one-hot binary feature vector for each node and used the dot product between nodes’ binary
feature vector labels as the base kernel. All experiments were done on a 16 core Intel E5-2670 @
2.6GHz processor with 32 GB of memory.

We are fairly competitive in accuracy for all datasets except NCI1, and NCI109, where it performs
better than all non-Weisfeiler Lehman kernels. The Supplementary Materials give a more detailed
discussion of the experiments and datasets.

6 Conclusions

In this paper we have proposed two new graph kernels: (1) The FLG kernel, which is a very simple
single level kernel that combines information attached to the vertices with the graph Laplacian; (2)
The MLG kernel, which is a multilevel, recursively defined kernel that captures topological relation-
ships between not just individual vertices, but also subgraphs. Clearly, designing kernels that can
optimally take into account the multiscale structure of actual chemical compounds is a challenging
task that will require further work and domain knowledge. However, it is encouraging that even just
“straight out of the box”, tuning only two or three parameters, the MLG kernel is competitive with
other well known kernels in the literature. Beyond just graphs, the general idea of multiscale kernels
is of interest for other types of data as well (such as images) that have multiresolution structure, and
the way that the MLG kernel chains together local spectral analysis at multiple scales is potentially
applicable to these domains as well, which will be the subject of further research.
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