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Abstract

Matching users to the right items at the right time is a fundamental task in recom-
mendation systems. As users interact with different items over time, users’ and
items’ feature may evolve and co-evolve over time. Traditional models based on
static latent features or discretizing time into epochs can become ineffective for
capturing the fine-grained temporal dynamics in the user-item interactions. We
propose a coevolutionary latent feature process model that accurately captures the
coevolving nature of users’ and items’ feature. To learn parameters, we design
an efficient convex optimization algorithm with a novel low rank space sharing
constraints. Extensive experiments on diverse real-world datasets demonstrate sig-
nificant improvements in user behavior prediction compared to state-of-the-arts.

1 Introduction
Online social platforms and service websites, such as Reddit, Netflix and Amazon, are attracting
thousands of users every minute. Effectively recommending the appropriate service items is a
fundamentally important task for these online services. By understanding the needs of users and
serving them with potentially interesting items, these online platforms can improve the satisfaction of
users, and boost the activities or revenue of the sites due to increased user postings, product purchases,
virtual transactions, and/or advertisement clicks [30, 9].

As the famous saying goes “You are what you eat and you think what you read”, both users’ interests
and items’ semantic features are dynamic and can evolve over time [18, 4]. The interactions between
users and service items play a critical role in driving the evolution of user interests and item features.
For example, for movie streaming services, a long-time fan of comedy watches an interesting science
fiction movie one day, and starts to watch more science fiction movies in place of comedies. Likewise,
a single movie may also serve different segment of audiences at different times. For example, a movie
initially targeted for an older generation may become popular among the younger generation, and the
features of this movie need to be redefined.

Another important aspect is that users’ interests and items’ features can co-evolve over time, that
is, their evolutions are intertwined and can influence each other. For instance, in online discussion
forums, such as Reddit, although a group (item) is initially created for political topics, users with very
different interest profiles can join this group (user ! item). Therefore, the participants can shape
the actual direction (or features) of the group through their postings and responses. It is not unlikely
that this group can eventually become one about education simply because most users here concern
about education (item ! user). As the group is evolving towards topics on education, some users
may become more attracted to education topics, and to the extent that they even participate in other
dedicated groups on education. On the opposite side, some users may gradually gain interests in
sports groups, lose interests in political topics and become inactive in this group. Such coevolutionary
nature of user-item interactions raises very interesting questions on how to model them elegantly and
how to learn them from observed interaction data.
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Nowadays, user-item interaction data are archived in increasing temporal resolution and becoming
increasingly available. Each individual user-item iteration is typically logged in the database with
the precise time-stamp of the interaction, together with additional context of that interaction, such
as tag, text, image, audio and video. Furthermore, the user-item interaction data are generated in an
asynchronous fashion in a sense that any user can interact with any item at any time and there may
not be any coordination or synchronization between two interaction events. These types of event data
call for new representations, models, learning and inference algorithms.

Despite the temporal and asynchronous nature of such event data, for a long-time, the data has
been treated predominantly as a static graph, and fixed latent features have been assigned to each
user and item [21, 5, 2, 10, 29, 30, 25]. In more sophisticated methods, the time is divided into
epochs, and static latent feature models are applied to each epoch to capture some temporal aspects
of the data [18, 17, 28, 6, 13, 4, 20, 17, 28, 12, 15, 24, 23]. For such epoch-based methods, it is not
clear how to choose the epoch length parameter due to the asynchronous nature of the user-item
interactions. First, different users may have very different time-scale when they interact with those
service items, making it very difficult to choose a unified epoch length. Second, it is not easy for
the learned model to answer fine-grained time-sensitive queries such as when a user will come
back for a particular service item. It can only make such predictions down to the resolution of the
chosen epoch length. Most recently, [9] proposed an efficient low-rank point process model for
time-sensitive recommendations from recurrent user activities. However, it still fails to capture the
heterogeneous coevolutionary properties of user-item interactions with much more limited model
flexibility. Furthermore, it is difficult for this approach to incorporate observed context features.

