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Abstract

The stochastic block model (SBM) has long been studied in machine learning and
network science as a canonical model for clustering and community detection. In
the recent years, new developments have demonstrated the presence of threshold
phenomena for this model, which have set new challenges for algorithms. For
the detection problem in symmetric SBMs, Decelle et al. conjectured that the
so-called Kesten-Stigum (KS) threshold can be achieved efficiently. This was
proved for two communities, but remained open for three and more communities.
We prove this conjecture here, obtaining a general result that applies to arbitrary
SBMs with linear size communities. The developed algorithm is a linearized
acyclic belief propagation (ABP) algorithm, which mitigates the effects of cycles
while provably achieving the KS threshold in O(n lnn) time. This extends prior
methods by achieving universally the KS threshold while reducing or preserving the
computational complexity. ABP is also connected to a power iteration method on a
generalized nonbacktracking operator, formalizing the spectral-message passing
interplay described in Krzakala et al., and extending results from Bordenave et al.

1 Introduction

The stochastic block model (SBM) is widely used as a model for community detection and as a
benchmark for clustering algorithms. The model emerged in multiple scientific communities, in
machine learning and statistics under the SBM [1, 2, 3, 4], in computer science as the planted partition
model [5, 6, 7], and in mathematics as the inhomogeneous random graph model [8]. Although the
model was defined as far back as the 80s, mainly studied for the exact recovery problem, it resurged
in the recent years due in part to fascinating conjectures on the detection problem, established in
[9] (and backed in [10]) from deep but non-rigorous statistical physics arguments. For efficient
algorithms, the following was conjectured:

Conjecture 1. (See formal definitions below) In the stochastic block model with n vertices, k
balanced communities, edge probability a/n inside the communities and b/n across, it is possible to
detect communities in polynomial time if and only if

(a− b)2

k(a+ (k − 1)b)
> 1. (1)

In other words, the problem of detecting efficiently communities is conjectured to have a sharp
threshold at the above, which is called the Kesten-Stigum (KS) threshold. Establishing such thresholds
is of primary importance for the developments of algorithms. A prominent example is Shannon’s
coding theorem, that gives a sharp threshold for coding algorithms at the channel capacity, and
which has led the development of coding algorithms used in communication standards. In the area of
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clustering, where establishing rigorous benchmarks is a challenge, the quest of sharp thresholds is
likely to also have fruitful outcomes.

Interestingly, classical clustering algorithms do not seem to suffice for achieving the threshold in (1).
This includes spectral methods based on the adjacency matrix or Laplacians, as well as SDPs. For
standard spectral methods, a first issue is that the fluctuations in the node degrees produce high-degree
nodes that disrupt the eigenvectors from concentrating on the clusters. This issue is further enhanced
on real networks where degree variations are important. A classical trick is to trim such high-degree
nodes [11, 12], throwing away some information, but this does not seem to suffice. SDPs are a natural
alternative, but they also stumble before the threshold [13, 14], focusing on the most likely rather
than typical clusterings.

Significant progress has already been achieved on Conjecture 1. In particular, the conjecture is set
for k = 2, with the achievability part proved in [15, 16] and [17], and the impossibility part in [10].
Achievability results were also obtained in [17] for SBMs with multiple communities that satisfy a
certain asymmetry condition (see Theorem 5 in [17]). Conjecture 1 remained open for k ≥ 3.

In their original paper [9], Decelle et al. conjectured that belief propagation (BP) achieves the KS
threshold. The main issue when applying BP to the SBM is the classical one: the presence of cycles
in the graph makes the behavior of the algorithm difficult to understand, and BP is susceptible to
settle down in the wrong fixed points. While empirical studies of BP on loopy graph have shown
that convergence still takes place in some cases [18], obtaining rigorous results in the context of
loopy graphs remains a long standing challenge for message passing algorithms, and achieving the
KS threshold requires precisely running BP to an extent where the graph is not even tree-like. We
address this challenge in the present paper, with a linearized version of BP that mitigates cycles.

Note that establishing formally the converse of Conjecture 1 (i.e., that efficient detection is impossible
below the threshold) for arbitrary k seems out of reach at the moment, as the problem behaves very
differently for small rather than arbitrary k. Indeed, except for a few low values of k, it is proven in
[19, 20] that the threshold in (1) does not coincide with the information-theoretic threshold. Since it
is possible to detect below the threshold with non-efficient algorithms, proving formally the converse
of Conjecture 1 would require major headways in complexity theory. On the other hand, [9] provides
already non-rigourous arguments that the converse hold.

