Learning Parametric Sparse Models for Image
Super-Resolution

Yongbo Li, Weisheng Dong; Xuemei Xie, Guangming Shi', Xin Li?, Donglai Xu?
State Key Lab. of ISN, School of Electronic Engineering, Xidian University, China
'Key Lab. of IPIU (Chinese Ministry of Education), Xidian University, China
2Lane Dep. of CSEE, West Virginia University, USA
3Sch. of Sci. and Eng., Teesside University, UK
yongboli@stu.xidian.edu.cn, {wsdong, xmxie}@mail.xidian.edu.cn
gmshi@xidian.edu.cn, Xin.Li@mail.wvu.edu

Abstract

Learning accurate prior knowledge of natural images is of great importance for
single image super-resolution (SR). Existing SR methods either learn the prior
from the low/high-resolution patch pairs or estimate the prior models from the
input low-resolution (LR) image. Specifically, high-frequency details are learned
in the former methods. Though effective, they are heuristic and have limitations
in dealing with blurred LR images; while the latter suffers from the limitations
of frequency aliasing. In this paper, we propose to combine those two lines of
ideas for image super-resolution. More specifically, the parametric sparse prior
of the desirable high-resolution (HR) image patches are learned from both the
input low-resolution (LR) image and a training image dataset. With the learned
sparse priors, the sparse codes and thus the HR image patches can be accurately
recovered by solving a sparse coding problem. Experimental results show that the
proposed SR method outperforms existing state-of-the-art methods in terms of both
subjective and objective image qualities.

1 Introduction

Image super-resolution (SR) aiming to recover a high-resolution (HR) image from a single low-
resolution (LR) image, has important applications in image processing and computer vision, ranging
from high-definition (HD) televisions and surveillance to medical imaging. Due to the information
loss in the LR image formation, image SR is a classic ill-posed inverse problem, for which strong
prior knowledge of the underlying HR image is required. Generally, image SR methods can be
categorized into two types, i.e., model-based and learning-based methods.

In model-based image SR, the selection of image prior is of great importance. The image priors,
ranging from smoothness assumptions to sparsity and structured sparsity priors, have been exploited
for image SR [1][3][4][13][14][15][19]. The smoothness prior models, e.g., Tikhonov and total
variation (TV) regularizers[1], are effective in suppressing the noise but tend to over smooth image
details. The sparsity-based SR methods, assuming that the HR patches have sparse representation with
respect to a learned dictionary, have led to promising performances. Due to the ill-posed nature of the
SR problem, designing an appropriate sparse regularizer is critical for the success of these methods.
Generally, parametric sparse distributions, e.g., Laplacian and Generalized Gaussian models, which
correspond to the ¢; and 4, (0 < p < 1) regularizers, are widely used. It has been shown that the
SR performance can be much boosted by exploiting the structural self-similarity of natural images
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[31[4]1[15]. Though promising SR performance can be achieved by the sparsity-based methods, it
is rather challenging to recover high-quality HR images for a large scaling factors, as there is no
sufficient information for accurate estimation of the sparse models from the input LR image.

Instead of adopting a specifical prior model, learning-based SR methods learn the priors directly
from a large set of LR and HR image patch pairs [2][5][6][8][18]. Specifically, mapping functions
between the LR and the high-frequency details of the HR patches are learned. Popular learning-based
SR methods include the sparse coding approaches[2] and the more efficient anchored neighborhood
regression methods (i.e., ANR and A+)[5][6]. More recently, inspired by the great success of the
deep neural network (DNN)[16] for image recognition, the DNN based SR methods have also been
proposed[8], where the DNN models is used to learn the mapping functions between the LR and
the high-frequency details of the HR patches. Despite the state-of-the-art performances achieved,
these patch-based methods [6][8] have limitations in dealing with the blurred LR images (as shown
in Sec. 5). Instead of learning high-frequency details, in [12] Li et al. proposed to learn parametric
sparse distributions (i.e., non-zero mean Laplacian distributions) of the sparse codes from retrieved
HR images that are similar to the LR image. State-of-the-art SR results have been achieved for the
landmark LR images, for which similar HR images can be retrieved from a large image set. However,
it has limitations for general LR images (i.e., it reduces to be the conventional sparsity-based SR
method), for which correlated HR images cannot be found in the image database.