In this paper, we propose a coevolutionary latent feature process for continuous-time user-item
interactions, which is designed specifically to take into account the asynchronous nature of event
data, and the co-evolution nature of users’ and items’ latent features. Our model assigns an evolving
latent feature process for each user and item, and the co-evolution of these latent feature processes is
considered using two parallel components:

• (Item ! User) A user’s latent feature is determined by the latent features of the items he interacted
with. Furthermore, the contributions of these items’ features are temporally discounted by an
exponential decaying kernel function, which we call the Hawkes [14] feature averaging process.

• (User ! Item) Conversely, an item’s latent features are determined by the latent features of the
users who interact with the item. Similarly, the contribution of these users’ features is also modeled
as a Hawkes feature averaging process.

Besides the two sets of intertwined latent feature processes, our model can also take into account
the presence of potentially high dimensional observed context features and links the latent features
to the observed context features using a low dimensional projection. Despite the sophistication of
our model, we show that the model parameter estimation, a seemingly non-convex problem, can
be transformed into a convex optimization problem, which can be efficiently solved by the latest
conditional gradient-like algorithm. Finally, the coevolutionary latent feature processes can be used
for down-streaming inference tasks such as the next-item and the return-time prediction. We evaluate
our method over a variety of datasets, verifying that our method can lead to significant improvements
in user behavior prediction compared to the state-of-the-arts.

2 Background on Temporal Point Processes
This section provides necessary concepts of the temporal point process [7]. It is a random process
whose realization consists of a list of events localized in time, {ti} with ti 2 R+. Equivalently, a given
temporal point process can be represented as a counting process, N(t), which records the number of
events before time t. An important way to characterize temporal point processes is via the conditional
intensity function �(t), a stochastic model for the time of the next event given all the previous events.
Formally, �(t)dt is the conditional probability of observing an event in a small window [t, t+dt) given
the history T (t) up to t, i.e., �(t)dt := P {event in [t, t + dt)|T (t)} = E[dN(t)|T (t)], where one
typically assumes that only one event can happen in a small window of size dt, i.e., dN(t) 2 {0, 1}.

The function form of the intensity is often designed to capture the phenomena of interests. One
commonly used form is the Hawkes process [14, 11, 27, 26], whose intensity models the excitation
between events, i.e., �(t) = µ + ↵

P
ti2T (t) !(t� ti), where !(t) := exp(�!t) is an exponential

triggering kernel, µ > 0 is a baseline intensity independent of the history. Here, the occurrence of
each historical event increases the intensity by a certain amount determined by the kernel ! and
the weight ↵ > 0, making the intensity history dependent and a stochastic process by itself. From
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Figure 1: Model illustration. (a) User-item interaction events data. Each edge contains user, item,
time, and interaction feature. (b) Alice’s latent feature consists of three components: the drift of
baseline feature, the time-weighted average of interaction feature, and the weighted average of item
feature. (c) The symmetric item latent feature process. A,B,C,D are embedding matrices from
high dimension feature space to latent space. !(t) = exp(�!t) is an exponential decaying kernel.

the survival analysis theory [1], given the history T = {t1, . . . , tn}, for any t > tn, we characterize
the conditional probability that no event happens during [tn, t) as S(t|T ) = exp

�
�
R t
tn

�(⌧) d⌧
�
.

Moreover, the conditional density that an event occurs at time t is f(t|T ) = �(t) S(t|T ).

3 Coevolutionary Latent Feature Processes
In this section, we present the framework to model the temporal dynamics of user-item interactions.
We first explicitly capture the co-evolving nature of users’ and items’ latent features. Then, based on
the compatibility between a user’ and item’s latent feature, we model the user-item interaction by a
temporal point process and parametrize the intensity function by the feature compatibility.