1.1 This paper

This paper proves the achievability part of conjecture 1. Our main result applies to a more general
context, with a generalized notion of detection that applies to arbitrary SBMs. In particular,

• we show that an approximate belief propagation (ABP) algorithm that mitigates cycles achieves
the KS threshold universally. The simplest linearized1 version of BP is to repeatedly update
beliefs about a vertex’s community based on its neighbor’s suspected communities while avoiding
backtrack. However, this only works ideally if the graph is a tree. The correct response to a
cycle would be to discount information reaching the vertex along either branch of the cycle to
compensate for the redundancy of the two branches. Due to computational issues we simply
prevent information from cycling around constant size cycles.

• we show how ABP can be interpreted as a power iteration method on a generalized r-
nonbacktracking operator, i.e., a spectral algorithm that uses a matrix counting the number of
r-nonbacktracking walks rather than the adjacency matrix. The random initialization of the beliefs
in ABP corresponds to the random vector to which the power iteration is applied, formalizing the
connection described in [22]. While using r = 2 backtracks may suffice to achieve the threshold,
larger backtracks are likely to help mitigating the presence of small loops in networks.

Our results are closest to [16, 17], while diverging in several key parts. A few technical expansions in
the paper are similar to those carried in [16], such as the weighted sums over nonbacktracking walks
and the SAW decomposition in [16], similar to our compensated nonbacktracking walk counts and
Shard decomposition. Our modifications are developed to cope with the general SBM, in particular
to compensation for the dominant eigenvalues in the latter setting. Our algorithm complexity is also
slightly reduced by a logarithmic factor.

1Other forms of approximate message passing algorithms have been studied for dense graphs, in particular
[21] for compressed sensing.
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Our algorithm is also closely related to [17], which focuses on extracting the eigenvectors of the
standard nonbacktracking operator. Our proof technique is different than the one in [17], so that we
can cope with the setting of Conjecture 1. We also implement the eigenvector extractions in a belief
propagation fashion. Another difference with [17] is that we rely on nonbacktracking operators of
higher orders r. While r = 2 is arguably the simplest implementation and may suffice for the sole
purpose of achieving the KS threshold, a larger r is likely to be beneficial in practice. For example,
an adversary may add triangles for which ABP with r = 2 would fail while larger r would succeed.
Finally, the approach of ABP can be extended beyond the linearized setting to move from detection
to an optimal accuracy as discussed in Section 5.

2 Results

2.1 A general notion of detection

The stochastic block model (SBM) is a random graph model with clusters defined as follows.

Definition 1. For k ∈ Z+, a probability distribution p ∈ (0, 1)k, a k × k symmetric matrix Q with
nonnegative entries, and n ∈ Z+, we define SBM(n, p,Q/n) as the probability distribution over
ordered pairs (σ,G) of an assignment of vertices to one of k communities and an n-vertex graph
generated by the following procedure. First, each vertex v ∈ V (G) is independently assigned a
community σv under the probability distribution p. Then, for every v 6= v′, an edge is drawn in G
between v and v′ with probability Qσv,σv′/n, independently of other edges. We sometimes say that
G is drawn under SBM(n, p,Q/n) without specifying σ and define Ωi = {v : σv = i}.
Definition 2. The SBM is called symmetric if p is uniform and if Q takes the same value on the
diagonal and the same value off the diagonal.

Our goal is to find an algorithm that can distinguish between vertices from one community and
vertices from another community in a non trivial way.

Definition 3. Let A be an algorithm that takes a graph as input and outputs a partition of its vertices
into two sets. A solves detection (or weak recovery) in graphs drawn from SBM(n, p,Q/n) if
there exists ε > 0 such that the following holds. When (σ,G) is drawn from SBM(n, p,Q/n) and
A(G) divides its vertices into S and Sc, with probability 1 − o(1), there exist i, j ∈ [k] such that
|Ωi ∩ S|/|Ωi| − |Ωj ∩ S|/|Ωj | > ε.