In this paper, we propose a novel image SR approach combining the ideas of sparsity-based and
learning-based approaches for SR. The sparse prior, i.e., the parametric sparse distributions (e.g.,
Laplace distribution) are learned from general HR image patches. Specifically, a set of mapping
functions between the LR image patches and the sparse codes of the HR patches are learned. In
addition to the learned sparse prior, the learned sparse distributions are also combined with those
estimated from the input LR image. Experimental results show that the proposed method performs
much better than the current state-of-the-art SR approaches.

2 Related works

In model-based SR, it is often assumed that the desirable HR image/patches have sparse expansions
with respect to a certain dictionary. For a given LR image y = Hx + n, where H € RM <V gspecifies
the degradation model, € RY and n € RM denote the original image and additive Gaussian noise,
respectively. Sparsity-based SR image reconstruction can be formulated as [3][4]

(¢, @) = argmin|ly — He||3 + 1) {|[Riz — Dayil|3 + M(e)}, (1)

K2

where R; € R™*¥ denotes the matrix extracting image patch of size /n x \/n at position i from x,
D € R"*X denotes the dictionary that is an off-the-shelf basis or learned from an training dataset,
and 9 (-) denotes the sparsity regularizer. As recovering x from y is an ill-posed inverse problem,
the selection of ¢ (-) is critical for the SR performance. Common selection of ¢ (-) is the £,-norm
(0 < p < 1) regularizer, where zero-mean sparse distributions of the sparse coefficients are assumed.
In [12], nonzero-mean Laplacian distributions are used, leading to the following sparsity-based SR
method,

(2, ) = argmin ||y — He|[3 + 7> _{|[Riz — Da[3 + ||Ai(ei — B)|[1}, 2)
T, p
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where A = diag( 9_2 “.), @; and 3; denote the standard derivation and expectation of ;, respectively.
2%

It has been shown in [3] that by estimating {3;, 6;} from the nonlocal similar image patches of
the input image, promising SR performance can be achieved. However, for large scaling factors,
it is rather challenging to accurately estimate {/3;,60;} from the input LR image, due to the lack
of sufficient information. To overcome this limitations, Li et al., propose to learn the parametric
distributions from retrieved similar HR images [12] via block matching, and obtain state-of-the-art
SR performance for landmark images. However, for general LR images, for which similar HR images
cannot be found, the sparse prior (3;, 8;) cannot be learned.

Learning-based SR methods resolve the SR problem by learning mapping functions between LR and
HR image patches [2][6][8]. Popular methods include the sparse coding methods [2], where LR/HR
dictionary pair is jointly learned from a training set. The sparse codes of the LR patches with respect



to the LR dictionary are inferred via sparse coding and then used to reconstruct the HR patches with
the HR dictionary. To reduce the computational complexity, anchored neighborhood points (ANR)
and its advanced version (i.e., A+) methods [6] have been proposed. These methods first divided the
patch spaces into many clusters, then LR/HR dictionary pairs are learned for each cluster. Mapping
functions between the LR/HR patches are learned for each cluster via ridge regression. Recently,
deep neural network (DNN) model has also been developed to learn the mapping functions between
the LR and HR patches [8]. The advantages of the DNN model is that the entire SR pipeline is
jointly optimized via end-to-end learning, leading to state-of-the-art SR performance. Despite the
excellent performances, these learning-based methods focusing on learning the mapping functions
between LR and HR patches have limitations in recovering a HR image from a blurry LR image
generated by first applying a low-pass filtering followed by downsampling (as shown in Sec. 4). In
this paper, we propose a novel image SR method by taking advantages of both the sparse-based and
the example-based SR approaches. Specifically, mapping functions between the LR patches and
the sparse codes of the desirable HR patches are learned. Hence, sparse prior can be learned from
both the training patches and the input LR image. With the learned sparse prior, state-of-the-art SR
performance can be achieved.