3.1 Event Representation
Given m users and n items, the input consists of all users’ history events: T = {ek}, where
ek = (uk, ik, tk, qk) means that user uk interacts with item ik at time tk and generates an interaction
feature vector qk 2 RD. For instance, the interaction feature can be a textual message delivered
from the user to the chatting-group in Reddit or a review of the business in Yelp. It can also be
unobservable if the data only contains the temporal information.

3.2 Latent Feature Processes
We associate a latent feature vector uu(t) 2 RK with a user u and ii(t) 2 RK with an item i. These
features represent the subtle properties which cannot be directly observed, such as the interests of a
user and the semantic topics of an item. Specifically, we model uu(t) and ii(t) as follows:

User latent feature process. For each user u, we formulate uu(t) as:

uu(t) = A �u(t)| {z }
base drift

+B
X

{ek|uk=u,tk<t}

!(t � tk)qk

| {z }
Hawkes interaction feature averaging

+

X

{ek|uk=u,tk<t}

!(t � tk)iik(tk)

| {z }
co-evolution: Hawkes item feature averaging

, (1)

Item latent feature process. For each item i, we specify ii(t) as:

ii(t) = C �i(t)| {z }
base drift

+D
X

{ek|ik=i,tk<t}

!(t � tk)qk

| {z }
Hawkes interaction feature averaging

+

X

{ek|ik=i,tk<t}

!(t � tk)uuk(tk)

| {z }
co-evolution: Hawkes user feature averaging

, (2)

where A,B,C,D 2 RK⇥D are the embedding matrices mapping from the explicit high-dimensional
feature space into the low-rank latent feature space. Figure 1 highlights the basic setting of our model.
Next we discuss the rationale of each term in detail.

Drift of base features. �u(t) 2 RD and �i(t) 2 RD are the explicitly observed properties of user u
and item i, which allows the basic features of users (e.g., a user’s self-crafted interests) and items (e.g.,
textual categories and descriptions) to smoothly drift through time. Such changes of basic features
normally are caused by external influences. One can parametrize �u(t) and �i(t) in many different
ways, e.g., the exponential decaying basis to interpolate these features observed at different times.
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Evolution with interaction feature. Users’ and items’ features can evolve and be influenced by
the characteristics of their interactions. For instance, the genre changes of movies indicate the
changing tastes of users. The theme of a chatting-group can be easily shifted to certain topics of
the involved discussions. In consequence, this term captures the cumulative influence of the past
interaction features to the changes of the latent user (item) features. The triggering kernel !(t � tk)
associated with each past interaction at tk quantifies how such influence can change through time. Its
parametrization depends on the phenomena of interest. Without loss of generality, we choose the
exponential kernel !(t) = exp (�!t) to reduce the influence of each past event. In other words,
only the most recent interaction events will have bigger influences. Finally, the embedding B,D
map the observable high dimension interaction feature to the latent space.

Coevolution with Hawkes feature averaging processes. Users’ and items’ latent features can
mutually influence each other. This term captures the two parallel processes:

• Item ! User. A user’s latent feature is determined by the latent features of the items he interacted
with. At each time tk, the latent item feature is iik(tk). Furthermore, the contributions of these
items’ features are temporally discounted by a kernel function !(t), which we call the Hawkes
feature averaging process. The name comes from the fact that Hawkes process captures the
temporal influence of history events in its intensity function. In our model, we capture both the
temporal influence and feature of each history item as a latent process.

• User ! Item. Conversely, an item’s latent features are determined by the latent features of all
the users who interact with the item. At each time tk, the latent feature is uuk(tk). Similarly, the
contribution of these users’ features is also modeled as a Hawkes feature averaging process.

