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Abstract

Many tasks in AI require the collaboration of multiple agents. Typically, the
communication protocol between agents is manually specified and not altered
during training. In this paper we explore a simple neural model, called CommNet,
that uses continuous communication for fully cooperative tasks. The model consists
of multiple agents and the communication between them is learned alongside their
policy. We apply this model to a diverse set of tasks, demonstrating the ability
of the agents to learn to communicate amongst themselves, yielding improved
performance over non-communicative agents and baselines. In some cases, it
is possible to interpret the language devised by the agents, revealing simple but
effective strategies for solving the task at hand.

1 Introduction
Communication is a fundamental aspect of intelligence, enabling agents to behave as a group, rather
than a collection of individuals. It is vital for performing complex tasks in real-world environments
where each actor has limited capabilities and/or visibility of the world. Practical examples include
elevator control [3] and sensor networks [5]; communication is also important for success in robot
soccer [25]. In any partially observed environment, the communication between agents is vital to
coordinate the behavior of each individual. While the model controlling each agent is typically
learned via reinforcement learning [1, 28], the specification and format of the communication is
usually pre-determined. For example, in robot soccer, the bots are designed to communicate at each
time step their position and proximity to the ball.

In this work, we propose a model where cooperating agents learn to communicate amongst themselves
before taking actions. Each agent is controlled by a deep feed-forward network, which additionally
has access to a communication channel carrying a continuous vector. Through this channel, they
receive the summed transmissions of other agents. However, what each agent transmits on the
channel is not specified a-priori, being learned instead. Because the communication is continuous,
the model can be trained via back-propagation, and thus can be combined with standard single
agent RL algorithms or supervised learning. The model is simple and versatile. This allows it to be
applied to a wide range of problems involving partial visibility of the environment, where the agents
learn a task-specific communication that aids performance. In addition, the model allows dynamic
variation at run time in both the number and type of agents, which is important in applications such
as communication between moving cars.

We consider the setting where we have J agents, all cooperating to maximize reward R in some
environment. We make the simplifying assumption of full cooperation between agents, thus each
agent receives R independent of their contribution. In this setting, there is no difference between
each agent having its own controller, or viewing them as pieces of a larger model controlling all
agents. Taking the latter perspective, our controller is a large feed-forward neural network that maps
inputs for all agents to their actions, each agent occupying a subset of units. A specific connectivity
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structure between layers (a) instantiates the broadcast communication channel between agents and
(b) propagates the agent state.

We explore this model on a range of tasks. In some, supervision is provided for each action while
for others it is given sporadically. In the former case, the controller for each agent is trained by
backpropagating the error signal through the connectivity structure of the model, enabling the agents
to learn how to communicate amongst themselves to maximize the objective. In the latter case,
reinforcement learning must be used as an additional outer loop to provide a training signal at each
time step (see the supplementary material for details).

2 Communication Model
We now describe the model used to compute the distribution over actions p(a(t)|s(t), θ) at a given
time t (omitting the time index for brevity). Let sj be the jth agent’s view of the state of the
environment. The input to the controller is the concatenation of all state-views s = {s1, ..., sJ},
and the controller Φ is a mapping a = Φ(s), where the output a is a concatenation of discrete
actions a = {a1, ..., aJ} for each agent. Note that this single controller Φ encompasses the individual
controllers for each agents, as well as the communication between agents.

2.1 Controller Structure
We now detail our architecture for Φ that is built from modules f i, which take the form of multilayer
neural networks. Here i ∈ {0, ..,K}, where K is the number of communication steps in the network.

Each f i takes two input vectors for each agent j: the hidden state hij and the communication cij ,
and outputs a vector hi+1

j . The main body of the model then takes as input the concatenated vectors
h0 = [h01, h

0
2, ..., h

0
J ], and computes:

hi+1
j = f i(hij , c

i
j) (1)

ci+1
j =

1

J − 1

∑

j′ 6=j

hi+1
j′ . (2)

In the case that f i is a single linear layer followed by a non-linearity σ, we have: hi+1
j = σ(Hihij +

Cicij) and the model can be viewed as a feedforward network with layers hi+1 = σ(T ihi) where hi

is the concatenation of all hij and T i takes the block form (where C̄i = Ci/(J − 1)):

T i =




Hi C̄i C̄i ... C̄i

C̄i Hi C̄i ... C̄i

C̄i C̄i Hi ... C̄i

...
...

...
. . .

...
C̄i C̄i C̄i ... Hi




,

A key point is that T is dynamically sized since the number of agents may vary. This motivates the
the normalizing factor J − 1 in equation (2), which rescales the communication vector by the number
of communicating agents. Note also that T i is permutation invariant, thus the order of the agents
does not matter.

At the first layer of the model an encoder function h0j = r(sj) is used. This takes as input state-view
sj and outputs feature vector h0j (in Rd0 for some d0). The form of the encoder is problem dependent,
but for most of our tasks it is a single layer neural network. Unless otherwise noted, c0j = 0 for all j.
At the output of the model, a decoder function q(hKj ) is used to output a distribution over the space of
actions. q(.) takes the form of a single layer network, followed by a softmax. To produce a discrete
action, we sample from this distribution: aj ∼ q(hKj ).

Thus the entire model (shown in Fig. 1), which we call a Communication Neural Net (CommNet), (i)
takes the state-view of all agents s, passes it through the encoder h0 = r(s), (ii) iterates h and c in
equations (1) and (2) to obtain hK , (iii) samples actions a for all agents, according to q(hK).

2.2 Model Extensions
Local Connectivity: An alternative to the broadcast framework described above is to allow agents
to communicate to others within a certain range. Let N(j) be the set of agents present within
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In this work we make two contributions. First, we simplify and extend the graph neural network3

architecture of ??. Second, we show how this architecture can be used to control groups of cooperating4

agents.5

2 Model6

The simplest form of the model consists of multilayer neural networks f i that take as input vectors7

hi and ci and output a vector hi+1. The model takes as input a set of vectors {h0
1, h

0
2, ..., h

0
m}, and8

computes9

hi+1
j = f i(hi

j , c
i
j)

10

ci+1
j =

X

j0 6=j

hi+1
j0 ;

We set c0
j = 0 for all j, and i 2 {0, .., K} (we will call K the number of hops in the network).11

If desired, we can take the final hK
j and output them directly, so that the model outputs a vector12

corresponding to each input vector, or we can feed them into another network to get a single vector or13

scalar output.14

If each f i is a simple linear layer followed by a nonlinearity �:15

hi+1
j = �(Aihi

j + Bici
j),

then the model can be viewed as a feedforward network with layers16

Hi+1 = �(T iHi),

where T is written in block form17

T i =

0
BBBB@

Ai Bi Bi ... Bi

Bi Ai Bi ... Bi

Bi Bi Ai ... Bi

...
...

...
. . .

...
Bi Bi Bi ... Ai

1
CCCCA

.