3 Learning Parametric Sparse Models

In this section, we first propose a novel method to learn the sparse codes of the desirable HR patches
and then present the method to estimate the parametric distributions from both the predicted sparse
codes and those of the LR images.

3.1 Learning the sparse codes from LR/HR patch pairs

For a given LR image patch y; € R™, we aim to learn the expectation of the sparse code o; of the
desirable HR patch «; with respect to dictionary D. Without the loss of generality, we define the
learning function as

a; = f(zi; W,b) = g(Wx z; + b), (3)
where z; denotes the feature vector extracted from the LR patch y;, W € RE*™ is the weighting
matrix and b € RX is the bias, and g(+) denotes an activation function. Now, the remaining task
is to learn the parameters of the learning function of Eq. (3). To learn the parameters, we first
construct a large set of LR feature vectors and HR image patch pairs {(z;,z;)}, i =1,2,--- , N.
For a given dictionary, the sparse codes o; of x; can be obtained by a sparse coding algorithm. Then,
the parameters YW = {W, b} can be learned by minimizing the following objective function

N
(W, b) = argmin }_ [lex; — f(z:: W, b)| |5 &)
P =1
The above optimization problem can be iteratively solved by using a stochastic gradient descent
approach.

Considering the highly complexity of the mapping function between the LR feature vectors and the
desirable sparse codes, we propose to learn a set of mapping functions for each possible local image
structures. Specifically, the K -means clustering algorithm is used to cluster the LR/HR patches into
K clusters. Then, a mapping function is learned for each cluster. After clustering, the LR/HR patches
in each cluster generally contain similar image structures, and linear mapping function would be
sufficient to characterize the correlations between the LR feature vectors and the sparse codes of
the desirable HR patches. Therefore, for each cluster Sy, the mapping function can be learned via
minimizing

(Wy, by,) = argmin Z |y — (Wyzi + by)||3. 5)

Wi, b 1€Sk

For simplicity, the bias term by, in the above equation can be absorbed into W, by rewriting Wy, and
z; as Wy, = [Wy, bi] and z; = [z, ;1] T, respectively. Then, the parameters W}, can be easily solved
via a least-square method.

As the HR patches in each cluster generally have similar image structures, a compact dictionary
should be sufficient to represent the various HR patches. Hence, instead of learning an overcomplete
dictionary for all HR patches, an orthogonal basis is learned for each cluster S. Specifically, a PCA



Algorithm 1 Sparse codes learning algorithm
Initialization:

(a) Construct a set of LR and HR image pairs {y, «} and recover the HR images {2} with a
conventional SR method;

(b) Extract feature patches z;, the LR and HR patches y; and x; from {&, y, 2}, respectively;
(c) Clustering {z;,y;, x;} into K clusters using K -means algorithm.

Outer loop: Iterationonk =1,2,--- | K
(a) Calculate the PCA basis Dy, for each cluster using the HR patches belong to the k-th cluster;
(b) Computer the sparse codes as a; = Sy (DZL x;) for each x;, i € S;

(c) Learn the parameters )V of the mapping function via solving Eq. (5).
End for

Output: {Dy, W, }.

basis, denoted as Dy, € R™*" is learned for each S, k = 1,2, --- , K. Then, the sparse codes a; can
be easily obtained cx; = S (D;r x;), where Dy, denotes the PCA basis of the k;-th cluster. Regarding
the feature vectors z;, we extract feature vectors from an initially recovered HR image, which can be
obtained with a conventional sparsity-based method. Similar to [5][6], the first- and second-order
gradients are extracted from the initially recovered HR image as the features. However, other more
effective features can also be used. The sparse distribution learning algorithm is summarized in
Algorithm 1.

