
Following the Leader and Fast Rates in Linear
Prediction: Curved Constraint Sets and Other

Regularities

Ruitong Huang
Department of Computing Science
University of Alberta, AB, Canada

ruitong@ualberta.ca

Tor Lattimore
School of Informatics and Computing

Indiana University, IN, USA
tor.lattimore@gmail.com

András György
Dept. of Electrical & Electronic Engineering

Imperial College London, UK
a.gyorgy@imperial.ac.uk

Csaba Szepesvári
Department of Computing Science
University of Alberta, AB, Canada

szepesva@ualberta.ca

Abstract

The follow the leader (FTL) algorithm, perhaps the simplest of all online learning
algorithms, is known to perform well when the loss functions it is used on are posi-
tively curved. In this paper we ask whether there are other “lucky” settings when
FTL achieves sublinear, “small” regret. In particular, we study the fundamental
problem of linear prediction over a non-empty convex, compact domain. Amongst
other results, we prove that the curvature of the boundary of the domain can act as
if the losses were curved: In this case, we prove that as long as the mean of the loss
vectors have positive lengths bounded away from zero, FTL enjoys a logarithmic
growth rate of regret, while, e.g., for polyhedral domains and stochastic data it
enjoys finite expected regret. Building on a previously known meta-algorithm, we
also get an algorithm that simultaneously enjoys the worst-case guarantees and the
bound available for FTL.

1 Introduction

Learning theory traditionally has been studied in a statistical framework, discussed at length, for
example, by Shalev-Shwartz and Ben-David [2014]. The issue with this approach is that the analysis
of the performance of learning methods seems to critically depend on whether the data generating
mechanism satisfies some probabilistic assumptions. Realizing that these assumptions are not
necessarily critical, much work has been devoted recently to studying learning algorithms in the so-
called online learning framework [Cesa-Bianchi and Lugosi, 2006]. The online learning framework
makes minimal assumptions about the data generating mechanism, while allowing one to replicate
results of the statistical framework through online-to-batch conversions [Cesa-Bianchi et al., 2004].
By following a minimax approach, however, results proven in the online learning setting, at least
initially, led to rather conservative results and algorithm designs, failing to capture how more regular,
“easier” data, may give rise to faster learning speed. This is problematic as it may suggest overly
conservative learning strategies, missing opportunities to extract more information when the data is
nicer. Also, it is hard to argue that data resulting from passive data collection, such as weather data,
would ever be adversarially generated (though it is equally hard to defend that such data satisfies
precise stochastic assumptions). Realizing this issue, during recent years much work has been devoted
to understanding what regularities and how can lead to faster learning speed. For example, much
work has been devoted to showing that faster learning speed (smaller “regret”) can be achieved in
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the online convex optimization setting when the loss functions are “curved”, such as when the loss
functions are strongly convex or exp-concave, or when the losses show small variations, or the best
prediction in hindsight has a small total loss, and that these properties can be exploited in an adaptive
manner (e.g., Merhav and Feder 1992, Freund and Schapire 1997, Gaivoronski and Stella 2000,
Cesa-Bianchi and Lugosi 2006, Hazan et al. 2007, Bartlett et al. 2007, Kakade and Shalev-Shwartz
2009, Orabona et al. 2012, Rakhlin and Sridharan 2013, van Erven et al. 2015, Foster et al. 2015).

In this paper we contribute to this growing literature by studying online linear prediction and the
follow the leader (FTL) algorithm. Online linear prediction is arguably the simplest of all the learning
settings, and lies at the heart of online convex optimization, while it also serves as an abstraction of
core learning problems such as prediction with expert advice. FTL, the online analogue of empirical
risk minimization of statistical learning, is the simplest learning strategy, one can think of. Although
the linear setting of course removes the possibility of exploiting the curvature of losses, as we will
see, there are multiple ways online learning problems can present data that allows for small regret,
even for FTL. As is it well known, in the worst case, FTL suffers a linear regret (e.g., Example 2.2 of
Shalev-Shwartz [2012]). However, for “curved” losses (e.g., exp-concave losses), FTL was shown
to achieve small (logarithmic) regret (see, e.g., Merhav and Feder [1992], Cesa-Bianchi and Lugosi
[2006], Gaivoronski and Stella [2000], Hazan et al. [2007]).