The key idea is that T is dynamically sized, and the matrix can be dynamically sized because the18

blocks are applied by type, rather than by coordinate.19
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2 Problem Formulation33

We consider the setting where we have M agents, all cooperating to maximize reward R in some34

environment. We make the simplifying assumption that each agent receives R, independent of their35

contribution. In this setting, there is no difference between each agent having its own controller, or36

viewing them as pieces of a larger model controlling all agents. Taking the latter perspective, our37

controller is a large feed-forward neural network that maps inputs for all agents to their actions, each38

agent occupying a subset of units. A specific connectivity structure between layers (a) instantiates the39

broadcast communication channel between agents and (b) propagates the agent state in the manner of40

an RNN.41

Because the agents will receive reward, but not necessarily supervision for each action, reinforcement42

learning is used to maximize expected future reward. We explore two forms of communication within43

the controller: (i) discrete and (ii) continuous. In the former case, communication is an action, and44

will be treated as such by the reinforcement learning. In the continuous case, the signals passed45

between agents are no different than hidden states in a neural network; thus credit assignment for the46

communication can be performed using standard backpropagation (within the outer RL loop).47

We use policy gradient [33] with a state specific baseline for delivering a gradient to the model.48

Denote the states in an episode by s(1), ..., s(T ), and the actions taken at each of those states49

as a(1), ..., a(T ), where T is the length of the episode. The baseline is a scalar function of the50

states b(s, ✓), computed via an extra head on the model producing the action probabilities. Beside51

maximizing the expected reward with policy gradient, the models are also trained to minimize the52

distance between the baseline value and actual reward. Thus, after finishing an episode, we update53

the model parameters ✓ by54

�✓ =

TX

t=1

2
4@ log p(a(t)|s(t), ✓)

@✓

 
TX

i=t

r(i) � b(s(t), ✓)

!
� ↵

@

@✓

 
TX

i=t

r(i) � b(s(t), ✓)

!2
3
5 .

Here r(t) is reward given at time t, and the hyperparameter ↵ is for balancing the reward and the55

baseline objectives, set to 0.03 in all experiments.56

3 Model57

We now describe the model used to compute p(a(t)|s(t), ✓) at a given time t (ommiting the time58

index for brevity). Let sj be the jth agent’s view of the state of the environment. The input to the59

controller is the concatenation of all state-views s = {s1, ..., sJ}, and the controller � is a mapping60

a = �(s), where the output a is a concatenation of discrete actions a = {a1, ..., aJ} for each agent.61

Note that this single controller � encompasses the individual controllers for each agents, as well as62

the communication between agents.63

One obvious choice for � is a fully-connected multi-layer neural network, which could extract64

features h from s and use them to predict good actions with our RL framework. This model would65

allow agents to communicate with each other and share views of the environment. However, it66

is inflexible with respect to the composition and number of agents it controls; cannot deal well67

with agents joining and leaving the group and even the order of the agents must be fixed. On the68

other hand, if no communication is used then we can write a = {�(s1), ..., �(sJ)}, where � is a69

per-agent controller applied independently. This communication-free model satisfies the flexibility70

requirements1, but is not able to coordinate their actions.71

3.1 Controller Structure72

We now detail the architecture for � that has the modularity of the communication-free model but73

still allows communication. � is built from modules f i, which take the form of multilayer neural74

networks. Here i 2 {0, .., K}, where K is the number of communication layers in the network.75

Each f i takes two input vectors for each agent j: the hidden state hi
j and the communication ci

j ,76

and outputs a vector hi+1
j . The main body of the model then takes as input the concatenated vectors77

1Assuming sj includes the identity of agent j.
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h0 = [h0
1, h

0
2, ..., h

0
J ], and computes:78

hi+1
j = f i(hi

j , c
i
j) (1)

79

ci+1
j =

1

J � 1

X

j0 6=j

hi+1
j0 . (2)

In the case that f i is a single linear layer followed by a nonlinearity �, we have: hi+1
j = �(Hihi

j +80

Cici
j) and the model can be viewed as a feedforward network with layers hi+1 = �(T ihi) where hi81

is the concatenation of all hi
j and T takes the block form:82

T i =

0
BBBB@

Hi Ci Ci ... Ci

Ci Hi Ci ... Ci

Ci Ci Hi ... Ci

...
...

...
. . .

...
Ci Ci Ci ... Hi

1
CCCCA

,
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the controller: (i) discrete and (ii) continuous. In the former case, communication is an action, and44

will be treated as such by the reinforcement learning. In the continuous case, the signals passed45

between agents are no different than hidden states in a neural network; thus credit assignment for the46

communication can be performed using standard backpropagation (within the outer RL loop).47

We use policy gradient [33] with a state specific baseline for delivering a gradient to the model.48

Denote the states in an episode by s(1), ..., s(T ), and the actions taken at each of those states49

as a(1), ..., a(T ), where T is the length of the episode. The baseline is a scalar function of the50

states b(s, ✓), computed via an extra head on the model producing the action probabilities. Beside51

maximizing the expected reward with policy gradient, the models are also trained to minimize the52

distance between the baseline value and actual reward. Thus, after finishing an episode, we update53

the model parameters ✓ by54
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Here r(t) is reward given at time t, and the hyperparameter ↵ is for balancing the reward and the55

baseline objectives, set to 0.03 in all experiments.56

3 Model57

We now describe the model used to compute p(a(t)|s(t), ✓) at a given time t (ommiting the time58

index for brevity). Let sj be the jth agent’s view of the state of the environment. The input to the59

controller is the concatenation of all state-views s = {s1, ..., sJ}, and the controller � is a mapping60

a = �(s), where the output a is a concatenation of discrete actions a = {a1, ..., aJ} for each agent.61

Note that this single controller � encompasses the individual controllers for each agents, as well as62

the communication between agents.63

One obvious choice for � is a fully-connected multi-layer neural network, which could extract64

features h from s and use them to predict good actions with our RL framework. This model would65

allow agents to communicate with each other and share views of the environment. However, it66

is inflexible with respect to the composition and number of agents it controls; cannot deal well67

with agents joining and leaving the group and even the order of the agents must be fixed. On the68

other hand, if no communication is used then we can write a = {�(s1), ..., �(sJ)}, where � is a69

per-agent controller applied independently. This communication-free model satisfies the flexibility70

requirements1, but is not able to coordinate their actions.71

3.1 Controller Structure72

We now detail the architecture for � that has the modularity of the communication-free model but73

still allows communication. � is built from modules f i, which take the form of multilayer neural74

networks. Here i 2 {0, .., K}, where K is the number of communication layers in the network.75

Each f i takes two input vectors for each agent j: the hidden state hi
j and the communication ci

j ,76

and outputs a vector hi+1
j . The main body of the model then takes as input the concatenated vectors77

1Assuming sj includes the identity of agent j.
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The key idea is that T is dynamically sized. First, the number of agents may vary. This motivates83

the the normalizing factor J � 1 in equation (2), which resacles the communication vector by the84

number of communicating agents. Second, the blocks are applied based on category, rather than by85

coordinate. In this simple form of the model “category” refers to either “self” or “teammate”; but as86

we will see below, the communication architecture can be more complicated than “broadcast to all”,87

and so may require more categories. Note also that T i is permutation invariant, thus the order of the88

agents does not matter.89

At the first layer of the model an encoder function h0
j = p(sj) is used. This takes as input state-view90

sjand outputs feature vector h0
j (in Rd0 for some d0). The form of the encoder is problem dependent,91

but for most of our tasks they consist of a lookup-table embedding (or bags of vectors thereof). Unless92

otherwise noted, c0
j = 0 for all j.93

At the output of the model, a decoder function q(hK
j ) is used to output a distribution over the space of94

actions. q(.) takes the form of a single layer network, followed by a softmax. To produce a discrete95

action, we sample from the this distribution.96

Thus the entire model, which we call a Communication Neural Net (CommNN), (i) takes the state-97

view of all agents s, passes it through the encoder h0 = p(s), (ii) iterates h and c in equations (1)98

and (2) to obain hK , (iii) samples actions a for all agents, according to q(hK).99

3.2 Model Extensions100

Local Connectivity: An alternative to the broadcast framework described above is to allow agents101

to communicate to others within a certain range. Let N(j) be the set of agents present within102

communication range of agent j. Then (2) becomes:103
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In the case that f i is a single linear layer followed by a nonlinearity �, we have: hi+1
j = �(Hihi

j +80

Cici
j) and the model can be viewed as a feedforward network with layers hi+1 = �(T ihi) where hi81

is the concatenation of all hi
j and T takes the block form:82

T i =

0
BBBB@

Hi Ci Ci ... Ci

Ci Hi Ci ... Ci

Ci Ci Hi ... Ci
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...