3.2 Parametric sparse models estimation

After learning linearized mapping functions, denoted as ¢;, the estimates of «; can be estimated from
LR patch via Eq. (3). Based on the observation that natural images contain abundant self-repeating
structures, a collection of similar patches can often be found for an exemplar patch. Then, the mean
of a; can be estimated as a weighted average of the sparse codes of the similar patches. As the
original image is unknown, an initial estimate of the desirable HR image, denoted as & is obtained
using a conventional SR method, e.g., solving Eq. (2). Then, the search of similar patches can be
conducted based on &. Let ; denote the patch extracted from & at position ¢ and &, ; denote the
patches similar to &; that are within the first L-th closest matches, [ = 1,2, --- , L. Denoted by z; ;
the corresponding features vectors extracted from &. Therefore, the mean of 3; can be estimated by

L
Bi=> wid, (6)

1=1
where w;; = % exp(—||&;; — @||/h), ¢ is the normalization constant, and h is the predefined

parameter.

Additionally, we can also estimate the mean of space codes a; directly from the intermediate estimate
of target HR image. For each initially recovered HR patch &;, the sparse codes can be obtained
via a sparse coding algorithm. As the patch space has been clustered into K sub-spaces and a
compact PCA basis is computed for each cluster, the sparse code of &; can be easily computed as
G =Sy (D;—lﬁ:”) where Sy (+) is the soft-thresholding function with threshold A, k; denote the
cluster that &; falls into. The sparse codes of the set of similar patches &;; can also be computed.
Then, the expectation of 3; can be estimated as

L
Bi = Zwi,jdi,l~ (7
=1

Then, an improved estimation of 3; can be obtained by combining the above two estimates, i.e.,

Bi =ABi+(1—-A)B;. (8)



where A = wdiag(d;) € RF*X. Similar to [12], d; is set according to the energy ratio of 3;(j) and
Bi(5) as
2
% = r2+1/r%
J J

And w is a predefined constant. After estimating (3;, the variance of the sparse codes are estimated as

ri = Bi(4)/Bi(j)- 9)

1 L
07 =+ > (ai;— B (10)
j=1

The learned parametric Laplacian distributions with {3;, 0;} for image patches x; are then used with
the MAP estimator for image SR in the next section.

4 Image Super-Resolution with learned Parametric Sparsity Models

With the learned parametric sparse distributions {(3;, 6;)}, image SR problem can be formulated as

L
(@A) = argmin|ly — 2H|[; +n ) {IR@ —DuAllp + 23 [lAi(eii = B2)lln} - (D

L A i =1
where R,z = R;1z,R; oz, -+ ,R; px] € R"*F denotes the matrix formed by the similar patches,
A; =loy1, -, o 1), Dy, denotes the selected PCA basis of the k;-th cluster, and A; = diag(%).

In Eq. (TT), the group of similar patches is assumed to follow the same estimated parametric
distribution {3;, 0;}. Eq. can be approximately solved via alternative optimization. For fixed
x;, the sets of sparse codes A; can be solved by minimizing

L
A= argAmin IRiz — Dy, Al + A [|Ai(ein — 8|1 (12)
g =1

As the orthogonal PCA basis is used, the above equation can be solved in closed-form solution, i.e.,
&1 = Sy, (DL Rz — B;) + B, (13)
where 7; = A/6;. With estimated Ai, the whole image can be estimated by solving

& = argmin |ly — zH|[3 + n > |[Riz — Dy, Ay[7., (14)

2

which is a quadratic optimization problem and admits a closed-form solution, as

- T~ T o
&=HH+nY R R)'Hy+n) R DA, (15)

where R:Ri = Zle RlTRl and RiTD;ﬂAi = Zle RlTDkidiJ. As the matrix to be inverted in Eq.
(T5) is very large, the conjugate gradient algorithm is used to compute Eq. (I5). The proposed image
SR algorithm is summarized in Algorithm 2. In Algorithm 2, we iteratively extract the feature
patches from 2(*) and learn B; from the training set, leading to further improvements in predicting
the sparse codes with the learned mapping functions.