Note that to compute the third co-evolution term, we need to keep track of the user’s and item’s latent
features after each interaction event, i.e., at tk, we need to compute uuk(tk) and iik(tk) in (1) and
(2), respectively. Set I(·) to be the indicator function, we can show by induction that

uuk(tk) = A
hXk

j=1
I[uj = uk]!(tk � tj)�uj (tj)

i
+ B

hXk

j=1
I[uj = uk]!(tk � tj)qj

i

+ C
hXk�1

j=1
I[uj = uk]!(tk � tj)�ij (tj)

i
+ D

hXk�1

j=1
I[uj = uk]!(tk � tj)qj

i

iik(tk) = C
hXk

j=1
I[ij = ik]!(tk � tj)�ij (tj)

i
+ D

hXk

j=1
I[ij = ik]!(tk � tj)qj

i

+ A
hXk�1

j=1
I[ij = ik]!(tk � tj)�uj (tj)

i
+ B

hXk�1

j=1
I[ij = ik]!(tk � tj)qj

i

In summary, we have incorporated both of the exogenous and endogenous influences into a single
model. First, each process evolves according to the respective exogenous base temporal user (item)
features �u(t) (�i(t)). Second, the two processes also inter-depend on each other due to the endoge-
nous influences from the interaction features and the entangled latent features. We present our model
in the most general form and the specific choices of uu(t), ii(t) are dependent on applications. For
example, if no interaction feature is observed, we drop the second term in (1) and (2).

3.3 User-Item Interactions as Temporal Point Processes
For each user, we model the recurrent occurrences of user u’s interaction with all items as a multi-
dimensional temporal point process. In particular, the intensity in the i-th dimension (item i) is:

�u,i
(t) = ⌘u,i

|{z}
long-term preference

+ uu(t)>ii(t)| {z }
short-term preference

, (3)

where ⌘ = (⌘u,i
) is a baseline preference matrix. The rationale of this formulation is threefold.

First, instead of discretizing the time, we explicitly model the timing of each event occurrence as a
continuous random variable, which naturally captures the heterogeneity of the temporal interactions
between users and items. Second, the base intensity ⌘u,i represents the long-term preference of user
u to item i, independent of the history. Third, the tendency for user u to interact with item i at time t
depends on the compatibility of their instantaneous latent features. Such compatibility is evaluated
through the inner product of their time-varying latent features.

Our model inherits the merits from classic content filtering, collaborative filtering, and the most
recent temporal models. For the cold-start users having few interactions with the items, the model
adaptively utilizes the purely observed user (item) base properties and interaction features to adjust
its predictions, which incorporates the key idea of feature-based algorithms. When the observed
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features are missing and non-informative, the model makes use of the user-item interaction patterns to
make predictions, which is the strength of collaborative filtering algorithms. However, being different
from the conventional matrix-factorization models, the latent user and item features in our model are
entangled and able to co-evolve over time. Finally, the general temporal point process ingredient of
the model makes it possible to capture the dynamic preferences of users to items and their recurrent
interactions, which is more flexible and expressive.

4 Parameter Estimation
In this section, we propose an efficient framework to learn the parameters. A key challenge is that
the objective function is non-convex in the parameters. However, we reformulate it as a convex
optimization by creating new parameters. Finally, we present the generalized conditional gradient
algorithm to efficiently solve the objective function.

Given a collection of events T recorded within a time window [0, T ), we estimate the parameters
using maximum likelihood estimation of all events. The joint negative log-likelihood [1] is:

` = �
X

ek

log

�
�uk,ik

(tk)
�

+

mX

u=1

nX

i=1

Z T

0
�u,i

(⌧) d⌧ (4)

The objective function is non-convex in variables {A,B,C,D} due to the inner product term in (3).
To learn these parameters, one way is to fix the matrix rank and update each matrix using gradient
based methods. However, it is easily trapped in local optima and one needs to tune the rank for the
best performance. However, with the observation that the product of two low rank matrices yields a
low rank matrix, we will optimize over the new matrices and obtain a convex objective function.