...
. . .
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Ci Ci Ci ... Hi
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In this work we make two contributions. First, we simplify and extend the graph neural network3

architecture of ??. Second, we show how this architecture can be used to control groups of cooperating4

agents.5

2 Model6

The simplest form of the model consists of multilayer neural networks f i that take as input vectors7

hi and ci and output a vector hi+1. The model takes as input a set of vectors {h0
1, h

0
2, ..., h

0
m}, and8

computes9

hi+1
j = f i(hi

j , c
i
j)

10

ci+1
j =

X

j0 6=j

hi+1
j0 ;

We set c0
j = 0 for all j, and i 2 {0, .., K} (we will call K the number of hops in the network).11

If desired, we can take the final hK
j and output them directly, so that the model outputs a vector12

corresponding to each input vector, or we can feed them into another network to get a single vector or13

scalar output.14

If each f i is a simple linear layer followed by a nonlinearity �:15

hi+1
j = �(Aihi

j + Bici
j),

then the model can be viewed as a feedforward network with layers16
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The key idea is that T is dynamically sized, and the matrix can be dynamically sized because the18

blocks are applied by type, rather than by coordinate.19
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2 Problem Formulation33

We consider the setting where we have M agents, all cooperating to maximize reward R in some34

environment. We make the simplifying assumption that each agent receives R, independent of their35

contribution. In this setting, there is no difference between each agent having its own controller, or36

viewing them as pieces of a larger model controlling all agents. Taking the latter perspective, our37

controller is a large feed-forward neural network that maps inputs for all agents to their actions, each38

agent occupying a subset of units. A specific connectivity structure between layers (a) instantiates the39

broadcast communication channel between agents and (b) propagates the agent state in the manner of40

an RNN.41

Because the agents will receive reward, but not necessarily supervision for each action, reinforcement42

learning is used to maximize expected future reward. We explore two forms of communication within43

the controller: (i) discrete and (ii) continuous. In the former case, communication is an action, and44

will be treated as such by the reinforcement learning. In the continuous case, the signals passed45

between agents are no different than hidden states in a neural network; thus credit assignment for the46

communication can be performed using standard backpropagation (within the outer RL loop).47

We use policy gradient [33] with a state specific baseline for delivering a gradient to the model.48

Denote the states in an episode by s(1), ..., s(T ), and the actions taken at each of those states49

as a(1), ..., a(T ), where T is the length of the episode. The baseline is a scalar function of the50

states b(s, ✓), computed via an extra head on the model producing the action probabilities. Beside51

maximizing the expected reward with policy gradient, the models are also trained to minimize the52

distance between the baseline value and actual reward. Thus, after finishing an episode, we update53

the model parameters ✓ by54
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Here r(t) is reward given at time t, and the hyperparameter ↵ is for balancing the reward and the55

baseline objectives, set to 0.03 in all experiments.56

3 Model57

We now describe the model used to compute p(a(t)|s(t), ✓) at a given time t (ommiting the time58

index for brevity). Let sj be the jth agent’s view of the state of the environment. The input to the59

controller is the concatenation of all state-views s = {s1, ..., sJ}, and the controller � is a mapping60

a = �(s), where the output a is a concatenation of discrete actions a = {a1, ..., aJ} for each agent.61

Note that this single controller � encompasses the individual controllers for each agents, as well as62

the communication between agents.63

One obvious choice for � is a fully-connected multi-layer neural network, which could extract64

features h from s and use them to predict good actions with our RL framework. This model would65

allow agents to communicate with each other and share views of the environment. However, it66

is inflexible with respect to the composition and number of agents it controls; cannot deal well67

with agents joining and leaving the group and even the order of the agents must be fixed. On the68

other hand, if no communication is used then we can write a = {�(s1), ..., �(sJ)}, where � is a69

per-agent controller applied independently. This communication-free model satisfies the flexibility70

requirements1, but is not able to coordinate their actions.71

3.1 Controller Structure72

We now detail the architecture for � that has the modularity of the communication-free model but73

still allows communication. � is built from modules f i, which take the form of multilayer neural74

networks. Here i 2 {0, .., K}, where K is the number of communication layers in the network.75

Each f i takes two input vectors for each agent j: the hidden state hi
j and the communication ci

j ,76

and outputs a vector hi+1
j . The main body of the model then takes as input the concatenated vectors77

1Assuming sj includes the identity of agent j.
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The key idea is that T is dynamically sized. First, the number of agents may vary. This motivates83

the the normalizing factor J � 1 in equation (2), which resacles the communication vector by the84

number of communicating agents. Second, the blocks are applied based on category, rather than by85

coordinate. In this simple form of the model “category” refers to either “self” or “teammate”; but as86

we will see below, the communication architecture can be more complicated than “broadcast to all”,87

and so may require more categories. Note also that T i is permutation invariant, thus the order of the88

agents does not matter.89

At the first layer of the model an encoder function h0
j = p(sj) is used. This takes as input state-view90

sjand outputs feature vector h0
j (in Rd0 for some d0). The form of the encoder is problem dependent,91

but for most of our tasks they consist of a lookup-table embedding (or bags of vectors thereof). Unless92

otherwise noted, c0
j = 0 for all j.93

At the output of the model, a decoder function q(hK
j ) is used to output a distribution over the space of94

actions. q(.) takes the form of a single layer network, followed by a softmax. To produce a discrete95

action, we sample from the this distribution.96

Thus the entire model, which we call a Communication Neural Net (CommNN), (i) takes the state-97

view of all agents s, passes it through the encoder h0 = p(s), (ii) iterates h and c in equations (1)98

and (2) to obain hK , (iii) samples actions a for all agents, according to q(hK).99

3.2 Model Extensions100

Local Connectivity: An alternative to the broadcast framework described above is to allow agents101

to communicate to others within a certain range. Let N(j) be the set of agents present within102

communication range of agent j. Then (2) becomes:103
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2 Problem Formulation33

We consider the setting where we have M agents, all cooperating to maximize reward R in some34

environment. We make the simplifying assumption that each agent receives R, independent of their35

contribution. In this setting, there is no difference between each agent having its own controller, or36

viewing them as pieces of a larger model controlling all agents. Taking the latter perspective, our37

controller is a large feed-forward neural network that maps inputs for all agents to their actions, each38

agent occupying a subset of units. A specific connectivity structure between layers (a) instantiates the39

broadcast communication channel between agents and (b) propagates the agent state in the manner of40

an RNN.41

Because the agents will receive reward, but not necessarily supervision for each action, reinforcement42

learning is used to maximize expected future reward. We explore two forms of communication within43

the controller: (i) discrete and (ii) continuous. In the former case, communication is an action, and44

will be treated as such by the reinforcement learning. In the continuous case, the signals passed45

between agents are no different than hidden states in a neural network; thus credit assignment for the46

communication can be performed using standard backpropagation (within the outer RL loop).47

We use policy gradient [33] with a state specific baseline for delivering a gradient to the model.48

Denote the states in an episode by s(1), ..., s(T ), and the actions taken at each of those states49

as a(1), ..., a(T ), where T is the length of the episode. The baseline is a scalar function of the50

states b(s, ✓), computed via an extra head on the model producing the action probabilities. Beside51

maximizing the expected reward with policy gradient, the models are also trained to minimize the52

distance between the baseline value and actual reward. Thus, after finishing an episode, we update53

the model parameters ✓ by54

�✓ =

TX

t=1

�
�� log p(a(t)|s(t), ✓)

�✓

�
TX

i=t

r(i) � b(s(t), ✓)

�
� �

�

�✓

�
TX

i=t

r(i) � b(s(t), ✓)

�2
�
� .

