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Abstract

This paper puts forth a novel algorithm, termed truncated generalized gradi-
ent flow (TGGF), to solve for x ∈ Rn/Cn a system of m quadratic equations
yi = |〈ai,x〉|2, i = 1, 2, . . . ,m, which even for {ai ∈ Rn/Cn}mi=1 random is
known to be NP-hard in general. We prove that as soon as the number of equations
m is on the order of the number of unknowns n, TGGF recovers the solution
exactly (up to a global unimodular constant) with high probability and complexity
growing linearly with the time required to read the data {(ai; yi)}mi=1. Specifically,
TGGF proceeds in two stages: s1) A novel orthogonality-promoting initialization
that is obtained with simple power iterations; and, s2) a refinement of the initial es-
timate by successive updates of scalable truncated generalized gradient iterations.
The former is in sharp contrast to the existing spectral initializations, while the
latter handles the rather challenging nonconvex and nonsmooth amplitude-based
cost function. Empirical results demonstrate that: i) The novel orthogonality-
promoting initialization method returns more accurate and robust estimates relative
to its spectral counterparts; and, ii) even with the same initialization, our refine-
ment/truncation outperforms Wirtinger-based alternatives, all corroborating the
superior performance of TGGF over state-of-the-art algorithms.

1 Introduction

Consider a system of m quadratic equations

yi = |〈ai,x〉|2 , i ∈ [m] := {1, 2, . . . ,m} (1)

where data vector y := [y1 · · · ym]
T and feature vectors ai ∈ Rn/Cn, collected in them×n matrix

A := [a1 · · · am]
H are known, whereas vector x ∈ Rn/Cn is the wanted unknown. When {ai}mi=1

and/or x are complex, their amplitudes are given but phase information is lacking; whereas in the real
case only the signs of {〈ai,x〉} are unknown. Supposing that the system of equations in (1) admits
a unique solution x (up to a global unimodular constant), our objective is to reconstruct x from m
phaseless quadratic equations, or equivalently, recover the missing signs/phases of 〈ai,x〉 in the
real-/complex-valued settings. Indeed, it has been established thatm ≥ 2n−1 orm ≥ 4n−4 generic
data {(ai; yi)}mi=1 as in (1) suffice for uniqueness of an n-dimensional real- or complex-valued vector
x [1, 2], respectively, and the former with equality has also been shown to be necessary [1].

The problem in (1) constitutes an instance of nonconvex quadratic programming, that is generally
known to be NP-hard [3]. Specifically for real-valued vectors, this can be understood as a com-
binatorial optimization since one seeks a series of signs si = ±1, such that the solution to the
system of linear equations 〈ai,x〉 = siψi, where ψi :=

√
yi, obeys the given quadratic system (1).

Concatenating all amplitudes {ψi}mi=1 to form the vector ψ := [ψ1 · · · ψm]
T , apparently there are a

total of 2m different combinations of {si}mi=1, among which only two lead to x up to a global sign.
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The complex case becomes even more complicated, where instead of a set of signs {si}mi=1, one must
specify for uniqueness a collection of unimodular complex scalars {σi ∈ C}mi=1. In many fields of
physical sciences and engineering, the problem of recovering the phase from intensity/magnitude-only
measurements is commonly referred to as phase retrieval [4, 5]. The plethora of applications include
X-ray crystallography, optics, as well as array imaging, where due to physical limitations, optical
detectors can record only (squared) modulus of the Fresnel or Fraunhofer diffraction pattern, while
losing the phase of the incident light reaching the object [5]. It has been shown that reconstructing a
discrete, finite-duration signal from its Fourier transform magnitude is NP-complete [6]. Despite its
simple form and practical relevance across various fields, tackling the quadratic system (1) under
real-/complex-valued settings is challenging and NP-hard in general.

1.1 Nonconvex Optimization

Adopting the least-squares criterion, the task of recovering x can be recast as that of minimizing the
following intensity-based empirical loss

min
z∈Cn

f(z) :=
1

2m

m∑
i=1

(
yi −

∣∣aHi z∣∣2)2 (2)

or, the amplitude-based one

min
z∈Cn

`(z) :=
1

2m

m∑
i=1

(
ψi −

∣∣aHi z∣∣)2 . (3)

Unfortunately, both cost functions (2) and (3) are nonconvex. Minimizing nonconvex objectives,
which may exhibit many stationary points, is in general NP-hard [7]. In a nutshell, solving problems
of the form (2) or (3) is challenging.