4.1 Convex Objective Function
We will create new parameters such that the intensity function is convex. Since uu(t) contains the
averaging of iik(tk) in (1), C,D will appear in uu(t). Similarly, A,B will appear in ii(t). Hence
these matrices X =

�
A>A,B>B,C>C,D>D,A>B,A>C,A>D,B>C,B>D,C>D

 
will

appear in (3) after expansion, due to the inner product ii(t)>uu(t). For each matrix product in
X , we denote it as a new variable Xi and optimize the objective function over the these variables.
We denote the corresponding coefficient of Xi as xi(t), which can be exactly computed. Denote
⇤(t) = (�u,i

(t)), we can rewrite the intensity in (3) in the matrix form as:

⇤(t) = ⌘ +

X10

i=1
xi(t)Xi (5)

The intensity is convex in each new variable Xi, hence the objective function. We will optimize over
the new set of variables X subject to the constraints that i) some of them share the same low rank
space, e.g., A> is shared as the column space in

�
A>A,A>B,A>C,A>D

 
and ii) new variables

are low rank (the product of low rank matrices is low rank). Next, we show how to incorporate the
space sharing constraint for general objective function with an efficient algorithm.

First, we create a symmetric block matrix X 2 R4D⇥4D and place each Xi as follows:

X =

0

B@

X1 X2 X3 X4

X>
2 X5 X6 X7

X>
3 X>

6 X8 X9

X>
4 X>

7 X>
9 X10

1

CA =

0

B@

A>A A>B A>C A>D
B>A B>B B>C B>D
C>A C>B C>C C>D
D>A D>B D>C D>D

1

CA (6)

Intuitively, minimizing the nuclear norm of X ensures all the low rank space sharing constraints.
First, nuclear norm k · k⇤ is a summation of all singular values, and is commonly used as a convex
surrogate for the matrix rank function [22], hence minimizing kXk⇤ ensures it to be low rank and
gives the unique low rank factorization of X . Second, since X1,X2,X3,X4 are in the same row
and share A>, the space sharing constraints are naturally satisfied.

Finally, since it is typically believed that users’ long-time preference to items can be categorized into
a limited number of prototypical types, we set ⌘ to be low rank. Hence the objective is:

min

⌘>0,X>0
`(X,⌘) + ↵k⌘k⇤ + �kXk⇤ + �kX �X>k2F (7)

where ` is defined in (4) and k · kF is the Frobenius norm and the associated constraint ensures X to
be symmetric. {↵, �, �} control the trade-off between the constraints. After obtaining X , one can
directly apply (5) to compute the intensity and make predictions.
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4.2 Generalized Conditional Gradient Algorithm
We use the latest generalized conditional gradient algorithm [9] to solve the optimization problem (7).
We provide details in the appendix. It has an alternating updates scheme and efficiently handles
the nonnegative constraint using the proximal gradient descent and the the nuclear norm constraint
using conditional gradient descent. It is guaranteed to converge in O(

1
t +

1
t2 ), where t is the number

of iterations. For both the proximal and the conditional gradient parts, the algorithm achieves
the corresponding optimal convergence rates. If there is no nuclear norm constraint, the results
recover the well-known optimal O(

1
t2 ) rate achieved by proximal gradient method for smooth convex

optimization. If there is no nonnegative constraints, the results recover the well-known O(

1
t ) rate

attained by conditional gradient method for smooth convex minimization. Moreover, the per-iteration
complexity is linear in the total number of events with O(mnk), where m is the number of users, n
is the number of items and k is the number of events per user-item pair.

5 Experiments
We evaluate our framework, COEVOLVE, on synthetic and real-world datasets. We use all the events
up to time T · p as the training data, and the rest as testing data, where T is the length of the
observation window. We tune hyper-parameters and the latent rank of other baselines using 10-fold
cross validation with grid search. We vary the proportion p 2 {0.7, 0.72, 0.74, 0.76, 0.78} and report
the averaged results over five runs on two tasks:

(a) Item recommendation: for each user u, at every testing time t, we compute the survival probabil-
ity Su,i

(t) = exp

�
�
R t
tu,i
n

�u,i
(⌧)d⌧

�
of each item i up to time t, where tu,in is the last training

event time of (u, i). We then rank all the items in the ascending order of Su,i
(t) to produce a

recommendation list. Ideally, the item associated with the testing time t should rank one, hence
smaller value indicates better predictive performance. We repeat the evaluation on each testing
moment and report the Mean Average Rank (MAR) of the respective testing items across all users.