Here r(t) is reward given at time t, and the hyperparameter � is for balancing the reward and the55

baseline objectives, set to 0.03 in all experiments.56

3 Model57

We now describe the model used to compute p(a(t)|s(t), ✓) at a given time t (ommiting the time58

index for brevity). Let sj be the jth agent’s view of the state of the environment. The input to the59

controller is the concatenation of all state-views s = {s1, ..., sJ}, and the controller � is a mapping60

a = �(s), where the output a is a concatenation of discrete actions a = {a1, ..., aJ} for each agent.61

Note that this single controller � encompasses the individual controllers for each agents, as well as62

the communication between agents.63

One obvious choice for � is a fully-connected multi-layer neural network, which could extract64

features h from s and use them to predict good actions with our RL framework. This model would65

allow agents to communicate with each other and share views of the environment. However, it66

is inflexible with respect to the composition and number of agents it controls; cannot deal well67

with agents joining and leaving the group and even the order of the agents must be fixed. On the68

other hand, if no communication is used then we can write a = {�(s1), ..., �(sJ)}, where � is a69

per-agent controller applied independently. This communication-free model satisfies the flexibility70

requirements1, but is not able to coordinate their actions.71

3.1 Controller Structure72

We now detail the architecture for � that has the modularity of the communication-free model but73

still allows communication. � is built from modules f i, which take the form of multilayer neural74

networks. Here i 2 {0, .., K}, where K is the number of communication layers in the network.75

Each f i takes two input vectors for each agent j: the hidden state hi
j and the communication ci

j ,76

and outputs a vector hi+1
j . The main body of the model then takes as input the concatenated vectors77

1Assuming sj includes the identity of agent j.
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1, h

0
2, ..., h

0
J ], and computes:78

hi+1
j = f i(hi

j , c
i
j) (1)

79

ci+1
j =

1

J � 1

X

j0 6=j

hi+1
j0 . (2)

In the case that f i is a single linear layer followed by a nonlinearity �, we have: hi+1
j = �(Hihi

j +80

Cici
j) and the model can be viewed as a feedforward network with layers hi+1 = �(T ihi) where hi81

is the concatenation of all hi
j and T takes the block form:82

T i =

�
�����

Hi Ci Ci ... Ci

Ci Hi Ci ... Ci

Ci Ci Hi ... Ci

...
...

...
. . .

...
Ci Ci Ci ... Hi

�
�����
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j = 0 for all j, and i 2 {0, .., K} (we will call K the number of hops in the network).11

If desired, we can take the final hK
j and output them directly, so that the model outputs a vector12

corresponding to each input vector, or we can feed them into another network to get a single vector or13

scalar output.14

If each f i is a simple linear layer followed by a nonlinearity �:15
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The key idea is that T is dynamically sized, and the matrix can be dynamically sized because the18
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hi and ci and output a vector hi+1. The model takes as input a set of vectors {h0
1, h

0
2, ..., h

0
m}, and8

computes9

hi+1
j = f i(hi

j , c
i
j)

10

ci+1
j =

X

j0 6=j

hi+1
j0 ;

We set c0
j = 0 for all j, and i 2 {0, .., K} (we will call K the number of hops in the network).11

If desired, we can take the final hK
j and output them directly, so that the model outputs a vector12

corresponding to each input vector, or we can feed them into another network to get a single vector or13

scalar output.14

If each f i is a simple linear layer followed by a nonlinearity �:15

hi+1
j = �(Aihi

j + Bici
j),

then the model can be viewed as a feedforward network with layers16

Hi+1 = �(T iHi),

where T is written in block form17

T i =

�
�����

Ai Bi Bi ... Bi

Bi Ai Bi ... Bi

Bi Bi Ai ... Bi

...
...

...
. . .

...
Bi Bi Bi ... Ai

�
�����

.

The key idea is that T is dynamically sized, and the matrix can be dynamically sized because the18

blocks are applied by type, rather than by coordinate.19
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2 Problem Formulation33

We consider the setting where we have M agents, all cooperating to maximize reward R in some34

environment. We make the simplifying assumption that each agent receives R, independent of their35

contribution. In this setting, there is no difference between each agent having its own controller, or36

viewing them as pieces of a larger model controlling all agents. Taking the latter perspective, our37

controller is a large feed-forward neural network that maps inputs for all agents to their actions, each38

agent occupying a subset of units. A specific connectivity structure between layers (a) instantiates the39

broadcast communication channel between agents and (b) propagates the agent state in the manner of40

an RNN.41

Because the agents will receive reward, but not necessarily supervision for each action, reinforcement42

learning is used to maximize expected future reward. We explore two forms of communication within43

the controller: (i) discrete and (ii) continuous. In the former case, communication is an action, and44

will be treated as such by the reinforcement learning. In the continuous case, the signals passed45

between agents are no different than hidden states in a neural network; thus credit assignment for the46

communication can be performed using standard backpropagation (within the outer RL loop).47

We use policy gradient [33] with a state specific baseline for delivering a gradient to the model.48

Denote the states in an episode by s(1), ..., s(T ), and the actions taken at each of those states49

as a(1), ..., a(T ), where T is the length of the episode. The baseline is a scalar function of the50

states b(s, ✓), computed via an extra head on the model producing the action probabilities. Beside51

maximizing the expected reward with policy gradient, the models are also trained to minimize the52

distance between the baseline value and actual reward. Thus, after finishing an episode, we update53

the model parameters ✓ by54

�✓ =

TX

t=1

�
�� log p(a(t)|s(t), ✓)

�✓

�
TX

i=t

r(i) � b(s(t), ✓)

�
� �

�

�✓

�
TX

i=t

r(i) � b(s(t), ✓)

�2
�
� .

Here r(t) is reward given at time t, and the hyperparameter � is for balancing the reward and the55

baseline objectives, set to 0.03 in all experiments.56

3 Model57

We now describe the model used to compute p(a(t)|s(t), ✓) at a given time t (ommiting the time58

index for brevity). Let sj be the jth agent’s view of the state of the environment. The input to the59

controller is the concatenation of all state-views s = {s1, ..., sJ}, and the controller � is a mapping60

a = �(s), where the output a is a concatenation of discrete actions a = {a1, ..., aJ} for each agent.61

Note that this single controller � encompasses the individual controllers for each agents, as well as62

the communication between agents.63

One obvious choice for � is a fully-connected multi-layer neural network, which could extract64

features h from s and use them to predict good actions with our RL framework. This model would65

allow agents to communicate with each other and share views of the environment. However, it66

is inflexible with respect to the composition and number of agents it controls; cannot deal well67

with agents joining and leaving the group and even the order of the agents must be fixed. On the68

other hand, if no communication is used then we can write a = {�(s1), ..., �(sJ)}, where � is a69

per-agent controller applied independently. This communication-free model satisfies the flexibility70

requirements1, but is not able to coordinate their actions.71

3.1 Controller Structure72

We now detail the architecture for � that has the modularity of the communication-free model but73

still allows communication. � is built from modules f i, which take the form of multilayer neural74

networks. Here i 2 {0, .., K}, where K is the number of communication layers in the network.75

Each f i takes two input vectors for each agent j: the hidden state hi
j and the communication ci

j ,76

and outputs a vector hi+1
j . The main body of the model then takes as input the concatenated vectors77

1Assuming sj includes the identity of agent j.