In other words, an algorithm solves detection if it divides the graph’s vertices into two sets such that
vertices from different communities have different probabilities of being assigned to one of the sets.
An alternate definition (see for example Decelle et al. [9]) requires the algorithm to divide the vertices
into k sets such that there exists ε > 0 for which there exists an identification of the sets with the
communities labelling at least max pi + ε of the vertices correctly with high probability. In the 2
community symmetric case, the two definitions are equivalent. In a two community asymmetric case
where p = (.2, .8), an algorithm that could find a set containing 2/3 of the vertices from the large
community and 1/3 of the vertices from the small community would satisfy Definition 3, however, it
would not satisfy previous definition due to the biased prior. If all communities have the same size,
this distinction is meaningless and we have the following equivalence:

Lemma 1. Let k > 0, Q be a k × k symmetric matrix with nonnegative entries, p be the uni-
form distribution over k sets, and A be an algorithm that solves detection in graphs drawn from
SBM(n, p,Q/n). Then A also solves detection according to Decelle et al.’s criterion [9], provided
that we consider it as returning k − 2 empty sets in addition to its actual output.

Proof. Let (σ,G) ∼ SBM(n, p,Q/n) and A(G) return S and S′. There exists ε > 0 such that with
high probability (whp) there exist i, j such that |Ωi ∩ S|/|Ωi| − |Ωj ∩ S|/|Ωj | > ε. So, if we map S
to community i and S′ to community j, the algorithm classifies at least |Ωi ∩ S|/n+ |Ωj ∩ S′|/n =
|Ωj |/n+ |Ωi ∩ S|/n− |Ωj ∩ S|/n ≥ 1/k + ε/k − o(1) of the vertices correctly whp.

2.2 Achieving efficiently and universally the KS threshold

Given parameters p and Q for the SBM, let P be the diagonal matrix such that Pi,i = pi for each
i ∈ [k]. Also, let λ1, ..., λh be the distinct eigenvalues of PQ in order of nonincreasing magnitude.
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Definition 4. The signal to noise ratio of SBM(n, p,Q/n) is defined by SNR := λ2
2/λ1.

Theorem 1. Let k ∈ Z+, p ∈ (0, 1)k be a probability distribution, Q be a k × k symmetric matrix
with nonnegative entries, and G be drawn under SBM(n, p,Q/n). If SNR > 1, then there exist
r ∈ Z+, c > 0, and m : Z+ → Z+ such that ABP(G,m(n), r, c, (λ1, ..., λh)) described in the next
section solves detection and runs in O(n log n) time.

For the symmetric SBM, this settles the achievability part of Conjecture 1, as the condition SNR > 1

reads in this case SNR = (a−bk )2/(a+(k−1)b
k ) = (a− b)2/(k(a+ (k − 1)b)) > 1.

3 The linearized acyclic belief propagation algorithm (ABP)

3.1 Vanilla version

We present first a simplified version of our algorithm that captures the essence of the algorithm while
avoiding technicalities required for the proof, described in Section 3.3.

ABP∗(G,m, r, λ1):

1. For each vertex v, randomly draw xv with a Normal distribution. For all adjacent v, v′ in G, set
y

(1)
v,v′ = xv′ and set y(t)

v,v′ = 0 whenever t < 1.
2. For each 1 < t ≤ m, set

z
(t−1)
v,v′ = y

(t−1)
v,v′ −

1

2|E(G)|
∑

(v′′,v′′′)∈E(G)

y
(t−1)
v′′,v′′′ (2)

for all adjacent v, v′. For each adjacent v, v′ that are not part of a cycle of length r or less, set

y
(t)
v,v′ =

∑
v′′:(v′,v′′)∈E(G),v′′ 6=v

z
(t−1)
v′,v′′

and for the other adjacent v, v′ in G, let the other vertex in the cycle that is adjacent to v be v′′′,
the length of the cycle be r′, and set

y
(t)
v,v′ =

∑
v′′:(v′,v′′)∈E(G),v′′ 6=v

z
(t−1)
v′,v′′ −

∑
v′′:(v,v′′)∈E(G),v′′ 6=v′,v′′ 6=v′′′

z
(t−r′)
v,v′′

unless t = r′, in which case, set y(t)
v,v′ =

∑
v′′:(v′,v′′)∈E(G),v′′ 6=v z

(t−1)
v′,v′′ − z

(1)
v′′′,v .

3. Set y′v =
∑
v′:(v′,v)∈E(G) y

(m)
v,v′ for every v ∈ G and return ({v : y′v > 0}, {v : y′v ≤ 0}).

Remarks. (1) In the r = 2 case, one can exit step 2 after the second line. As mentioned above, we
rely on a less compact version of the algorithm to prove the theorem, but expect that the above also
succeeds at detection as long as m > 2 ln(n)/ ln(SNR).