In this paper we take a thorough look at FTL in the case when the losses are linear, but the problem
perhaps exhibits other regularities. The motivation comes from the simple observation that, for
prediction over the simplex, when the loss vectors are selected independently of each other from
a distribution with a bounded support with a nonzero mean, FTL quickly locks onto selecting the
loss-minimizing vertex of the simplex, achieving finite expected regret. In this case, FTL is arguably
an excellent algorithm. In fact, FTL is shown to be the minimax optimizer for the binary losses in the
stochastic expert setting in the paper of Kotłowski [2016]. Thus, we ask the question of whether there
are other regularities that allow FTL to achieve nontrivial performance guarantees. Our main result
shows that when the decision set (or constraint set) has a sufficiently “curved” boundary and the
linear loss is bounded away from 0, FTL is able to achieve logarithmic regret even in the adversarial
setting, thus opening up a new way to prove fast rates based on not on the curvature of losses, but on
that of the boundary of the constraint set and non-singularity of the linear loss. In a matching lower
bound we show that this regret bound is essentially unimprovable. We also show an alternate bound
for polyhedral constraint sets, which allows us to prove that (under certain technical conditions) for
stochastic problems the expected regret of FTL will be finite. To finish, we use (A, B)-prod of Sani
et al. [2014] to design an algorithm that adaptively interpolates between the worst case O(

√
n) regret

and the smaller regret bounds, which we prove here for “easy data.” Simulation results on artificial
data to illustrate the theory complement the theoretical findings, though due to lack of space these are
presented only in the long version of the paper [Huang et al., 2016].

While we believe that we are the first to point out that the curvature of the constraint setW can help
in speeding up learning, this effect is known in convex optimization since at least the work of Levitin
and Polyak [1966], who showed that exponential rates are attainable for strongly convex constraint
sets if the norm of the gradients of the objective function admit a uniform lower bound. More recently,
Garber and Hazan [2015] proved an O(1/n2) optimization error bound (with problem-dependent
constants) for the Frank-Wolfe algorithm for strongly convex and smooth objectives and strongly
convex constraint sets. The effect of the shape of the constraint set was also discussed by Abbasi-
Yadkori [2010] who demonstrated O(

√
n) regret in the linear bandit setting. While these results at a

high level are similar to ours, our proof technique is rather different than that used there.

2 Preliminaries, online learning and the follow the leader algorithm

We consider the standard framework of online convex optimization, where a learner and an envi-
ronment interact in a sequential manner in n rounds: In round every round t = 1, . . . , n, first the
learner predicts wt ∈ W . Then the environment picks a loss function `t ∈ L, and the learner suffers
loss `t(wt) and observes `t. Here,W is a non-empty, compact convex subset of Rd and L is a set
of convex functions, mapping W to the reals. The elements of L are called loss functions. The
performance of the learner is measured in terms of its regret,

Rn =

n∑
t=1

`t(wt)− min
w∈W

n∑
t=1

`t(w) .
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The simplest possible case, which will be the focus of this paper, is when the losses are linear, i.e.,
when `t(w) = 〈ft, w〉 for some ft ∈ F ⊂ Rd. In fact, the linear case is not only simple, but is also
fundamental since the case of nonlinear loss functions can be reduced to it: Indeed, even if the losses
are nonlinear, defining ft ∈ ∂`t(wt) to be a subgradient1 of `t at wt and letting ˜̀

t(u) = 〈ft, u〉, by
the definition of subgradients, `t(wt)− `t(u) ≤ `t(wt)− (`t(wt) + 〈ft, u−wt〉) = ˜̀

t(wt)− ˜̀
t(u),

hence for any u ∈ W , ∑
t

`t(wt)−
∑
t

`t(u) ≤
∑
t

˜̀
t(wt)−

∑
t

˜̀
t(u) .

In particular, if an algorithm keeps the regret small no matter how the linear losses are selected (even
when allowing the environment to pick losses based on the choices of the learner), the algorithm can
also be used to keep the regret small in the nonlinear case. Hence, in what follows we will study the
linear case `t(w) = 〈ft, w〉 and, in particular, we will study the regret of the so-called “Follow The
Leader” (FTL) learner, which, in round t ≥ 2 picks

wt = argmin
w∈W

t−1∑
i=1

`i(w) .