S Experimental results

In this section, we verify the performance of the proposed SR method. For fair comparisons, we
use the relative small training set of images used in [2][6]. The training images are used to simulate
the LR images, which are recovered by a sparsity-based method (e.g., the NCSR method [3]). Total
100, 000 features and HR patches pairs are extracted from the reconstructed HR images and the
original HR images. Patches of size 7 x 7 are extracted from the feature images and HR images.
Similar to [5][6], the PCA technique is used to reduce the dimensions of the feature vectors. The
training patches are clustered into 1000 clusters. The other major parameters of the proposed SR



Algorithm 2 Image SR with Learned Sparse Representation
Initialization:

(a) Initialize £(°) with a conventional SR method;
(b) Set parameters 7 and \;
T
(a) Extract feature vectors z; from @(*) and cluster the patches into clusters;
(b) Learn 3; for each local patch using Eq. @);
(c) Update the estimate of 3; using Eq. (8) and estimate 6; with Eq. (I0);
(d) Imner loop (solve Eq.(TT)): iteration over j = 1,2,--- ,J;
(I) Compute AEHI) by solving Eq.(T3);
(II) Update the whole image (1) via Eq. (15);

(IID) Set 2+ = U+ if j = J.
End for

Output: (1),

Outer loop: Iteration overt = 0,1, ---

)

method are set as: L = 12,7 = 8, and J = 10. The proposed SR method is compared with several
current state-of-the-art image SR methods, i.e., the sparse coding based SR method (denoted as
SCSR)[2], the SR method based on sparse regression and natural image prior (denoted as KK) [7],
the A+ method [6], the recent SRCNN method [8], and the NCSR method [3]. Note that the NCSR is
the current sparsity-based SR method. Three images sets, i.e., Set5[9], Set14[10] and BSD100[11],
which consists of 5, 14 and 100 images respectively, are used as the test images.

In this paper, we consider two types of degradation when generating the LR images, i.e., the bicubic
image resizing function implemented with imresize in matlab and Gaussian blurring followed by
downsampling with a scaling factor, both of which are commonly used in the literature of image SR.

5.1 Image SR for LR images generated with bicubic interpolation function

In [2][6][7][8], the LR images are generated with the bicubic interpolation function (i.e., imresize
function in Matlab), i.e., y = B(x) + n, where B(-) denotes the bicubic downsampling function. To
deal with this type of degradation, we implement the degradation matrix H as an operator that resizes
a HR image using bicubic function with scaling factors of % and implement H' asan operator that
upscales a LR image using bicubic function with scaling factor s, where s = 2, 3, 4. The average
PSNR and SSIM results of the reconstructed HR images are reported in Table[I] It can be seen that
the SRCNN method performs better than the A+ and the SCSR methods. It is surprising to see that
the NCSR method, which only exploits the internal similar samples performs comparable with the
SRCNN method. By exploiting both the external image patches and the internal similar patches, the
proposed method outperforms the NCSR. The average PSNR gain over SRCNN can be up to 0.64
dB. Parts of some reconstructed HR images by the test methods are shown in Fig. |1} from which
we can see that the proposed method reproduces the most visually pleasant HR images than other
competing methods. Please refer to the supplementary file for more visual comparison results.

5.2 Image SR for LR images generated with Gaussian blur followed by downsampling

Another commonly used degradation process is to first apply a Gaussian kernel followed by down-
sampling. In this experimental setting, the 7 x 7 Gaussian kernel of standard deviation of 1.6 is used,
followed by downsampling with scaling factor s = 2, 3, 4. For these SCSR, KK, A+ and SRCNN
methods, which cannot deal with the Gaussian blur kernel, the iterative back-projection [17] method
is applied to the reconstructed HR images by those methods as a post processing to remove the
blur. The average PSNR and SSIM results on the three test image sets are reported in Table 2] It
can be seen that the performance of the example-based methods, i.e., SCSR[2], KK[7], A+[6] and
SRCNN][8] methods are much worse than the NCSR [3] method. Compared with the NCSR method,
the average PSNR gain of the proposed method can be up to 0.46 dB, showing the effectiveness of
the proposed sparse codes learning method. Parts of the reconstructed HR images are shown in Fig.