(2) What the algorithm does if (v, v′) is in multiple cycles of length r or less
is unspecified as there is no such edge with probability 1 − o(1) in the sparse
SBM. This can be modified for more general settings, applying the adjustment in-
dependently for each such cycle, setting y

(t)
v,v′ =

∑
v′′:(v′,v′′)∈E(G),v′′ 6=v z

(t−1)
v′,v′′ −∑r

r′=1

∑
v′′′:(v,v′′′)∈E(G) C

(r′)
v′′′,v,v′

∑
v′′:(v,v′′)∈E(G),v′′ 6=v′,v′′ 6=v′′′ z

(t−r′)
v,v′′ , where C

(r′)
v′′′,v,v′ de-

notes the number of length r′ cycles that contain v′′′, v, v′ as consecutive vertices.

(3) The purpose of setting z(t−1)
v,v′ as in step (2) is to ensure that the average value of the y(t) is

approximately 0, and thus that the eventual division of the vertices into two sets is roughly even. An
alternate way of doing this is to simply let z(t−1)

v,v′ = y
(t−1)
v,v′ and then compensate for any bias of y(t)

towards positive or negative values at the end. More specifically, define Y to be the n×mmatrix such
that for all t and v, Yv,t =

∑
v′:(v′,v)∈E(G) y

(t)
v,v′ , and M to be the m×m matrix such that Mi,i = 1

and Mi,i+1 = −λ1 for all i, and all other entries of M are equal to 0. Then set y′ = YMm′
em,

where em ∈ Rm denotes the unit vector with 1 in the m-th entry, and m′ is a suitable integer.
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3.2 Spectral implementation

One way of looking at this algorithm for r = 2 is the following. Given a vertex v in community i,
the expected number of vertices v′ in community j that are adjacent to v is approximately ej · PQei.
For any such v′ the expected number of vertices in community j′ that are adjacent to v′ not counting
v is approximately ej′ · PQej , and so on. In order to explore this connection, define the graph’s
nonbacktracking walk matrix W as the 2|E(G)| × 2|E(G)| matrix such that for all v ∈ V (G) and
all distinct v′ and v′′ adjacent to v, W(v,v′′),(v′,v) = 1, and all other entries in W are 0.

Now, let w be an eigenvector of PQ with eigenvalue λi and w ∈ R2|E(G)| be the vector such that
w(v,v′) = wσv′/pσv′ for all (v, v′) ∈ E(G). For any small t, we would expect that w ·W tw ≈
λti||w||22, which strongly suggests that w is correlated with an eigenvector of W with eigenvalue λi.
For any such w with i > 1, dividing G’s vertices into those with positive entries in w and those
with negative entries in w would put all vertices from some communities in the first set, and all
vertices from the other communities in the second. So, we suspect that an eigenvector of W with its
eigenvalue of second greatest magnitude would have entries that are correlated with the corresponding
vertices’ communities.

We could simply extract this eigenvector, but a faster approach would be to take a random vector
y and then compute Wmy for some suitably large m. That will be approximately equal to a
linear combination of W ’s dominant eigenvectors. Its dominant eigenvector is expected to have an
eigenvalue of approximately λ1 and to have all of its entries approximately equal, so if instead we
compute (W − λ1

2|E(G)|J)my where J is the vector with all entries equal to 1, the component of y
proportional to W ’s dominant eigenvector will be reduced to negligable magnitude, leaving a vector
that is approximately proportional to W ’s eigenvector of second largest eigenvalue. This is essentially
what the ABP algorithm does for r = 2.

This vanilla approach does however not extend obviously to the case with multiple eigenvalues. In
such cases, we will have to subtract multiples of the identity matrix instead of J because we will
not know enough about W ’s eigenvectors to find a matrix that cancels out one of them in particular.
These are significant challenges to overcome to prove the general result and Conjecture 1.

For higher values of r, the spectral view of ABP can be understood as described above but introducing
the following generalized nonbacktracking operator as a replacement to W :

Definition 5. Given a graph, define the r-nonbacktracking matrix W (r) of dimension equal to the
number of r − 1 directed paths in the graph and with entry W (r)

(v1,v2,...,vr),(v′1,v
′
2,...,v

′
r) equal to 1 if

v′i+1 = vi for each 1 ≤ i < r and v′1 6= vr, and equal to 0 otherwise.

Figure 1: Two paths of length 3 that contribute to an entry of 1 in W (4).