For the first round, w1 ∈ W is picked in an arbitrary manner. WhenW is compact, the optimal w of
minw∈W

∑t−1
i=1〈w, ft〉 is attainable, which we will assume henceforth. If multiple minimizers exist,

we simply fix one of them as wt. We will also assume that F is non-empty, compact and convex.

2.1 Support functions

Let Θt = − 1
t

∑t
i=1 fi be the negative average of the first t vectors in (ft)

n
t=1, ft ∈ F . For

convenience, we define Θ0 := 0. Thus, for t ≥ 2,

wt = argmin
w∈W

t−1∑
i=1

〈w, fi〉 = argmin
w∈W

〈w,−Θt−1〉 = argmax
w∈W

〈w,Θt−1〉 .

Denote by Φ(Θ) = maxw∈W〈w,Θ〉 the so-called support function of W . The support function,
being the maximum of linear and hence convex functions, is itself convex. Further Φ is positive
homogenous: for a ≥ 0 and θ ∈ Rd, Φ(aθ) = aΦ(θ). It follows then that the epigraph epi(Φ) ={

(θ, z) | z ≥ Φ(θ), z ∈ R, θ ∈ Rd
}

of Φ is a cone, since for any (θ, z) ∈ epi(Φ) and a ≥ 0, az ≥
aΦ(θ) = Φ(aθ), (aθ, az) ∈ epi(Φ) also holds.

The differentiability of the support function is closely tied to whether in the FTL algorithm the choice
of wt is uniquely determined:
Proposition 2.1. LetW 6= ∅ be convex and closed. Fix Θ and let Z := {w ∈ W | 〈w,Θ〉 = Φ(Θ)}.
Then, ∂Φ(Θ) = Z and, in particular, Φ(Θ) is differentiable at Θ if and only if maxw∈W〈w,Θ〉 has
a unique optimizer. In this case,∇Φ(Θ) = argmaxw∈W〈w,Θ〉.

The proposition follows from Danskin’s theorem when W is compact (e.g., Proposition B.25 of
Bertsekas 1999), but a simple direct argument can also be used to show that it also remains true even
whenW is unbounded.2 By Proposition 2.1, when Φ is differentiable at Θt−1, wt = ∇Φ(Θt−1).

3 Non-stochastic analysis of FTL

We start by rewriting the regret of FTL in an equivalent form, which shows that we can expect FTL
to enjoy a small regret when successive weight vectors move little. A noteworthy feature of the next
proposition is that rather than bounding the regret from above, it gives an equivalent expression for it.
Proposition 3.1. The regret Rn of FTL satisfies

Rn =
n∑
t=1

t 〈wt+1 − wt,Θt〉 .

1 We let ∂g(x) denote the subdifferential of a convex function g : dom(g) → R at x, i.e., ∂g(x) ={
θ ∈ Rd | g(x′) ≥ g(x) + 〈θ, x′ − x〉 ∀x′ ∈ dom(g)

}
, where dom(g) ⊂ Rd is the domain of g.

2 The proofs not given in the main text can be found in the long version of the paper [Huang et al., 2016].
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The result is a direct corollary of Lemma 9 of McMahan [2010], which holds for any sequence of
losses, even in the lack of convexity. It is also a tightening of the well-known inequality Rn ≤∑n
t=1 `t(wt)− `t(wt+1), which again holds for arbitrary loss sequences (e.g., Lemma 2.1 of Shalev-

Shwartz [2012]). To keep the paper self-contained, we give an elegant, short direct proof, based on
the summation by parts formula:

Proof. The summation by parts formula states that for any u1, v1, . . . , un+1, vn+1 reals,∑n
t=1 ut (vt+1 − vt) = (ut+1vt+1 − u1v1) −

∑n
t=1(ut+1 − ut) vt+1. Applying this to the def-

inition of regret with ut := wt,· and vt+1 := tΘt, we get Rn = −
∑n
t=1〈wt, tΘt − (t− 1)Θt−1〉+

〈wn+1, nΘn〉 = −{hhhhhh〈wn+1, nΘn〉 − 0−
∑n
t=1〈wt+1 − wt, tΘt〉}+

hhhhhh〈wn+1, nΘn〉.