2

2 Problem Formulation33

We consider the setting where we have M agents, all cooperating to maximize reward R in some34

environment. We make the simplifying assumption that each agent receives R, independent of their35

contribution. In this setting, there is no difference between each agent having its own controller, or36

viewing them as pieces of a larger model controlling all agents. Taking the latter perspective, our37

controller is a large feed-forward neural network that maps inputs for all agents to their actions, each38

agent occupying a subset of units. A specific connectivity structure between layers (a) instantiates the39

broadcast communication channel between agents and (b) propagates the agent state in the manner of40

an RNN.41

Because the agents will receive reward, but not necessarily supervision for each action, reinforcement42

learning is used to maximize expected future reward. We explore two forms of communication within43

the controller: (i) discrete and (ii) continuous. In the former case, communication is an action, and44

will be treated as such by the reinforcement learning. In the continuous case, the signals passed45

between agents are no different than hidden states in a neural network; thus credit assignment for the46

communication can be performed using standard backpropagation (within the outer RL loop).47

We use policy gradient [33] with a state specific baseline for delivering a gradient to the model.48

Denote the states in an episode by s(1), ..., s(T ), and the actions taken at each of those states49

as a(1), ..., a(T ), where T is the length of the episode. The baseline is a scalar function of the50

states b(s, ✓), computed via an extra head on the model producing the action probabilities. Beside51

maximizing the expected reward with policy gradient, the models are also trained to minimize the52

distance between the baseline value and actual reward. Thus, after finishing an episode, we update53

the model parameters ✓ by54

�✓ =

TX

t=1

�
�� log p(a(t)|s(t), ✓)

�✓

�
TX

i=t

r(i) � b(s(t), ✓)

�
� �

�

�✓

�
TX

i=t

r(i) � b(s(t), ✓)

�2
�
� .

Here r(t) is reward given at time t, and the hyperparameter � is for balancing the reward and the55

baseline objectives, set to 0.03 in all experiments.56

3 Model57

We now describe the model used to compute p(a(t)|s(t), ✓) at a given time t (ommiting the time58

index for brevity). Let sj be the jth agent’s view of the state of the environment. The input to the59

controller is the concatenation of all state-views s = {s1, ..., sJ}, and the controller � is a mapping60

a = �(s), where the output a is a concatenation of discrete actions a = {a1, ..., aJ} for each agent.61

Note that this single controller � encompasses the individual controllers for each agents, as well as62

the communication between agents.63

One obvious choice for � is a fully-connected multi-layer neural network, which could extract64

features h from s and use them to predict good actions with our RL framework. This model would65

allow agents to communicate with each other and share views of the environment. However, it66

is inflexible with respect to the composition and number of agents it controls; cannot deal well67

with agents joining and leaving the group and even the order of the agents must be fixed. On the68

other hand, if no communication is used then we can write a = {�(s1), ..., �(sJ)}, where � is a69

per-agent controller applied independently. This communication-free model satisfies the flexibility70

requirements1, but is not able to coordinate their actions.71

3.1 Controller Structure72

We now detail the architecture for � that has the modularity of the communication-free model but73

still allows communication. � is built from modules f i, which take the form of multilayer neural74

networks. Here i 2 {0, .., K}, where K is the number of communication layers in the network.75

Each f i takes two input vectors for each agent j: the hidden state hi
j and the communication ci

j ,76

and outputs a vector hi+1
j . The main body of the model then takes as input the concatenated vectors77

1Assuming sj includes the identity of agent j.

2

Figure 1: Blah.

The key idea is that T is dynamically sized. First, the number of agents may vary. This motivates83

the the normalizing factor J � 1 in equation (2), which resacles the communication vector by the84

number of communicating agents. Second, the blocks are applied based on category, rather than by85

coordinate. In this simple form of the model “category” refers to either “self” or “teammate”; but as86

we will see below, the communication architecture can be more complicated than “broadcast to all”,87

and so may require more categories. Note also that T i is permutation invariant, thus the order of the88

agents does not matter.89

At the first layer of the model an encoder function h0
j = p(sj) is used. This takes as input state-view90

sjand outputs feature vector h0
j (in Rd0 for some d0). The form of the encoder is problem dependent,91

but for most of our tasks they consist of a lookup-table embedding (or bags of vectors thereof). Unless92

otherwise noted, c0
j = 0 for all j.93

At the output of the model, a decoder function q(hK
j ) is used to output a distribution over the space of94

actions. q(.) takes the form of a single layer network, followed by a softmax. To produce a discrete95

action, we sample from the this distribution.96

Thus the entire model, which we call a Communication Neural Net (CommNN), (i) takes the state-97

view of all agents s, passes it through the encoder h0 = p(s), (ii) iterates h and c in equations (1)98

and (2) to obain hK , (iii) samples actions a for all agents, according to q(hK).99

3.2 Model Extensions100

Local Connectivity: An alternative to the broadcast framework described above is to allow agents101

to communicate to others within a certain range. Let N(j) be the set of agents present within102

communication range of agent j. Then (2) becomes:103

ci+1
j =

1

|N(j)|
X

j02N(j)

hi+1
j0 . (3)

3

h0 = [h0
1, h

0
2, ..., h

0
J ], and computes:78

hi+1
j = f i(hi

j , c
i
j) (1)

79

ci+1
j =

1

J � 1

X

j0 6=j

hi+1
j0 . (2)

In the case that f i is a single linear layer followed by a nonlinearity �, we have: hi+1
j = �(Hihi

j +80

Cici
j) and the model can be viewed as a feedforward network with layers hi+1 = �(T ihi) where hi81

is the concatenation of all hi
j and T takes the block form:82

T i =

�
�����

Hi Ci Ci ... Ci

Ci Hi Ci ... Ci

Ci Ci Hi ... Ci

...
...

...
. . .

...
Ci Ci Ci ... Hi

�
�����

,
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j = 0 for all j, and i 2 {0, .., K} (we will call K the number of hops in the network).11

If desired, we can take the final hK
j and output them directly, so that the model outputs a vector12

corresponding to each input vector, or we can feed them into another network to get a single vector or13

scalar output.14

If each f i is a simple linear layer followed by a nonlinearity �:15
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2 Problem Formulation33

We consider the setting where we have M agents, all cooperating to maximize reward R in some34

environment. We make the simplifying assumption that each agent receives R, independent of their35

contribution. In this setting, there is no difference between each agent having its own controller, or36

viewing them as pieces of a larger model controlling all agents. Taking the latter perspective, our37

controller is a large feed-forward neural network that maps inputs for all agents to their actions, each38

agent occupying a subset of units. A specific connectivity structure between layers (a) instantiates the39

broadcast communication channel between agents and (b) propagates the agent state in the manner of40

an RNN.41

Because the agents will receive reward, but not necessarily supervision for each action, reinforcement42

learning is used to maximize expected future reward. We explore two forms of communication within43

the controller: (i) discrete and (ii) continuous. In the former case, communication is an action, and44

will be treated as such by the reinforcement learning. In the continuous case, the signals passed45

between agents are no different than hidden states in a neural network; thus credit assignment for the46

communication can be performed using standard backpropagation (within the outer RL loop).47

We use policy gradient [33] with a state specific baseline for delivering a gradient to the model.48

Denote the states in an episode by s(1), ..., s(T ), and the actions taken at each of those states49

as a(1), ..., a(T ), where T is the length of the episode. The baseline is a scalar function of the50

states b(s, ✓), computed via an extra head on the model producing the action probabilities. Beside51

maximizing the expected reward with policy gradient, the models are also trained to minimize the52

distance between the baseline value and actual reward. Thus, after finishing an episode, we update53

the model parameters ✓ by54

�✓ =

TX

t=1

�
�� log p(a(t)|s(t), ✓)

�✓

�
TX

i=t

r(i) � b(s(t), ✓)

�
� �

�

�✓

�
TX

i=t

r(i) � b(s(t), ✓)

�2
�
� .