Existing approaches to solving (2) (or related ones using the Poisson likelihood; see, e.g., [8]) or
(3) fall under two categories: nonconvex and convex ones. Popular nonconvex solvers include the
alternating projection such as Gerchberg-Saxton [9] and Fineup [10], AltMinPhase [11], and (Trun-
cated) Wirtinger flow (WF/TWF) [12, 8], as well as trust-region methods [13]. Convex approaches
on the other hand rely on the so-called matrix-lifting technique to obtain the solvers abbreviated as
PhaseLift [14] and PhaseCut [15].

In terms of sample complexity for Gaussian {ai} designs, convex approaches enable exact recovery
from1 O(n) noiseless measurements [16], while they require solving a semidefinite program of a
matrix variable with size n× n, thus incurring worst-case computational complexity on the order of
O(n4.5) [15], that does not scale well with dimensionality n. Upon exploiting the underlying problem
structure,O(n4.5) can be reduced toO(n3) [15]. Solving for vector variables, nonconvex approaches
achieve significantly improved computational performance. Using formulation (3), AltMinPhase
adopts a spectral initialization and establishes exact recovery with sample complexity O(n log3 n)
under Gaussian {ai} designs with resampling [11]. Concerning formulation (2), WF iteratively refines
the spectral initial estimate by means of a gradient-like update [12]. The follow-up TWF improves
upon WF through a truncation procedure to separate gradient components of excessively extreme
sizes. Likewise, at the initialization stage, since the term (aTi x)

2aia
H
i responsible for the spectral

initialization is heavy-tailed, data {yi}mi=1 are pre-screened in the truncated spectral initialization to
yield improved initial estimates [8]. Under Gaussian sampling models, WF allows exact recovery
from O(n log n) measurements in O(mn2 log(1/ε)) time/flops to yield an ε-accurate solution for
any given ε > 0 [12], while TWF advances these to O(n) measurements and O(mn log(1/ε))
time [8]. Interestingly, the truncation procedure in the gradient stage turns out to be useful in avoiding
spurious stationary points in the context of nonconvex optimization. Although for large-scale linear
regressions, similar ideas including censoring have been studied [17, 18]. It is worth mentioning
that when m ≥ Cn log3 n for sufficiently large C > 0, the objective function in (3) admits benign
geometric structure that allows certain iterative algorithms (e.g., trust-region methods) to efficiently
find a global minimizer with random initializations [13].

Although achieving a linear (in the number of unknowns n) sample and computational complexity,
the state-of-the-art TWF scheme still requires at least 4n ∼ 5n equations to yield a stable empirical
success rate (e.g., ≥ 99%) under the real Gaussian model [8, Section 3], which are more than twice
the known information-limit of m = 2n − 1 [1]. Similar though less obvious results hold also in

1The notation φ(n) = O(g(n)) means that there is a constant c > 0 such that |φ(n)| ≤ c|g(n)|.
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the complex-valued scenario. Even though the truncated spectral initialization improves upon the
“plain vallina” spectral initialization, its performance still suffers when the number of measurements
is relatively small and its advantage (over the untruncated version) narrows as the number of mea-
surements grows. Further, it is worth stressing that extensive numerical and experimental validation
confirms that the amplitude-based cost function performs better than the intensity-based one; that is,
formulation (3) is superior over (2) [19]. Hence, besides enhancing initialization, markedly improved
performance in the gradient stage could be expected by re-examining the amplitude-based cost
function and incorporating judiciously designed truncation rules.