Our next proposition gives another formula that is equal to the regret. As opposed to the previous
result, this formula is appealing as it is independent of wt; but it directly connects the sequence
(Θt)t to the geometric properties ofW through the support function Φ. For this proposition we will
momentarily assume that Φ is differentiable at (Θt)t≥1; a more general statement will follow later.
Proposition 3.2. If Φ is differentiable at Θ1, . . . ,Θn,

Rn =
n∑
t=1

tDΦ(Θt,Θt−1) , (1)

where DΦ(θ′, θ) = Φ(θ′)−Φ(θ)− 〈∇Φ(θ), θ′ − θ〉 is the Bregman divergence of Φ and we use the
convention that∇Φ(0) = w1.

Proof. Let v = argmaxw∈W〈w, θ〉, v′ = argmaxw∈W〈w, θ′〉. When Φ is differentiable at θ,

DΦ(θ′, θ) = Φ(θ′)− Φ(θ)− 〈∇Φ(θ), θ′− θ〉 = 〈v′, θ′〉− 〈v, θ〉 − 〈v, θ′− θ〉 = 〈v′− v, θ′〉 . (2)

Therefore, by Proposition 3.1, Rn =
∑n
t=1 t〈wt+1 − wt,Θt〉 =

∑n
t=1 tDΦ(Θt,Θt−1).

When Φ is non-differentiable at some of the points Θ1, . . . ,Θn, the equality in the above propo-
sition can be replaced with inequalities. Defining the upper Bregman divergence DΦ(θ′, θ) =
supw∈∂Φ(θ) Φ(θ′)−Φ(θ)− 〈w, θ′ − θ〉 and the lower Bregman divergence DΦ(θ′, θ) similarly with
inf instead of sup, similarly to Proposition 3.2, we obtain

n∑
t=1

tDΦ(Θt,Θt−1) ≤ Rn ≤
n∑
t=1

tDΦ(Θt,Θt−1) . (3)

3.1 Constraint sets with positive curvature

The previous results shows in an implicit fashion that the curvature ofW controls the regret. We now
present our first main result that makes this connection explicit. Denote the boundary ofW by bd(W).
For this result, we shall assume thatW is C2, that is, bd(W) is a twice continuously differentiable
submanifold of Rd. Recall that in this case the principal curvatures ofW at w ∈ bd(W) are the
eigenvalues of ∇uW(w), where uW : bd(W)→ Sd−1, the so-called Gauss map, maps a boundary
point w ∈ bd(W) to the unique outer normal vector toW at w.3 As it is well known, ∇uW(w) is a
self-adjoint operator, with nonnegative eigenvalues, thus the principal curvatures are nonnegative.
Perhaps a more intuitive, yet equivalent definition, is that the principal eigenvalues are the eigenvalues
of the Hessian of f = fw in the parameterization t 7→ w+ t−fw(t)uW(w) of bd(W) which is valid
in a small open neighborhood of w, where fw : TwW → [0,∞) is a suitable convex, nonnegative
valued function that also satisfies fw(0) = 0 and where TwW , a hyperplane of Rd, denotes the
tangent space ofW at w, obtained by taking the support plane H ofW at w and shifting it by −w.
Thus, the principal curvatures at some point w ∈ bd(W) describe the local shape of bd(W) up to
the second order.

A related concept that has been used in convex optimization to show fast rates is that of a strongly
convex constraint set [Levitin and Polyak, 1966, Garber and Hazan, 2015]: W is λ-strongly convex

3Sd−1 =
{
x ∈ Rd | ‖x‖2 = 1

}
denotes the unit sphere in d-dimensions. All differential geometry concept

and results that we need can be found in Section 2.5 of [Schneider, 2014].
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with respect to the norm ‖·‖ if, for any x, y ∈ W and γ ∈ [0, 1], the ‖·‖-ball with origin γx+(1−γ)y

and radius γ(1 − γ)λ ‖x− y‖2 /2 is included inW . One can show that a closed convex setW is
λ-strongly convex with respect to ‖·‖2 if and only if the principal curvatures of the surface bdW are
all at least λ.

Our next result connects the principal curvatures of bd(W) to the regret of FTL and shows that FTL
enjoys logarithmic regret for highly curved surfaces, as long as ‖Θt‖2 is bounded away from zero.