Here r(t) is reward given at time t, and the hyperparameter � is for balancing the reward and the55

baseline objectives, set to 0.03 in all experiments.56

3 Model57

We now describe the model used to compute p(a(t)|s(t), ✓) at a given time t (ommiting the time58

index for brevity). Let sj be the jth agent’s view of the state of the environment. The input to the59

controller is the concatenation of all state-views s = {s1, ..., sJ}, and the controller � is a mapping60

a = �(s), where the output a is a concatenation of discrete actions a = {a1, ..., aJ} for each agent.61

Note that this single controller � encompasses the individual controllers for each agents, as well as62

the communication between agents.63

One obvious choice for � is a fully-connected multi-layer neural network, which could extract64

features h from s and use them to predict good actions with our RL framework. This model would65

allow agents to communicate with each other and share views of the environment. However, it66

is inflexible with respect to the composition and number of agents it controls; cannot deal well67

with agents joining and leaving the group and even the order of the agents must be fixed. On the68

other hand, if no communication is used then we can write a = {�(s1), ..., �(sJ)}, where � is a69

per-agent controller applied independently. This communication-free model satisfies the flexibility70

requirements1, but is not able to coordinate their actions.71

3.1 Controller Structure72

We now detail the architecture for � that has the modularity of the communication-free model but73

still allows communication. � is built from modules f i, which take the form of multilayer neural74

networks. Here i 2 {0, .., K}, where K is the number of communication layers in the network.75

Each f i takes two input vectors for each agent j: the hidden state hi
j and the communication ci

j ,76

and outputs a vector hi+1
j . The main body of the model then takes as input the concatenated vectors77

1Assuming sj includes the identity of agent j.
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actions. q(.) takes the form of a single layer network, followed by a softmax. To produce a discrete95

action, we sample from the this distribution.96

Thus the entire model, which we call a Communication Neural Net (CommNN), (i) takes the state-97

view of all agents s, passes it through the encoder h0 = p(s), (ii) iterates h and c in equations (1)98

and (2) to obain hK , (iii) samples actions a for all agents, according to q(hK).99

3.2 Model Extensions100

Local Connectivity: An alternative to the broadcast framework described above is to allow agents101

to communicate to others within a certain range. Let N(j) be the set of agents present within102

communication range of agent j. Then (2) becomes:103

ci+1
j =

1

|N(j)|
X

j02N(j)

hi+1
j0 . (3)
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Figure 1: An overview of our CommNet model. Left: view of module f i for a single agent j. Note
that the parameters are shared across all agents. Middle: a single communication step, where each
agents modules propagate their internal state h, as well as broadcasting a communication vector c
on a common channel (shown in red). Right: full model, showing input states s for each agent, two
communication steps and the output actions for each agent.

A key point is that T is dynamically sized since the number of agents may vary. This motivates the
the normalizing factor J � 1 in equation (2), which rescales the communication vector by the number
of communicating agents. Note also that T i is permutation invariant, thus the order of the agents
does not matter.

2

Figure 1: An overview of our CommNet model. Left: view of module f i for a single agent j. Note
that the parameters are shared across all agents. Middle: a single communication step, where each
agents modules propagate their internal state h, as well as broadcasting a communication vector c on
a common channel (shown in red). Right: full model Φ, showing input states s for each agent, two
communication steps and the output actions for each agent.

communication range of agent j. Then (2) becomes:

ci+1
j =

1

|N(j)|
∑

j′∈N(j)

hi+1
j′ . (3)

As the agents move, enter and exit the environment, N(j) will change over time. In this setting,
our model has a natural interpretation as a dynamic graph, with N(j) being the set of vertices
connected to vertex j at the current time. The edges within the graph represent the communication
channel between agents, with (3) being equivalent to belief propagation [22]. Furthermore, the use of
multi-layer nets at each vertex makes our model similar to an instantiation of the GGSNN work of Li
et al. [14].

Skip Connections: For some tasks, it is useful to have the input encoding h0j present as an input for
communication steps beyond the first layer. Thus for agent j at step i, we have:

hi+1
j = f i(hij , c

i
j , h

0
j ). (4)

Temporal Recurrence: We also explore having the network be a recurrent neural network (RNN).
This is achieved by simply replacing the communication step i in Eqn. (1) and (2) by a time step t,
and using the same module f t for all t. At every time step, actions will be sampled from q(htj). Note
that agents can leave or join the swarm at any time step. If f t is a single layer network, we obtain
plain RNNs that communicate with each other. In later experiments, we also use an LSTM as an f t
module.

3 Related Work
Our model combines a deep network with reinforcement learning [8, 20, 13]. Several recent works
have applied these methods to multi-agent domains, such as Go [16, 24] and Atari games [29], but
they assume full visibility of the environment and lack communication. There is a rich literature
on multi-agent reinforcement learning (MARL) [1], particularly in the robotics domain [18, 25, 5,
21, 2]. Amongst fully cooperative algorithms, many approaches [12, 15, 33] avoid the need for
communication by making strong assumptions about visibility of other agents and the environment.
Others use communication, but with a pre-determined protocol [30, 19, 37, 17].

A few notable approaches involve learning to communicate between agents under partial visibility:
Kasai et al. [10] and Varshavskaya et al. [32], both use distributed tabular-RL approaches for
simulated tasks. Giles & Jim [6] use an evolutionary algorithm, rather than reinforcement learning.
Guestrin et al. [7] use a single large MDP to control a collection of agents, via a factored message
passing framework where the messages are learned. In contrast to these approaches, our model uses a
deep network for both agent control and communication.

From a MARL perspective, the closest approach to ours is the concurrent work of Foerster et al. [4].
This also uses a deep reinforcement learning in multi-agent partially observable tasks, specifically
two riddle problems (similar in spirit to our levers task) which necessitate multi-agent communication.
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Like our approach, the communication is learned rather than being pre-determined. However, the
agents communicate in a discrete manner through their actions. This contrasts with our model where
multiple continuous communication cycles are used at each time step to decide the actions of all
agents. Furthermore, our approach is amenable to dynamic variation in the number of agents.

The Neural GPU [9] has similarities to our model but differs in that a 1-D ordering on the input is
assumed and it employs convolution, as opposed to the global pooling in our approach (thus permitting
unstructured inputs). Our model can be regarded as an instantiation of the GNN construction of
Scarselli et al. [23], as expanded on by Li et al. [14]. In particular, in [23], the output of the model
is the fixed point of iterating equations (3) and (1) to convergence, using recurrent models. In [14],
these recurrence equations are unrolled a fixed number of steps and the model trained via backprop
through time. In this work, we do not require the model to be recurrent, neither do we aim to reach
steady state. Additionally, we regard Eqn. (3) as a pooling operation, conceptually making our model
a single feed-forward network with local connections.