2 Algorithm: Truncated Generalized Gradient Flow

Along the lines of suitably initialized nonconvex schemes, and building upon the amplitude-based
formulation (3), this paper develops a novel linear-time (in both m and n) algorithm, referred to
as truncated generalized gradient flow (TGGF), that provably recovers x ∈ Rn/Cn exactly from a
near-optimal number of noise-free measurements, while also featuring a near-perfect statistical per-
formance in the noisy setup. Our TGGF proceeds in two stages: s1) A novel orthogonality-promoting
initialization that relies on simple power iterations to markedly improve upon spectral initialization;
and, s2) a refinement of the initial estimate by successive updates of truncated generalized gradient
iterations. Stages s1) and s2) are delineated next in reverse order. For concreteness, our analysis
will focus on the real Gaussian model with x ∈ Rn and independently and identically distributed
(i.i.d.) design vectors ai ∈ Rn ∼ N (0, In), whereas numerical implementations for the complex
Gaussian model having x ∈ Cn and i.i.d. ai ∼ CN (0, In) := N (0, In/2) + jN (0, In/2) will
be discussed briefly. To start, define the Euclidean distance of any estimate z to the solution set:
dist(z, x) := min ‖z ± x‖ for real signals, and dist(z, x) := minφ∈[0,2π) ‖z−xeiφ‖ for complex
ones [12]. Define also the indistinguishable global phase constant in real-valued settings as

φ(z) :=

{
0, ‖z − x‖ ≤ ‖z + x‖,
π, otherwise.

(4)

Henceforth, fixing x to be any solution of the given quadratic system (1), we always assume that
φ (z) = 0; otherwise, z is replaced by e−jφ(z)z, but for simplicity of presentation, the constant
phase adaptation term e−jφ(z) is dropped whenever it is clear from the context.

Numerical tests comparing TGGF, TWF, and WF will be presented throughout our analysis, so let us
first describe our basic test settings. Simulated estimates will be averaged over 100 independent Monte
Carlo (MC) realizations without mentioning this explicitly each time. Performance is evaluated in
terms of the relative root mean-square error, i.e., Relative error := dist(z, x)/‖x‖, and the success
rate among 100 trials, where a success will be claimed for a trial if the resulting estimate incurs
relative error less than 10−5 [8]. Simulated tests under both noiseless and noisy Gaussian models
are performed, corresponding to ψi =

∣∣aHi x+ ηi
∣∣ with ηi = 0 and ηi ∼ N (0, σ2) [11], respectively,

with i.i.d. ai ∼ N (0, In) or ai ∼ CN (0, In).

2.1 Truncated generalized gradient stage

Let us rewrite the amplitude-based cost function in a matrix-vector form as

min
z∈Rn

`(z) =
1

2m

∥∥ψ − |Az|∥∥2 (5)

where |Az| :=
[
|aT1 z| · · · |aTmz|

]T
. Apart from being nonconvex, `(z) is nondiffentiable. In the

presence of smoothness or convexity, convergence analysis of iterative algorithms relies either on
continuity of the gradient (gradient methods) [20], or, on the convexity of the objective functional
(subgradient methods) [20]. Although subgradient methods have found widespread applicability in
nonsmooth optimization, they are limited to the class of convex functions [20, Page 4]. In nonconvex
nonsmooth optimization, the so-termed generalized gradient broadens the scope of the (sub)gradient
to the class of almost everywhere differentiable functions [21]. Consider a continuous function
h(z) ∈ R defined over an open region S ⊆ Rn.

Definition 1 [22, Definition 1.1] The generalized gradient of a function h at z, denoted by ∂h, is the
convex hull of the set of limits of the form lim∇h(zk), where zk → z as k → +∞, i.e.,
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∂h(z) := conv
{

lim
k→+∞

∇h(zk) : zk → z, zk /∈ G`
}

where the symbol ‘conv’ signifies the convex hull of a set, and G` denotes the set of points in S at
which h fails to be differentiable.

Having introduced the notion of generalized gradient, and with t denoting the iteration number, our
approach to solving (5) amounts to iteratively refining the initial guess z0 by means of the ensuing
truncated generalized gradient iterations

zt+1 = zt − µt∂`tr(zt) (6)

where µt > 0 is the stepsize, and a piece of the (truncated) generalized gradient ∂`tr(zt) is given by

∂`tr(zt) :=
∑
i∈It+1

(
aTi zt − ψi

aTi zt
|aTi zt|

)
ai (7)

for some index set It+1 ⊆ [m] to be designed shortly; and the convention aTi zt

|aTi zt|
:= 0 is adopted, if

aTi zt = 0. Further, it is easy to verify that the update in (6) monotonically decreases the objective
value in (5).
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Figure 1: Empirical success rate for WF,
TWF, and TGGF with the same truncated
spectral initialization under the noiseless real
Gaussian model.