3.3 Full version

The main modifications in the proof are as follows. First, at the end we assign vertices to sets with
probabilities that scale linearly with their entries in y′ instead of simply assigning them based on the
signs of their entries. This allows us to convert the fact that the average values of y′v for v in different
communities is different into a detection result. Second, we remove a small fraction of the edges
from the graph at random at the beginning of the algorithm (the graph-splitting step), defining y′′v
to be the sum of y′v′ over all v′ connected to v by paths of a suitable length with removed edges at
their ends in order to eliminate some dependency issues. Also, instead of just compensating for PQ’s
dominant eigenvalue, we also compensate for some of its smaller eigenvalues, and subtract multiples
of y(t−1) from y(t) for some t instead of subtracting the average value of y(t) from all of its entries
for all t. We refer to [19] for the full description of the algorithm. Note that while it is easier to prove
that the ABP algorithm works, the ABP∗ algorithm should work at least as well in practice.
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4 Proof technique

For simplicity, consider first the two community symmetric case. Consider determining the commu-
nity of v using belief propagation, assuming some preliminary guesses about the vertices t edges
away from it, and assuming that the subgraph ofG induced by the vertices within t edges of v is a tree.
For any vertex v′ such that d(v, v′) < t, let Cv′ be the set of the children of v′. If we believe based
on either our prior knowledge or propagation of beliefs up to these vertices that v′′ is in community 1
with probability 1

2 + 1
2εv′′ for each v′′ ∈ Cv′ , then the algorithm will conclude that v′ is in community

1 with a probability of ∏
v′′∈Cv′ (

a+b
2 + a−b

2 εv′′)∏
v′′∈Cv′ (

a+b
2 + a−b

2 εv′′) +
∏
v′′∈Cv′ (

a+b
2 −

a−b
2 εv′′)

.

If all of the εv′′ are close to 0, then this is approximately equal to (see also [9, 22])

1 +
∑
v′′∈Cv′

a−b
a+b εv′′

2 +
∑
v′′∈Cv′

a−b
a+b εv′′ +

∑
v′′∈Cv′ (−1)a−ba+b εv′′

=
1

2
+
a− b
a+ b

∑
v′′∈Cv′

1

2
εv′′ .

That means that the belief propagation algorithm will ultimately assign an average probability of
approximately 1

2 + 1
2 (a−ba+b )

t
∑
v′′:d(v,v′′)=t εv′′ to the possibility that v is in community 1. If there

exists ε such that Ev′′∈Ω1
[εv′′ ] = ε and Ev′′∈Ω2

[εv′′ ] = −ε (recall that Ωi = {v : σv = i}), then

on average we would expect to assign a probability of approximately 1
2 + 1

2

(
(a−b)2
2(a+b)

)t
ε to v being

in its actual community, which is enhanced as t increases when SNR > 1. Note that since the
variance in the probability assigned to the possibility that v is in its actual community will also grow

as
(

(a−b)2
2(a+b)

)t
, the chance that this will assign a probability of greater than 1/2 to v being in its actual

community will be 1
2 + Θ

((
(a−b)2
2(a+b)

)t/2)
.

One idea for the initial estimate is to simply guess the vertices’ communities at random, in the
expectation that the fractions of the vertices from the two communities assigned to a community
will differ by θ(1/

√
n) by the Central Limit Theorem. Unfortunately, for any t large enough that(

(a−b)2
2(a+b)

)t/2
>
√
n, we have that

(
(a+b)

2

)t
> n which means that our approximation breaks down

before t gets large enough to detect communities. In fact, t would have to be so large that not only
would neighborhoods not be tree like, but vertices would have to be exhausted.

One way to handle this would be to stop counting vertices that are t edges away from v, and instead
count each vertex a number of times equal to the number of length t paths from v to it.2 Unfortunately,
finding all length t paths starting at v can be done efficiently enough only for values of t that are
smaller than what is needed to amplify a random guess to the extent needed here. We could instead
calculate the number of length t walks from v to each vertex more quickly, but this count would
probably be dominated by walks that go to a high degree vertex and then leave and return to it
repeatedly, which would throw the calculations off. On the other hand, most reasonably short
nonbacktracking walks are likely to be paths, so counting each vertex a number of times equal to the
number of nonbacktracking walks of length t from v to it seems like a reasonable modification. That
said, it is still possible that there is a vertex that is in cycles such that most nonbacktracking walks
simply leave and return to it many times. In order to mitigate this, we use r-nonbacktracking walks,
walks in which no vertex reoccurs within r steps of a previous occurrence, such that walks cannot
return to any vertex more than t/r times.