Table 1: Average PSNR and SSIM results of the test methods (LR images generated with bicubic
resizing function)

Images Se5 Set14 BSD100
Upscaling X2 X3 x4 X2 X3 x4 X2 X3 x4
31.42 28.31 26.54
SCSRI2] © |ossan| - "~ 07954 | - © |ome | -

KK[7] 36.22 3229 30.03 3212 28.39 27.15 31.08 28.15 26.69
0.9514 | 0.9037 | 0.8544 || 0.9029 | 0.8135 | 0.7422 || 0.8834 | 0.7780 | 0.7017
A+[6] 36.55 32.59 30.29 32.28 29.13 27.33 31.21 28.29 26.82
0.9544 | 0.9088 | 0.8603 || 0.9056 | 0.8188 | 0.7491 || 0.8863 | 0.7835 | 0.7087

SRCNN([S] 36.66 32.75 30.49 32.45 29.30 27.50 31.36 28.41 26.90
0.9542 | 0.9090 | 0.8628 || 0.9067 | 0.8215 | 0.7513 || 0.8879 | 0.7863 | 0.7103

NCSR[3] 36.68 33.05 30.77 3226 29.30 2752 31.14 28.37 2691
0.9550 | 0.9149 | 0.8720 || 0.9058 | 0.8239 | 0.7563 || 0.8863 | 0.7872 | 0.7143

Proposed 36.99 | 33.39 31.04 32.61 29.59 27.77 31.42 28.56 27.08
P 0.9551 | 0.9173 | 0.8779 || 0.9072 | 0.8264 | 0.7620 || 0.8879 | 0.7899 | 0.7187

W wwrrr,
e et
S

(¢) SCSR /26.01dB (d) KK / 26.49dB

(e) A+/26.55dB (f) SRCNN/26.71dB (g) NCSR/27.11dB  (h) Proposed / 27.35dB

Figure 1: SR results on image 86000’ of BSD100 of scaling factor 3 (LR image generated with
bicubic interpolation function).

and Fig. [3] Obviously, the proposed method can recover sharper edges and finer details than other
competing methods.

6 Conclusion

In this paper, we propose a novel approach for learning parametric sparse models for image super-
resolution. Specifically, mapping functions between the LR patch and the sparse codes of the desirable
HR patches are learned from a training set. Then, parametric sparse distributions are estimated from
the learned sparse codes and those estimated from the input LR image. With the learned sparse
models, the sparse codes and thus the HR image patches can be accurately recovered by solving a
sparse coding problem. Experimental results show that the proposed SR method outperforms existing
state-of-the-art methods in terms of both subjective and objective image qualities.
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Table 2: Average PSNR and SSIM results of the test methods of scaling factor 3 (LR images generated
with Gaussian kernel followed by downsampling)

SCSR[2] | KK[7] | A+[6] | SRCNN[8] | NCSR[3] | Proposed
Set5 30.22 30.28 | 29.39 30.20 33.03 33.49
0.8484 | 0.8536 | 0.8502 08514 0.9106 0.9165
Setl4 27.51 2746 | 26.96 27.48 29.28 29.63
0.7619 | 0.7640 | 0.7627 0.7638 0.8203 0.8255
BSD100 27.10 27.10 | 26.59 27.11 28.35 28.60
0.7338 | 0.7342 | 0.7331 0.7338 0.7841 0.7887

\ ﬁ A \‘\.

(f) SRCNN/29.88dB  (g) NCSR/32.97dB (h) Proposed / 33.84dB

Figure 2: SR results on "Monarch’ from Set14 of scaling factor 3 (LR images generated with Gaussian
blur followed downsampling).

(b) Bicubic (c) SCSR/32.22dB (d) KK /32.12dB

(e) A+/30.81dB (f) SRCNN/32.16dB  (g) NCSR/34.59dB (h) Proposed / 35.15dB

Figure 3: SR results on "Pepper’ from Set14 of scaling factor 3 (LR images generated with Gaussian
blur followed downsampling).
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