Recall that since they offer descent iterations, the alter-
nating projection variants are guaranteed to converge
to a stationary point of `(z), and any limit point z∗
adheres to the following fixed-point equation [23]

AT
(
Az∗ −ψ � Az∗

|Az∗|

)
= 0 (8)

for entry-wise product �, which may have many so-
lutions. Clearly, if z∗ is a solution, so is −z∗. Fur-
ther, both solutions/global minimizers x and −x sat-
isfy (8) due to Ax − ψ � Ax

|Ax| = 0. Consider-
ing any stationary point z∗ 6= ±x that has been
adapted such that φ(z∗) = 0, one can write z∗ =

x+(ATA)−1AT
[
ψ�

(
Az∗

|Az∗|−
Ax
|Ax|

)]
. A necessary

condition for z∗ 6= x is Az∗

|Az∗| 6=
Ax
|Ax| . Expressed dif-

ferently, there must be sign differences between Az∗

|Az∗|
and Ax

|Ax| whenever one gets stuck with an undesirable
stationary point z∗. Building on this observation, it is reasonable to devise algorithms that can detect
and separate out the generalized gradient components corresponding to mistakenly estimated signs
aTi zt

|aTi zt|
along the iterates {zt}. Precisely, if zt and x lie in different sides of the hyperplane aTi z = 0,

then the sign of aTi zt will be different than that of aTi x; that is, aTi x

|aTi x| 6=
aTi z

|aTi z| . Specifically, one
can write the i-th generalized gradient component

∂`i(z) =
(
aTi z − ψi

aTi z

|aTi z|

)
ai =

(
aTi z − ψi

aTi x

|aTi x|

)
ai +

( aTi x
|aTi x|

− aTi z

|aTi z|

)
ψiai

= aia
T
i h+

( aTi x
|aTi x|

− aTi z

|aTi z|

)
ψiai

4
= aia

T
i h+ ri (9)

where h := z − x. Apparently, the strong law of large numbers (SLLN) asserts that averaging the
first term aia

T
i h over m instances approaches h, which qualifies it as a desirable search direction.

However, certain generalized gradient entries involve erroneously estimated signs of aTi x; hence,
nonzero ri terms exert a negative influence on the search direction h by dragging the iterate away
from x, and they typically have sizable magnitudes. To see why, recall that quantities maxi∈[m] ψi
and (1/m)

∑m
i=1 ψi have magnitudes on the order of

√
m‖x‖ and

√
π/2‖x‖, respectively, whereas

‖h‖ ≤ ρ‖x‖ for some small constant 0 < ρ ≤ 1/10, to be discussed shortly. To maintain a
meaningful search direction, those ‘bad’ generalized gradient entries should be detected and excluded
from the search direction.
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Nevertheless, it is difficult or even impossible to check whether the sign of aTi zt equals that of
aTi x. Fortunately, when the initialization is accurate enough, most spurious gradient entries (those
corrupted by nonzero ri terms) provably hover around the watershed hyperplane aTi zt = 0. For this
reason, TGGF includes only those components having zt sufficiently away from its watershed

It+1 :=
{
1 ≤ i ≤ m

∣∣∣ |aTi zt||aTi x|
≥ 1

1 + γ

}
, t ≥ 0 (10)

for an appropriately selected threshold γ > 0. It is worth stressing that our novel truncation rule
deviates from the intuition behind TWF. Among its complicated truncation procedures, TWF also
throws away large-size gradient components corresponding to (10), which is not the case with TGGF.
As demonstrated by our analysis, it rarely happens that a generalized gradient component having a
large |aTi zt|/ ‖zt‖ yields an incorrect sign of aTi x. Further, discarding too many samples (those
i /∈ Tt+1) introduces large bias into (1/m)

∑m
i∈Tt+1

aia
T
i ht, thus rendering TWF less effective

when m/n is small. Numerical comparison depicted in Fig. 1 suggests that even starting with
the same truncated spectral initialization, TGGF’s refinement outperforms those of TWF and WF,
corroborating the merits of our novel truncation and update rule over TWF/WF.

2.2 Orthogonality-promoting initialization stage
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Figure 2: Ordered squared normalized inner-
product for pairs x and ai, ∀i ∈ [m] with
m/n varying by 2 from 2 to 10, and n = 103.