Unfortunately, this algorithm would not work because the original guesses will inevitably be biased
towards one community or the other. So, most of the vertices will have more r-nonbacktracking
walks of length t from them to vertices that were suspected of being in that community than the other.
One way to deal with this bias would be to subtract the average number of r-nonbacktracking walks
to vertices in each set from each vertex’s counts. Unfortunately, that will tend to undercompensate
for the bias when applied to high degree vertices and overcompensate for it when applied to low

2This type of approach is considered in [23].
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degree vertices. So, we modify the algorithm that counts the difference between the number of
r-nonbacktracking walks leading to vertices in the two sets to subtract off the average at every step in
order to prevent a major bias from building up.

One of the features of our approach is that it extends fairly naturally to the general SBM. Despite the
potential presence of more than 2 communities, we still only assign one value to each vertex, and
output a partition of the graph’s vertices into two sets in the expectation that different communities
will have different fractions of their vertices in the second set. One complication is that the method of
preventing the results from being biased towards one comunity does not work as well in the general
case. The problem is, by only assigning one value to each vertex, we compress our beliefs onto one
dimension. That means that the algorithm cannot detect biases orthogonal to that dimension, and
thus cannot subtract them off. So, we cancel out the bias by subtracting multiples of the counts of the
numbers of r-nonbacktracking walks of some shorter length that will also have been affected by it.

More concretely, we assign each vertex an initial value, xv , at random. Then, we compute a matrix Y
such that for each v ∈ G and 0 ≤ t ≤ m, Yv,t is the sum over all r-nonbacktracking walks of length
t ending at v of the initial values associated with their starting vertices. Next, for each v we compute
a weighted sum of Yv,1, Yv,2, ..., Yv,m where the weighting is such that any biases in the entries of Y
resulting from the initial values should mostly cancel out. We then use these to classify the vertices.

Proof outline for Theorem 1. If we were going to prove that ABP∗ worked, we would proba-
bly define Wr[S]((v0, ..., vm)) to be 1 if for every consecutive subsequence (i1, . . . , im′) ⊆
S, we have that vi1−1, ..., vim′ is a r-nonbacktracking walk, and 0 otherwise. Next, de-
fine Wr((v0, ..., vm)) =

∑
S⊆(1,...,m)(−2|E(G)|)−|S|Wr[S]((v0, ..., vm)) and Wm(x, v) =∑

v0,...,vm∈G:vm=v xv0Wr((v0, ..., vm)), and we would have that y′v = Wm(x, v) for x and y′

as in ABP ∗. As explained above, we rely on a different approach to cope with the general SBM.

In order to prove that the algorithm works, we make the following definitions.

Definition 6. For any r ≥ 1 and series of vertices v0, ..., vm, let Wr((v0, ..., vm)) be 1 if v0, ..., vm
is an r-nonbacktracking walk and 0 otherwise. Also, for any r ≥ 1, series of vertices v0, ..., vm and
c0, ..., cm ∈ Rm+1, let

W(c0,...,cm)[r]((v0, ..., vm)) =
∑

(i0,...,im′ )∈(0,...,m)

 ∏
i 6∈(i0,...,im′ )

(−ci/n)

Wr((vi0 , vi1 , ..., vim′ )).

In other words, W(c0,...,cm)[r]((v0, ..., vm)) is the sum over all subsequences of (v0, ..., vm) that form
r-nonbacktracking walks of the products of the negatives of the ci/n corresponding to the elements
of (v0, ..., vm) that are not in the walks. Finally, let

Wm/{ci}(x, v) =
∑

v0,...,vm∈G:vm=v

xv0W(c0,...,cm)[r]((v0, ..., vm)).

The reason these definitions are important is that for each v and t, we have that

Yv,t =
∑

v0,...,vt∈G:vt=v

xv0Wr((v0, ..., vt))

and y(m)
v is equal to Wm/{ci}(x, v) for suitable (c0, ..., cm). For the full ABP algorithm, both terms

in the above equality refer to G as it is after some of its edges are removed at random in the ‘graph
splitting’ step (which explains the presence of 1 − γ factors in [19]). One can easily prove that if
v0, ..., vt are distinct, σv0 = i and σvt = j, then