4 Experiments
4.1 Baselines
We describe three baselines models for Φ to compare against our model.

Independent controller: A simple baseline is where agents are controlled independently without
any communication between them. We can write Φ as a = {φ(s1), ..., φ(sJ)}, where φ is a per-agent
controller applied independently. The advantages of this communication-free model is modularity
and flexibility1. Thus it can deal well with agents joining and leaving the group, but it is not able to
coordinate agents’ actions.

Fully-connected: Another obvious choice is to make Φ a fully-connected multi-layer neural network,
that takes concatenation of h0j as an input and outputs actions {a1, ..., aJ} using multiple output
softmax heads. It is equivalent to allowing T to be an arbitrary matrix with fixed size. This model
would allow agents to communicate with each other and share views of the environment. Unlike our
model, however, it is not modular, inflexible with respect to the composition and number of agents it
controls, and even the order of the agents must be fixed.

Discrete communication: An alternate way for agents to communicate is via discrete symbols, with
the meaning of these symbols being learned during training. Since Φ now contains discrete operations
and is not differentiable, reinforcement learning is used to train in this setting. However, unlike
actions in the environment, an agent has to output a discrete symbol at every communication step.
But if these are viewed as internal time steps of the agent, then the communication output can be
treated as an action of the agent at a given (internal) time step and we can directly employ policy
gradient [35].

At communication step i, agent j will output the index wi
j corresponding to a particular symbol,

sampled according to:
wi

j ∼ Softmax(Dhij) (5)

where matrix D is the model parameter. Let ŵ be a 1-hot binary vector representation of w. In our
broadcast framework, at the next step the agent receives a bag of vectors from all the other agents
(where ∧ is the element-wise OR operation):

ci+1
j =

∧

j′ 6=j

ŵi
j′ (6)

4.2 Simple Demonstration with a Lever Pulling Task
We start with a very simple game that requires the agents to communicate in order to win. This
consists of m levers and a pool of N agents. At each round, m agents are drawn at random from
the total pool of N agents and they must each choose a lever to pull, simultaneously with the other
m − 1 agents, after which the round ends. The goal is for each of them to pull a different lever.
Correspondingly, all agents receive reward proportional to the number of distinct levers pulled. Each
agent can see its own identity, and nothing else, thus sj = j.

1Assuming sj includes the identity of agent j.
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We implement the game with m = 5 and N = 500. We use a CommNet with two communication
steps (K = 2) and skip connections from (4). The encoder r is a lookup-table with N entries of
128D. Each f i is a two layer neural net with ReLU non-linearities that takes in the concatenation
of (hi, ci, h0), and outputs a 128D vector. The decoder is a linear layer plus softmax, producing
a distribution over the m levers, from which we sample to determine the lever to be pulled. We
compare it against the independent controller, which has the same architecture as our model except
that communication c is zeroed. The results are shown in Table 1. The metric is the number of distinct
levers pulled divided bym = 5, averaged over 500 trials, after seeing 50000 batches of size 64 during
training. We explore both reinforcement (see the supplementary material) and direct supervision
(using the solution given by sorting the agent IDs, and having each agent pull the lever according to
its relative order in the current m agents). In both cases, the CommNet performs significantly better
than the independent controller. See the supplementary material for an analysis of a trained model.

Training method
Model Φ Supervised Reinforcement
Independent 0.59 0.59
CommNet 0.99 0.94

Table 1: Results of lever game (#distinct levers pulled)/(#levers) for our CommNet and independent
controller models, using two different training approaches. Allowing the agents to communicate
enables them to succeed at the task.

4.3 Multi-turn Games
In this section, we consider two multi-agent tasks using the MazeBase environment [26] that use
reward as their training signal. The first task is to control cars passing through a traffic junction to
maximize the flow while minimizing collisions. The second task is to control multiple agents in
combat against enemy bots.

We experimented with several module types. With a feedforward MLP, the module f i is a single
layer network and K = 2 communication steps are used. For an RNN module, we also used a single
layer network for f t, but shared parameters across time steps. Finally, we used an LSTM for f t. In
all modules, the hidden layer size is set to 50. MLP modules use skip-connections. Both tasks are
trained for 300 epochs, each epoch being 100 weight updates with RMSProp [31] on mini-batch of
288 game episodes (distributed over multiple CPU cores). In total, the models experience ∼8.6M
episodes during training. We repeat all experiments 5 times with different random initializations, and
report mean value along with standard deviation. The training time varies from a few hours to a few
days depending on task and module type.

4.3.1 Traffic Junction
This consists of a 4-way junction on a 14× 14 grid as shown in Fig. 2(left). At each time step, new
cars enter the grid with probability parrive from each of the four directions. However, the total number
of cars at any given time is limited to Nmax = 10. Each car occupies a single cell at any given time
and is randomly assigned to one of three possible routes (keeping to the right-hand side of the road).
At every time step, a car has two possible actions: gas which advances it by one cell on its route or
brake to stay at its current location. A car will be removed once it reaches its destination at the edge
of the grid.

Two cars collide if their locations overlap. A collision incurs a reward rcoll = −10, but does not affect
the simulation in any other way. To discourage a traffic jam, each car gets reward of τrtime = −0.01τ
at every time step, where τ is the number time steps passed since the car arrived. Therefore, the total
reward at time t is:

r(t) = Ctrcoll +

Nt∑

i=1

τirtime,

where Ct is the number of collisions occurring at time t, and N t is number of cars present. The
simulation is terminated after 40 steps and is classified as a failure if one or more more collisions
have occurred.

Each car is represented by one-hot binary vector set {n, l, r}, that encodes its unique ID, current
location and assigned route number respectively. Each agent controlling a car can only observe other
cars in its vision range (a surrounding 3× 3 neighborhood), but it can communicate to all other cars.
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Figure 2: Left: Traffic junction task where agent-controlled cars (colored circles) have to pass the
through the junction without colliding. Middle: The combat task, where model controlled agents (red
circles) fight against enemy bots (blue circles). In both tasks each agent has limited visibility (orange
region), thus is not able to see the location of all other agents. Right: As visibility in the environment
decreases, the importance of communication grows in the traffic junction task.

The state vector sj for each agent is thus a concatenation of all these vectors, having dimension
32 × |n| × |l| × |r|.
In Table 2(left), we show the probability of failure of a variety of different model Φ and module
f pairs. Compared to the baseline models, CommNet significantly reduces the failure rate for all
module types, achieving the best performance with LSTM module (a video showing this model
before and after training can be found at http://cims.nyu.edu/~sainbar/commnet).

We also explored how partial visibility within the environment effects the advantage given by
communication. As the vision range of each agent decreases, the advantage of communication
increases as shown in Fig. 2(right). Impressively, with zero visibility (the cars are driving blind) the
CommNet model is still able to succeed 90% of the time.

Table 2(right) shows the results on easy and hard versions of the game. The easy version is a junction
of two one-way roads, while the harder version consists from four connected junctions of two-way
roads. Details of the other game variations can be found in the supplementary material. Discrete
communication works well on the easy version, but the CommNet with local connectivity gives the
best performance on the hard case.

4.3.2 Analysis of Communication
We now attempt to understand what the agents communicate when performing the junction task.
We start by recording the hidden state hij of each agent and the corresponding communication
vectors c̃i+1

j = Ci+1hij (the contribution agent j at step i + 1 makes to the hidden state of other
agents). Fig. 3(left) and Fig. 3(right) show the 2D PCA projections of the communication and hidden
state vectors respectively. These plots show a diverse range of hidden states but far more clustered
communication vectors, many of which are close to zero. This suggests that while the hidden state
carries information, the agent often prefers not to communicate it to the others unless necessary. This
is a possible consequence of the broadcast channel: if everyone talks at the same time, no-one can
understand. See the supplementary material for norm of communication vectors and brake locations.