Leveraging the SLLN, spectral methods estimate x
using the (appropriately scaled) leading eigenvector
of Y := 1

m

∑
i∈T0 yiaia

T
i , where T0 is an index

set accounting for possible truncation. As asserted
in [8], each summand (aTi x)

2aia
T
i follows a heavy-

tail probability density function lacking a moment
generating function. This causes major performance
degradation especially when the number of measure-
ments is limited. Instead of spectral initialization, we
shall take another route to bypass this hurdle. To gain
intuition for selecting our alternate route, a motivat-
ing example is presented first that reveals fundamen-
tal characteristics among high-dimensional random
vectors.

Example: Fixing any nonzero vector x ∈ Rn, gen-
erate data ψi = |〈ai,x〉| using i.i.d. ai ∼ N (0, In),
∀i ∈ [m], and evaluate the squared normalized inner-
product

cos2 θi :=
|〈ai,x〉|2

‖ai‖2‖x‖2
=

ψ2
i

‖ai‖2‖x‖2
, ∀i ∈ [m] (11)

where θi is the angle between ai and x. Consider ordering all cos2 θi’s in an ascending fashion,
and collectively denote them as ξ :=

[
cos2 θ[m] · · · cos2 θ[1]

]T
with cos2 θ[1] ≥ · · · ≥ cos2 θ[m].

Fig. 2 plots the ordered entries in ξ for m/n varying by 2 from 2 to 10 with n = 103. Observe that
almost all {ai} vectors have a squared normalized inner-product smaller than 10−2, while half of the
inner-products are less than 10−3, which implies that x is nearly orthogonal to many ai’s.

This example corroborates that random vectors in high-dimensional spaces are almost always nearly
orthogonal to each other [24]. This inspired us to pursue an orthogonality-promoting initialization
method. Our key idea is to approximate x by a vector that is most orthogonal to a subset of vectors
{ai}i∈I0 , where I0 is a set with cardinality |I0| < m that includes indices of the smallest squared
normalized inner-products

{
cos2 θi

}
. Since ‖x‖ appears in all inner-products, its exact value does

not influence their ordering. Henceforth, we assume without loss of generality that ‖x‖ = 1.

Using {(ai; ψi)}, evaluate cos2 θi according to (11) for each pair x and ai. Instrumental for the
ensuing derivations is noticing that the summation of cos2 θi over indices i ∈ I0 is very small, while
rigorous justification is deferred to Section 3 and supplementary materials. Thus, a meaningful
approximation denoted by z0 ∈ Rn can be obtained by solving
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min
‖z‖=1

zT

(
1

|I0|
∑
i∈I0

aia
T
i

‖ai‖2

)
z (12)

which amounts to finding the smallest eigenvalue and the associated eigenvector of 1
|I0|

∑
i∈I0

aia
T
i

‖ai‖2 .
Yet finding the smallest eigenvalue calls for eigen-decomposition or matrix inversion, each requiring
computational complexity O(n3). Such a computational burden can be intractable when n grows
large. Applying a standard concentration result simplifies greatly those computations next [25].

Since ai/‖ai‖ has unit norm and is uniformly distributed on the unit sphere, it is uniformly spheri-
cally distributed.2 Spherical symmetry implies that ai/‖ai‖ has zero mean and covariance matrix
In/n [25]. Appealing again to the SLLN, the sample covariance matrix 1

m

∑m
i=1

aia
T
i

‖ai‖2 approaches
1
nIn as m grows. Simple derivations lead to

∑
i∈I0

aia
T
i

‖ai‖2 =
∑m
i=1

aia
T
i

‖ai‖2 −
∑
i∈I0

aia
T
i

‖ai‖2 u
m
n In −

∑
i∈I0

aia
T
i

‖ai‖2 , where I0 is the complement of I0 in the set [m].