Theorem 3.3. LetW ⊂ Rd be a C2 convex body with d ≥ 2.4 Let M = maxf∈F ‖f‖2 and assume
that Φ is differentiable at (Θt)t. Assume that the principal curvatures of the surface bd(W) are all
at least λ0 for some constant λ0 > 0 and Ln := min1≤t≤n ‖Θt‖2 > 0. Choose w1 ∈ bd(W). Then

Rn ≤
2M2

λ0Ln
(1 + log(n)) .

w(1)

θ̃1

w(2)

θ̃2

θ̂2

P

γ(s)

Figure 1: Illustration of the con-
struction used in the proof of (4).

As we will show later in an essentially matching lower
bound, this bound is tight, showing that the forte of FTL is
when Ln is bounded away from zero and λ0 is large. Note
that the bound is vacuous as soon as Ln = O(log(n)/n)
and is worse than the minimax bound of O(

√
n) when

Ln = o(log(n)/
√
n). One possibility to reduce the

bound’s sensitivity to Ln is to use the trivial bound
〈wt+1 − wt,Θt〉 ≤ LW = L supw,w′∈W ‖w − w′‖2 for
indices t when ‖Θt‖ ≤ L. Then, by optimizing the bound
over L, one gets a data-dependent bound of the form
infL>0

(
2M2

λ0L
(1 + log(n)) + LW

∑n
t=1 t I (‖Θt‖ ≤ L)

)
,

which is more complex, but is free of Ln and thus reflects
the nature of FTL better. Note that in the case of stochastic
problems, where f1, . . . , fn are independent and identically
distributed (i.i.d.) with µ := −E [Θt] 6= 0, the probability
that ‖Θt‖2 < ‖µ‖2 /2 is exponentially small in t. Thus, selecting L = ‖µ‖2 /2 in the previous
bound, the contribution of the expectation of the second term is O(‖µ‖2W ), giving an overall bound
of the form O( M2

λ0‖µ‖2
log(n) + ‖µ‖2W ). After the proof we will provide some simple examples

that should make it more intuitive how the curvature ofW helps keeping the regret of FTL small.

Proof. Fix θ1, θ2 ∈ Rd and let w(1) = argmaxw∈W〈w, θ1〉, w(2) = argmaxw∈W〈w, θ2〉. Note that
if θ1, θ2 6= 0 then w(1), w(2) ∈ bd(W). Below we will show that

〈w(1) − w(2), θ1〉 ≤
1

2λ0

‖θ2 − θ1‖22
‖θ2‖2

. (4)

Proposition 3.1 suggests that it suffices to bound 〈wt+1 − wt,Θt〉. By (4), we see that it suffices to
bound how much Θt moves. A straightforward calculation shows that Θt cannot move much:

Lemma 3.4. For any norm ‖·‖ on F , we have ‖Θt −Θt−1‖ ≤ 2
tM , where M = maxf∈F ‖f‖ is a

constant that depends on F and the norm ‖·‖.

Combining inequality (4) with Proposition 3.1 and Lemma 3.4, we get

Rn =

n∑
t=1

t〈wt+1 − wt,Θt〉 ≤
n∑
t=1

t

2λ0

‖Θt −Θt−1‖22
‖Θt−1‖2

≤ 2M2

λ0

n∑
t=1

1

t‖Θt−1‖2
≤ 2M2

λ0Ln

n∑
t=1

1

t
≤ 2M2

λ0Ln
(1 + log(n)) .

To finish the proof, it thus remains to show (4).

The following elementary lemma relates the cosine of the angle between two vectors θ1 and θ2 to the
squared normalized distance between the two vectors, thereby reducing our problem to bounding the
cosine of this angle. For brevity, we denote by cos(θ1, θ2) the cosine of the angle between θ1 and θ2.

4Following Schneider [2014], a convex body of Rd is any non-empty, compact, convex subset of Rd.
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Lemma 3.5. For any non-zero vectors θ1, θ2 ∈ Rd,

1− cos(θ1, θ2) ≤ 1

2

‖θ1 − θ2‖22
‖θ1‖2‖θ2‖2

. (5)

With this result, we see that it suffices to upper bound cos(θ1, θ2) by 1 − λ0〈w(1) − w(2), θ1
‖θ1‖2 〉.