Module f() type
Model Φ MLP RNN LSTM
Independent 20.6± 14.1 19.5± 4.5 9.4± 5.6
Fully-connected 12.5± 4.4 34.8± 19.7 4.8± 2.4
Discrete comm. 15.8± 9.3 15.2± 2.1 8.4± 3.4

CommNet 2.2± 0.6 7.6± 1.4 1.6± 1.0

Other game versions
Model Φ Easy (MLP) Hard (RNN)
Independent 15.8± 12.5 26.9± 6.0
Discrete comm. 1.1± 2.4 28.2± 5.7

CommNet 0.3± 0.1 22.5± 6.1
CommNet local - 21.1± 3.4

Table 2: Traffic junction task. Left: failure rates (%) for different types of model and module function
f(.). CommNet consistently improves performance, over the baseline models. Right: Game variants.
In the easy case, discrete communication does help, but still less than CommNet. On the hard version,
local communication (see Section 2.2) does at least as well as broadcasting to all agents.
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Figure 3: Left: First two principal components of communication vectors c̃ from multiple runs on
the traffic junction task Fig. 2(left). While the majority are “silent” (i.e. have a small norm), distinct
clusters are also present. Middle: for three of these clusters, we probe the model to understand
their meaning (see text for details). Right: First two principal components of hidden state vectors h
from the same runs as on the left, with corresponding color coding. Note how many of the “silent”
communication vectors accompany non-zero hidden state vectors. This shows that the two pathways
carry different information.

To better understand the meaning behind the communication vectors, we ran the simulation with
only two cars and recorded their communication vectors and locations whenever one of them braked.
Vectors belonging to the clusters A, B & C in Fig. 3(left) were consistently emitted when one of the
cars was in a specific location, shown by the colored circles in Fig. 3(middle) (or pair of locations for
cluster C). They also strongly correlated with the other car braking at the locations indicated in red,
which happen to be relevant to avoiding collision.

4.3.3 Combat Task
We simulate a simple battle involving two opposing teams in a 15×15 grid as shown in Fig. 2(middle).
Each team consists of m = 5 agents and their initial positions are sampled uniformly in a 5 × 5
square around the team center, which is picked uniformly in the grid. At each time step, an agent can
perform one of the following actions: move one cell in one of four directions; attack another agent
by specifying its ID j (there are m attack actions, each corresponding to one enemy agent); or do
nothing. If agent A attacks agent B, then B’s health point will be reduced by 1, but only if B is inside
the firing range of A (its surrounding 3× 3 area). Agents need one time step of cooling down after
an attack, during which they cannot attack. All agents start with 3 health points, and die when their
health reaches 0. A team will win if all agents in the other team die. The simulation ends when one
team wins, or neither of teams win within 40 time steps (a draw).

The model controls one team during training, and the other team consist of bots that follow a hard-
coded policy. The bot policy is to attack the nearest enemy agent if it is within its firing range. If not,
it approaches the nearest visible enemy agent within visual range. An agent is visible to all bots if it
is inside the visual range of any individual bot. This shared vision gives an advantage to the bot team.
When input to a model, each agent is represented by a set of one-hot binary vectors {i, t, l, h, c}
encoding its unique ID, team ID, location, health points and cooldown. A model controlling an agent
also sees other agents in its visual range (3× 3 surrounding area). The model gets reward of -1 if the
team loses or draws at the end of the game. In addition, it also get reward of −0.1 times the total
health points of the enemy team, which encourages it to attack enemy bots.

Module f() type
Model Φ MLP RNN LSTM
Independent 34.2± 1.3 37.3± 4.6 44.3± 0.4
Fully-connected 17.7± 7.1 2.9± 1.8 19.6± 4.2
Discrete comm. 29.1± 6.7 33.4± 9.4 46.4± 0.7

CommNet 44.5± 13.4 44.4± 11.9 49.5± 12.6

Other game variations (MLP)
Model Φ m = 3 m = 10 5 × 5 vision
Independent 29.2± 5.9 30.5± 8.7 60.5± 2.1
CommNet 51.0± 14.1 45.4± 12.4 73.0± 0.7

Table 3: Win rates (%) on the combat task for different communication approaches and module
choices. Continuous consistently outperforms the other approaches. The fully-connected baseline
does worse than the independent model without communication. On the right we explore the
effect of varying the number of agents m and agent visibility. Even with 10 agents on each team,
communication clearly helps.
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Table 3 shows the win rate of different module choices with various types of model. Among
different modules, the LSTM achieved the best performance. Continuous communication with
CommNet improved all module types. Relative to the independent controller, the fully-connected
model degraded performance, but the discrete communication improved LSTM module type. We
also explored several variations of the task: varying the number of agents in each team by setting
m = 3, 10, and increasing visual range of agents to 5× 5 area. The result on those tasks are shown
on the right side of Table 3. Using CommNet model consistently improves the win rate, even with
the greater environment observability of the 5×5 vision case.

4.4 bAbI Tasks
We apply our model to the bAbI [34] toy Q & A dataset, which consists of 20 tasks each requiring
different kind of reasoning. The goal is to answer a question after reading a short story. We can
formulate this as a multi-agent task by giving each sentence of the story its own agent. Communication
among agents allows them to exchange useful information necessary to answer the question.

The input is {s1, s2, ..., sJ , q}, where sj is j’th sentence of the story, and q is the question sentence.
We use the same encoder representation as [27] to convert them to vectors. The f(.) module consists
of a two-layer MLP with ReLU non-linearities. After K = 2 communication steps, we add the
final hidden states together and pass it through a softmax decoder layer to sample an output word y.
The model is trained in a supervised fashion using a cross-entropy loss between y and the correct
answer y∗. The hidden layer size is set to 100 and weights are initialized from N(0, 0.2). We train
the model for 100 epochs with learning rate 0.003 and mini-batch size 32 with Adam optimizer [11]
(β1 = 0.9, β2 = 0.99, ε = 10−6). We used 10% of training data as validation set to find optimal
hyper-parameters for the model.

Results on the 10K version of the bAbI task are shown in Table 4, along with other baselines (see the
supplementary material for a detailed breakdown). Our model outperforms the LSTM baseline, but is
worse than the MemN2N model [27], which is specifically designed to solve reasoning over long
stories. However, it successfully solves most of the tasks, including ones that require information
sharing between two or more agents through communication.

Mean error (%) Failed tasks (err. > 5%)
LSTM [27] 36.4 16
MemN2N [27] 4.2 3
DMN+ [36] 2.8 1
Independent (MLP module) 15.2 9
CommNet (MLP module) 7.1 3

Table 4: Experimental results on bAbI tasks.

5 Discussion and Future Work
We have introduced CommNet, a simple controller for MARL that is able to learn continuous
communication between a dynamically changing set of agents. Evaluations on four diverse tasks
clearly show the model outperforms models without communication, fully-connected models, and
models using discrete communication. Despite the simplicity of the broadcast channel, examination
of the traffic task reveals the model to have learned a sparse communication protocol that conveys
meaningful information between agents. Code for our model (and baselines) can be found at
http://cims.nyu.edu/~sainbar/commnet/.

One aspect of our model that we did not fully exploit is its ability to handle heterogenous agent types
and we hope to explore this in future work. Furthermore, we believe the model will scale gracefully
to large numbers of agents, perhaps requiring more sophisticated connectivity structures; we also
leave this to future work.
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