Define S := [a1/‖a1‖ · · · am/‖am‖]T ∈ Rm×n, and form S0 by removing the rows of S if their
indices do not belong to I0. The task of seeking the smallest eigenvalue of Y0 := 1

|I0|S
T
0 S0 reduces

to computing the largest eigenvalue of Y0 := 1

|I0|
ST0 S0, namely,

z̃0 := arg max
‖z‖=1

zT Y0z (13)

which can be efficiently solved using simple power iterations. If, on the other hand, ‖x‖ 6= 1, the
estimate z̃0 from (13) is further scaled so that its norm matches approximately that of x (which
is estimated to be 1

m

∑m
i=1 yi), thus yielding z0 =

√∑m
i=1 yi/mz̃0. It is worth stressing that the

constructed matrix Y0 does not depend on {yi} explicitly, saving our initialization from suffering
heavy-tails of the fourth order of {ai} in spectral initialization schemes.
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Figure 3: Relative error versus m/n for: i)
the spectral method; ii) the truncated spectral
method; and iii) our orthogonality-promoting
method for noiseless real Gaussian model.

Fig. 3 compares three initialization schemes showing
their relative errors versus the measurement/unknown
ratio m/n under the noise-free real Gaussian model,
where x ∈ R1,000 and m/n increases by 2 from 2 to
20. Apparently, all schemes enjoy improved perfor-
mance as m/n increases. In particular, the proposed
initialization method outperforms its spectral alterna-
tives. Interestingly, the spectral and truncated spectral
schemes exhibit similar performance when m/n is
sufficiently large (e.g., m/n ≥ 14). This confirms
that truncation helps only if m/n is relatively small.
Indeed, truncation is effected by discarding measure-
ments of excessively large sizes emerging from the
heavy tails of the data distribution. Hence, its advan-
tage over the untruncated one narrows as the number
of measurements increases, thus straightening out
the heavy tails. On the contrary, the orthogonality-
promoting initialization method achieves consistently
superior performance over its spectral alternatives.

3 Main results

TGGF is summarized in Algorithm 1 with default values set for pertinent algorithmic parameters.
Postulating independent samples {(ai; ψi)}, the following result establishes the performance of our
TGGF approach.

2A random vector z ∈ Rn is said to be spherical (or spherically symmetric) if its distribution does not change
under rotations of the coordinate system; that is, the distribution of Pz coincides with that of z for any given
orthogonal n× n matrix P .
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Algorithm 1 Truncated generalized gradient flow (TGGF) solvers
1: Input: Data {ψi}mi=1 and feature vectors {ai}mi=1; the maximum number of iterations T =

1, 000; by default, take constant step size µ = 0.6/1 for real/complex Gaussian models, truncation
thresholds |I0| = d 16me (d·e the ceil operation), and γ = 0.7.

2: Evaluate ψi/‖ai‖, ∀i ∈ [m], and find I0 comprising indices corresponding to the |I0| largest
(ψi/‖ai‖)’s.

3: Initialize z0 to
√∑m

i=1 ψ
2
i /mz̃0, where z̃0 is the unit leading eigenvector of Y0 :=

1

|I0|

∑
i∈I0

aia
T
i

‖ai‖2 .

4: Loop: for t = 0 to T − 1

zt+1 = zt −
µ

m

∑
i∈It+1

(
aTi zt − ψi

aTi zt
|aTi zt|

)
ai

where It+1 :=
{
1 ≤ i ≤ m

∣∣|aTi zt| ≥ 1
1+γψi

}
.

5: Output: zT

Theorem 1 Let x ∈ Rn be an arbitrary signal vector, and consider (noise-free) measurements
ψi = |aTi x|, in which ai

i.i.d.∼ N (0, In), 1 ≤ i ≤ m. Then with probability at least 1 − (m +
5)e−n/2 − e−c0m − 1/n2 for some universal constant c0 > 0, the initialization z0 returned by the
orthogonality-promoting method in Algorithm 1 satisfies

dist(z0,x) ≤ ρ ‖x‖ (14)

with ρ = 1/10 (or any sufficiently small positive constant), provided that m ≥ c1|I0| ≥ c2n for
some numerical constants c1, c2 > 0, and sufficiently large n. Further, choosing a constant step size
µ ≤ µ0 along with a fixed truncation level γ ≥ 1/2, and starting from any initial guess z0 satisfying
(14), successive estimates of the TGGF solver (tabulated in Algorithm 1) obey

dist (zt,x) ≤ ρ (1− ν)t ‖x‖ , t = 0, 1, . . . (15)

for some 0 < ν < 1, which holds with probability exceeding 1− (m+ 5)e−n/2 − 8e−c0m − 1/n2.
Typical parameters are µ = 0.6, and γ = 0.7.