To develop this bound, let θ̃i = θi
‖θi‖2 for i = 1, 2. The angle between θ1 and θ2 is the same as the

angle between the normalized vectors θ̃1 and θ̃2. To calculate the cosine of the angle between θ̃1

and θ̃2, let P be a plane spanned by θ̃1 and w(1) − w(2) and passing through w(1) (P is uniquely
determined if θ̃1 is not parallel to w(1) − w(2); if there are multiple planes, just pick any of them).
Further, let θ̂2 ∈ Sd−1 be the unit vector along the projection of θ̃2 onto the plane P , as indicated in
Fig. 1. Clearly, cos(θ̃1, θ̃2) ≤ cos(θ̃1, θ̂2).

Consider a curve γ(s) on bd(W) connecting w(1) and w(2) that is defined by the intersection of
bd(W) and P and is parametrized by its curve length s so that γ(0) = w(1) and γ(l) = w(2), where
l is the length of the curve γ between w(1) and w(2). Let uW(w) denote the outer normal vector toW
at w as before, and let uγ : [0, l]→ Sd−1 be such that uγ(s) = θ̂ where θ̂ is the unit vector parallel
to the projection of uW(γ(s)) on the plane P . By definition, uγ(0) = θ̃1 and uγ(l) = θ̂2. Note that
in fact γ exists in two versions sinceW is a compact convex body, hence the intersection of P and
bd(W) is a closed curve. Of these two versions we choose the one that satisfies that 〈γ′(s), θ̃1〉 ≤ 0
for s ∈ [0, l].5 Given the above, we have

cos(θ̃1, θ̂2) = 〈θ̂2, θ̃1〉 = 1+ 〈θ̂2 − θ̃1, θ̃1〉 = 1+
〈∫ l

0

u′γ(s) ds, θ̃1

〉
= 1+

∫ l

0

〈u′γ(s), θ̃1〉 ds. (6)

Note that γ is a planar curve on bd(W), thus its curvature λ(s) satisfies λ(s) ≥ λ0 for s ∈ [0, l].
Also, for any w on the curve γ, γ′(s) is a unit vector parallel to P . Moreover, u′γ(s) is parallel to
γ′(s) and λ(s) = ‖u′γ(s)‖2. Therefore,

〈u′γ(s), θ̃1〉 = ‖u′γ(s)‖2〈γ′(s), θ̃1〉 ≤ λ0〈γ′(s), θ̃1〉,

where the last inequality holds because 〈γ′(s), θ̃1〉 ≤ 0. Plugging this into (6), we get the desired

cos(θ̃1, θ̂2) ≤ 1 + λ0

∫ l

0

〈γ′(s), θ̃1〉 ds = 1 + λ0

〈∫ l

0

γ′(s) ds, θ̃1

〉
= 1− λ0〈w(1) − w(2), θ̃1〉 .

Reordering and combining with (5) we obtain

〈w(1) − w(2), θ̃1〉 ≤
1

λ0

(
1− cos(θ̃1, θ̂2)

)
≤ 1

λ0
(1− cos(θ1, θ2)) ≤ 1

2λ0

‖θ1 − θ2‖22
‖θ1‖2‖θ2‖2

.

Multiplying both sides by ‖θ1‖2 gives (4), thus, finishing the proof.

Example 3.6. The smallest principal curvature of some common convex bodies are as follows:

• The smallest principal curvature λ0 of the Euclidean ballW = {w | ‖w‖2 ≤ r} of radius r
satisfies λ0 = 1

r .

• Let Q be a positive definite matrix. If W =
{
w |w>Qw ≤ 1

}
then λ0 = λmin/

√
λmax,

where λmin and λmax are the minimal, respectively, maximal eigenvalues of Q.

• In general, let φ : Rd → R be a C2 convex function. Then, for W = {w |φ(w) ≤ 1},
λ0 = minw∈bd(W) minv : ‖v‖2=1,v⊥φ′(w)

v>∇2φ(w)v
‖φ′(w)‖2 .

In the stochastic i.i.d. case, when E [Θt] = −µ, we have ‖Θt + µ‖2 = O(1/
√
t) with high probability.

Thus say, forW being the unit ball of Rd, one haswt = Θt/ ‖Θt‖2; therefore, a crude bound suggests
that ‖wt − w∗‖2 = O(1/

√
t), overall predicting that E [Rn] = O(

√
n), while the previous result

predicts thatRn is much smaller. In the next example we look at the unit ball, to explain geometrically,
what “causes” the smaller regret.