E[W(c0,...,ct)[r]((v0, ..., vt))] = ei · P−1(PQ)tej/n
t,

and most of the rest of the proof centers around showing that W(c0,...,cm)[r]((v0, ..., vm)) such that
v0, ..., vm are not all distinct do not contribute enough to the sums to matter. That starts with a bound
on |E[W(c0,...,cm)[r]((v0, ..., vm))]| whenever there is no i, j 6= j′ such that vj = vj′ , |i− j| ≤ r, and
ci 6= 0; and continues with an explanation of how to re-express any W(c0,...,cm)[r]((v0, ..., vm)) as a
linear combination of expressions of the form W(c′0,...,c

′
m′ )[r]

((v′0, ..., v
′
m′)) which have this property.
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Then we use these to prove that for suitable (c0, ..., cm), the sum of |E[W(c0,...,cm)[r]((v0, ..., vm))]|
for all sufficiently repetitive (v0, ..., vm) is sufficiently small. Next, we observe that

W(c0,...,cm)[r]((v0, ..., vm))W(c′′0 ,...,c
′′
m)[r]((v

′′
0 , ..., v

′′
m))

= W(c0,...,cm,0,...,0,c′′m,...,c
′′
0 )[r]((v0, ..., vm, u1, ..., ur, v

′′
n, ...v

′′
0 ))

if u1, ..., ur are new vertices that are connected to all other vertices, and use that fact to translate
bounds on expected values to bounds on variances.

That allows us to show that if m and (c0, ..., cm) have the appropriate properties and w is an
eigenvector of PQ with eigenvalue λj and magnitude 1, then with high probability

|
∑

v∈V (G)

wσv/pσvWm/{ci}(x, v)| = O(
√
n
∏

0≤i≤m

|λj − ci|+
√
n

log(n)

∏
0≤i≤m

|λs − ci|)

and
|
∑

v∈V (G)

wσv
/pσv

Wm/{ci}(x, v)| = Ω(
√
n
∏

0≤i≤m

|λj − ci|).

We also show that under appropriate conditions Var[Wm/{ci}(x, v)] = O((1/n)
∏

0≤i≤m(λs−ci)2).

Together, these facts would allow us to prove that the differences between the average values of
Wm/{ci}(x, v) in different communities are large enough relative to the variance of Wm/{ci}(x, v)
to let us detect communities, except for one complication. Namely, these bounds are not quite
good enough to rule out the possibility that there is a constant probability scenario in which the
empirical variance of {Wm/{ci}(x, v)} is large enough to disrupt our efforts at using Wm/{ci}(x, v)
for detection. Although we do not expect this to actually happen, we rely on the graph splitting step
described in Section 3.3 to discard this potential scenario.

5 Conclusions and extensions

This algorithm is intended to classify vertices with an accuracy nontrivially better than that attained
by guessing randomly, but it is not hard to convert this to an algorithm that classifies vertices with
optimal accuracy. Once one has reasonable initial guesses of which communities the vertices are in,
one can simply run full belief propagation on these guesses. This requires bridging the gap from
dividing the vertices into two sets that are correlated with their communities in an unknown way, and
assigning each vertex a nontrivial probability distribution for how likely it is to be in each community.

One way to do this is to divide G’s vertices into those that have positive and negative values of y′,
and divide its directed edges into those that have positive and negative values of y(m). We would
generally expect that edges from vertices in different communities will have different probabilities of
corresponding to positive values of y(m). Now, let d′ be the largest integer such that at least

√
n of the

vertices have degree at least d′, let S be the set of vertices with degree exactly d′, and for each v ∈ S,
let ξv = |{v′ : (v, v′) ∈ E(G), y′(v,v′) > 0}|. We would expect that for any given community i, the
probability distribution of ξv for v ∈ Ωi would be essentially a binomial distribution with parameters
d′ and some unknown probability. So, compute probabilities such that the observed distribution of
values of ξv approximately matches the appropriate weighted sum of k binomial distributions.

Next, go through all identifications of the communities with these binomial distributions that are con-
sistent with the community sizes and determine which one most accurately predicts the connectivity
rates between vertices that have each possible value of ξ when the edge in question is ignored, and
treat this as the mapping of communities to binomial distributions. Then, for each adjacent v and v′,
determine the probability distribution of what community v is in based on the signs of y′(v′′,v) for all
v′′ 6= v′. Finally, use these as the starting probabilities for BP with a depth of ln(n)/3 ln(λ1).

Acknowledgments

This research was supported by NSF CAREER Award CCF-1552131 and ARO grant W911NF-16-1-
0051.