Theorem 1 asserts that: i) TGGF recovers the solution x exactly as soon as the number of equations is
about the number of unknowns, which is theoretically order optimal. Our numerical tests demonstrate
that for the real Gaussian model, TGGF achieves a success rate of 100% when m/n is as small as 3,
which is slightly larger than the information limit of m/n = 2 (Recall that m ≥ 2n− 1 is necessary
for a unique solution); this is a significant reduction in the sample complexity ratio, which is 5 for
TWF and 7 for WF. Surprisingly, TGGF enjoys also a success rate of over 50% whenm/n is 2, which
has not yet been presented for any existing algorithm under Gaussian sampling models and thus, our
TGGF bridges the gap; see further discussion in Section 4; and, ii) TGGF converges exponentially fast.
Specifically, TGGF requires at most O(log(1/ε)) iterations to achieve any given solution accuracy
ε > 0 (a.k.a., dist(zt,x) ≤ ε ‖x‖), with iteration cost O(mn). Since truncation takes time on the
order of O(m), the computational burden of TGGF per iteration is dominated by evaluating the
generalized gradients. The latter involves two matrix-vector multiplications that are computable in
O(mn) flops, namely,Azt yields ut, andAT vt the generalized gradient, where vt := ut−ψ� ut

|ut| .
Hence, the total running time of TGGF is O(mn log(1/ε)), which is proportional to the time taken
to read the data O(mn). The proof of Theorem 1 can be found in the supplementary material.

4 Simulated tests and conclusions

Additional numerical tests evaluating performance of the proposed scheme relative to TWF/WF
are presented in this section. For fairness, all pertinent algorithmic parameters involved in each
scheme are set to their default values. The Matlab implementations of TGGF are available at
http://www.tc.umn.edu/˜gangwang/TAF. The initial estimate was found based on 50
power iterations, and was subsequently refined by T = 103 gradient-like iterations in each scheme.
Left panel in Fig. 4 presents average relative error of three initialization methods on a series of
noiseless/noisy real Gaussian problems with m/n = 6 fixed, and n varying from 500 to 104,
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Figure 4: The average relative error using: i) the spectral method [11, 12]; ii) the truncated spectral
method [8]; and iii) the proposed orthogonality-promoting method on noise-free (solid) and noisy
(dotted) instances with m/n = 6, and n varying from 500/100 to 10, 000/5, 000 for real/complex
vectors. Left: Real Gaussian model with x ∼ N (0, In), ai ∼ N (0, In), and σ2 = 0.22 ‖x‖2. Right:
Complex Gaussian model with x ∼ CN (0, In), ai ∼ CN (0, In), and σ2 = 0.22 ‖x‖2.
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Figure 5: Empirical success rate for WF, TWF, and TGGF with n = 1, 000 and m/n varying from 1
to 7. Left: Noiseless real Gaussian model with x ∼ N (0, In) and ai ∼ N (0, In); Right: Noiseless
complex Gaussian model with x ∼ CN (0, In) and ai ∼ CN (0, In).

while those for the corresponding complex Gaussian instances are shown in the right panel. Fig. 5
compares empirical success rate of three schemes under both real and complex Gaussian models
with n = 103 and m/n varying by 1 from 1 to 7. Apparently, the proposed initialization method
returns more accurate and robust estimates than the spectral ones. Moreover, for real-valued vectors,
TGGF achieves a success rate of over 50% when m/n = 2, and guarantees perfect recovery from
about 3n measurements; while for complex-valued ones, TGGF enjoys a success rate of 95% when
m/n = 3.4, and ensures perfect recovery from about 4.5n measurements. Regarding running times,
TGGF converges slightly faster than TWF, while both are markedly faster than WF. Curves in Fig. 5
clearly corroborate the merits of TGGF over Wirtinger alternatives.

This paper developed a linear-time algorithm termed TGGF for solving random systems of quadratic
equations. TGGF builds on three key ingredients: a novel orthogonality-promoting initialization,
along with a simple yet effective truncation rule, as well as simple scalable gradient-like iterations.
Numerical tests corroborate the superior performance of TGGF over state-of-the-art solvers.
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