5γ′ and u′γ denote the derivatives of γ and u, respectively, which exist sinceW is C2.
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Example 3.7. Let W = {w | ‖w‖2 ≤ 1} and consider a stochastic setting where the fi are i.i.d.
samples from some underlying distribution with expectation E [fi] = µ = (−1, 0, . . . , 0) and
‖fi‖∞ ≤ M . It is straightforward to see that w∗ = (1, 0, . . . , 0), and thus 〈w∗, µ〉 = −1. Let
E = {−θ | ‖θ − µ‖2 ≤ ε}. As suggested beforehand, we expect −µt ∈ E with high probability. As

shown in Fig. 2, the excess loss of an estimate
#    »

OA is 〈
#    »

OÃ,
#    »

OD〉 − 1 = |B̃D|. Similarly, the excess
loss of an estimate

#     »

OA′ in the figure is |CD|. Therefore, for an estimate −µt ∈ E, the point A is
where the largest excess loss is incurred. The triangle OAD is similar to the triangle ADB. Thus
|BD|
|AD| = |AD|

|OD| . Therefore, |BD| = ε2 and since |B̃D| ≤ |BD|, if ‖µt − µ‖2 ≤ ε, the excess error is
at most ε2 = O(1/t), making the regret Rn = O(log n).

O
D = w∗

A = −µt

B B̃

Ã = ŵt

C

A′

Ã′

= −µ

Figure 2: Illustration of how
curvature helps to keep the re-
gret small.

Our last result in this section is an asymptotic lower bound for
the linear game, showing that FTL achieves the optimal rate
under the condition that mint ‖Θt‖2 ≥ L > 0.
Theorem 3.8. Let h, L ∈ (0, 1). Assume
that {(1,−L), (−1,−L)} ⊂ F and let W ={

(x, y) : x2 + y2/h2 ≤ 1
}

be an ellipsoid with princi-
pal curvature h. Then, for any learning strategy, there exists a
sequence of losses in F such that Rn = Ω (log(n)/(Lh)) and
‖Θt‖2 ≥ L for all t.

3.2 Other regularities

So far we have looked at the case when FTL achieves a low
regret due to the curvature of bd(W). The next result char-
acterizes the regret of FTL when W is a polyhedron, which
has a flat, non-smooth boundary and thus Theorem 3.3 is not
applicable. For this statement recall that given some norm ‖ · ‖,
its dual norm is defined by ‖w‖∗ = sup‖v‖≤1〈v, w〉.
Theorem 3.9. Assume that W is a polyhedron and that Φ is differentiable at Θi, i = 1, . . . , n.
Let wt = argmaxw∈W〈w,Θt−1〉, W = supw1,w2∈W ‖w1 − w2‖∗ and F = supf1,f2∈F ‖f1 − f2‖.
Then the regret of FTL is

Rn ≤W
n∑
t=1

t I(wt+1 6= wt)‖Θt −Θt−1‖ ≤ FW
n∑
t=1

I(wt+1 6= wt) .

Note that whenW is a polyhedron, wt is expected to “snap” to some vertex ofW . Hence, we expect
the regret bound to be non-vacuous, if, e.g., Θt “stabilizes” around some value. Some examples after
the proof will illustrate this.

Proof. Let v=argmaxw∈W〈w, θ〉, v′=argmaxw∈W〈w, θ′〉. Similarly to the proof of Theorem 3.3,

〈v′ − v, θ′〉 = 〈v′, θ′〉 − 〈v′, θ〉+ 〈v′, θ〉 − 〈v, θ〉+ 〈v, θ〉 − 〈v, θ′〉
≤ 〈v′, θ′〉 − 〈v′, θ〉+ 〈v, θ〉 − 〈v, θ′〉 = 〈v′ − v, θ′ − θ〉 ≤W I(v′ 6= v)‖θ′ − θ‖,

where the first inequality holds because 〈v′, θ〉 ≤ 〈v, θ〉. Therefore, by Lemma 3.4,

Rn =

n∑
t=1

t 〈wt+1 − wt,Θt〉 ≤W
n∑
t=1

t I(wt+1 6=wt)‖Θt −Θt−1‖ ≤ FW
n∑
t=1

I(wt+1 6=wt) .