8



References
[1] P. W. Holland, K. Laskey, and S. Leinhardt. Stochastic blockmodels: First steps. Social Networks,

5(2):109–137, 1983.

[2] Peter J. Bickel and Aiyou Chen. A nonparametric view of network models and Newman-Girvan and other
modularities. Proceedings of the National Academy of Sciences, 106(50):21068–21073, 2009.

[3] B. Karrer and M. E. J. Newman. Stochastic blockmodels and community structure in networks. Phys. Rev.
E, 83:016107, Jan 2011.

[4] C. Gao, Z. Ma, A. Y. Zhang, and H. H. Zhou. Achieving Optimal Misclassification Proportion in Stochastic
Block Model. ArXiv e-prints, May 2015.

[5] T.N. Bui, S. Chaudhuri, F.T. Leighton, and M. Sipser. Graph bisection algorithms with good average case
behavior. Combinatorica, 7(2):171–191, 1987.

[6] R.B. Boppana. Eigenvalues and graph bisection: An average-case analysis. In 28th Annual Symposium on
Foundations of Computer Science, pages 280–285, 1987.

[7] F. McSherry. Spectral partitioning of random graphs. In Foundations of Computer Science, 2001.
Proceedings. 42nd IEEE Symposium on, pages 529–537, 2001.

[8] Béla Bollobás, Svante Janson, and Oliver Riordan. The phase transition in inhomogeneous random graphs.
Random Struct. Algorithms, 31(1):3–122, August 2007.

[9] A. Decelle, F. Krzakala, C. Moore, and L. Zdeborová. Asymptotic analysis of the stochastic block model
for modular networks and its algorithmic applications. Phys. Rev. E, 84:066106, December 2011.

[10] Elchanan Mossel, Joe Neeman, and Allan Sly. Reconstruction and estimation in the planted partition
model. Probability Theory and Related Fields, 162(3):431–461, 2015.

[11] A. Coja-Oghlan. Graph partitioning via adaptive spectral techniques. Comb. Probab. Comput., 19(2):227–
284, March 2010.

[12] V. Vu. A simple svd algorithm for finding hidden partitions. ArXiv:1404.3918, April 2014.

[13] Olivier Guédon and Roman Vershynin. Community detection in sparse networks via grothendieck’s
inequality. Probability Theory and Related Fields, 165(3):1025–1049, 2016.

[14] Andrea Montanari and Subhabrata Sen. Semidefinite programs on sparse random graphs and their
application to community detection. In Proceedings of the 48th Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2016, pages 814–827, New York, NY, USA, 2016. ACM.

[15] L. Massoulié. Community detection thresholds and the weak Ramanujan property. In STOC 2014: 46th
Annual Symposium on the Theory of Computing, pages 1–10, New York, United States, June 2014.

[16] E. Mossel, J. Neeman, and A. Sly. A proof of the block model threshold conjecture. Available online at
arXiv:1311.4115 [math.PR], January 2014.

[17] Charles Bordenave, Marc Lelarge, and Laurent Massoulie. Non-backtracking spectrum of random graphs:
Community detection and non-regular ramanujan graphs. In FOCS ’15, pages 1347–1357, Washington,
DC, USA, 2015. IEEE Computer Society.

[18] Kevin P. Murphy, Yair Weiss, and Michael I. Jordan. Loopy belief propagation for approximate inference:
An empirical study. In Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence,
UAI’99, pages 467–475, San Francisco, CA, USA, 1999. Morgan Kaufmann Publishers Inc.

[19] E. Abbe and C. Sandon. Detection in the stochastic block model with multiple clusters: proof of the
achievability conjectures, acyclic BP, and the information-computation gap. ArXiv:1512.09080, Dec. 2015.

[20] J. Banks and C. Moore. Information-theoretic thresholds for community detection in sparse networks.
ArXiv:1601.02658, January 2016.

[21] David L. Donoho, Arian Maleki, and Andrea Montanari. Message-passing algorithms for compressed
sensing. Proceedings of the National Academy of Sciences, 106(45):18914–18919, 2009.

[22] Florent Krzakala, Cristopher Moore, Elchanan Mossel, Joe Neeman, Allan Sly, Lenka Zdeborova, and
Pan Zhang. Spectral redemption in clustering sparse networks. Proceedings of the National Academy of
Sciences, 110(52):20935–20940, 2013.

[23] S. Bhattacharyya and P. J. Bickel. Community Detection in Networks using Graph Distance.
ArXiv:1401.3915, January 2014.

9