As noted before, sinceW is a polyhedron, wt is (generally) attained at the vertices. In this case, the
epigraph of Φ is a polyhedral cone. Then, the event when wt+1 6= wt, i.e., when the “leader” switches
corresponds to when Θt and Θt−1 belong to different linear regions corresponding to different linear
pieces of the graph of Φ.

We now spell out a corollary for the stochastic setting. In particular, in this case FTL will often enjoy
a constant regret:
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Corollary 3.10 (Stochastic setting). Assume that (ft)1≤t≤n is an i.i.d. sequence of random variables
such that E [fi] = µ and ‖fi‖∞ ≤ M . Let W = supw1,w2∈W ‖w1 − w2‖1. Further assume that
there exists a constant r > 0 such that Φ is differentiable for any ν such that ‖ν − µ‖∞ ≤ r. Then,

E [Rn] ≤ 2MW (1 + 4dM2/r2) .

Proof. Let V = {ν | ‖ν − µ‖∞ ≤ r}. Note that the epigraph of the function Φ is a polyhedral cone.
Since Φ is differentiable in V , {(θ,Φ(θ)) | θ ∈ V } is a subset of a linear subspace. Therefore, for
−Θt,−Θt−1 ∈ V , wt+1 = wt. Hence, by Theorem 3.9,

E [Rn] ≤ 2MW

n∑
t=1

Pr(−Θt,−Θt−1 /∈ V ) ≤ 4MW

(
1 +

n∑
t=1

Pr(−Θt /∈ V )

)
.

On the other hand, note that ‖fi‖∞ ≤M . Then

Pr(−Θt /∈ V ) = Pr

(∥∥∥∥∥1

t

t∑
i=1

fi − µ

∥∥∥∥∥
∞

≥ r

)
≤

d∑
j=1

Pr

(∣∣∣∣∣1t
t∑
i=1

fi,j − µj

∣∣∣∣∣ ≥ r
)
≤ 2de−

tr2

2M2 ,

where the last inequality is due to Hoeffding’s inequality. Now, using that for α > 0,∑n
t=1 exp(−αt) ≤

∫ n
0

exp(−αt)dt ≤ 1
α , we get E [Rn] ≤ 2MW (1 + 4dM2/r2).

The condition that Φ is differentiable for any ν such that ‖ν − µ‖∞ ≤ r is equivalent to that Φ is
differentiable at µ. By Proposition 2.1, this condition requires that at µ, maxw∈W〈w, θ〉 has a unique
optimizer. Note that the volume of the set of vectors θ with multiple optimizers is zero.

4 An adaptive algorithm for the linear game

While as shown in Theorem 3.3, FTL can exploit the curvature of the surface of the constraint set
to achieve O(log n) regret, it requires the curvature condition and mint ‖Θt‖2 ≥ L being bounded
away from zero, or it may suffer even linear regret. On the other hand, many algorithms, such as the
"Follow the regularized leader" (FTRL) algorithm, are known to achieve a regret guarantee of O(

√
n)

even for the worst-case data in the linear setting. This raises the question whether one can have an
algorithm that can achieve constant or O(log n) regret in the respective settings of Corollary 3.10
or Theorem 3.3, while it still maintains O(

√
n) regret for worst-case data. One way to design an

adaptive algorithm is to use the (A, B)-prod algorithm of Sani et al. [2014], leading to the following
result:

Proposition 4.1. Consider (A, B)-prod of Sani et al. [2014], where algorithm A is chosen to be
FTRL with an appropriate regularization term, while B is chosen to be FTL. Then the regret of the
resulting hybrid algorithmH enjoys the following guarantees:

• If FTL achieves constant regret as in the setting of Corollary 3.10, then the regret ofH is
also constant.

• If FTL achieves a regret of O(log n) as in the setting of Theorem 3.3, then the regret ofH is
also O(log n).

• Otherwise, the regret ofH is at most O(
√
n log n).

5 Conclusion

FTL is a simple method that is known to perform well in many settings, while existing worst-case
results fail to explain its good performance. While taking a thorough look at why and when FTL can
be expected to achieve small regret, we discovered that the curvature of the boundary of the constraint
and having average loss vectors bounded away from zero help keep the regret of FTL small. These
conditions are significantly different from previous conditions on the curvature of the loss functions
which have been considered extensively in the literature. It would be interesting to further investigate
this phenomenon for other algorithms or in other learning settings.
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