(b) Time prediction: we predict the time when a testing event will occur between a given user-item
pair (u, i) by calculating the density of the next event time as f(t) = �u,i

(t)Su,i
(t). With the

density, we compute the expected time of next event by sampling future events as in [9]. We report
the Mean Absolute Error (MAE) between the predicted and true time. Furthermore, we also report
the relative percentage of the prediction error with respect to the entire testing time window.

5.1 Competitors
TimeSVD++ is the classic matrix factorization method [18]. The latent factors of users and items are
designed as decay functions of time and also linked to each other based on time. FIP is a static low
rank latent factor model to uncover the compatibility between user and item features [29]. TSVD++
and FIP are only designed for data with explicit ratings. We convert the series of user-item interaction
events into an explicit rating using the frequency of a user’s item consumptions [3]. STIC fits
a semi-hidden markov model to each observed user-item pair [16] and is only designed for time
prediction. PoissonTensor uses Poisson regression as the loss function [6] and has been shown to
outperform factorization methods based on squared loss [17, 28] on recommendation tasks. There are
two choices of reporting performance: i) use the parameters fitted only in the last time interval and
ii) use the average parameters over all intervals. We report the best performance between these two
choices. LowRankHawkes is a Hawkes process based model and it assumes user-item interactions
are independent [9].

5.2 Experiments on Synthetic Data
We simulate 1,000 users and 1,000 items. For each user, we further generate 10,000 events by Ogata’s
thinning algorithm [19]. We compute the MAE by comparing estimated ⌘,X with the ground-truth.
The baseline drift feature is set to be constant. Figure 2 (a) shows that it only requires a few hundred
iterations to descend to a decent error, and (b) indicates that it only requires a modest number of
events to achieve a good estimation. Finally, (c) demonstrates that our method scales linearly as the
total number of training events grows.

Figure 2 (d-f) show that COEVOLVE achieves the best predictive performance. Because POISSON-
TENSOR applies an extra time dimension and fits each time interval as a Poisson regression, it
outperforms TIMESVD++ by capturing the fine-grained temporal dynamics. Finally, our method
automatically adapts different contributions of each past item factors to better capture the users’
current latent features, hence it can achieve the best prediction performance overall.
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Figure 2: Estimation error (a) vs. #iterations and (b) vs. #events per user; (c) scalability vs. #events
per user; (d) average rank of the recommended items; (e) and (f) time prediction error.

5.3 Experiments on Real-World Data

Datasets. Our datasets are obtained from three different domains from the TV streaming services
(IPTV), the commercial review website (Yelp) and the online media services (Reddit). IPTV contains
7,100 users’ watching history of 436 TV programs in 11 months, with 2,392,010 events, and 1,420
movie features, including 1,073 actors, 312 directors, 22 genres, 8 countries and 5 years. Yelp is
available from Yelp Dataset challenge Round 7. It contains reviews for various businesses from
October, 2004 to December, 2015. We filter users with more than 100 posts and it contains 100
users and 17,213 businesses with around 35,093 reviews. Reddit contains the discussions events in
January 2014. Furthermore, we randomly selected 1,000 users and collect 1,403 groups that these
users have discussion in, with a total of 10,000 discussion events. For item base feature, IPTV has
movie feature, Yelp has business description, and Reddit does not have it. In experiments we fix the
baseline features. There is no base feature for user. For interaction feature, Reddit and Yelp have
reviews in bag-of-words, and no such feature in IPTV.

Figure 3 shows the predictive performance. For time prediction, COEVOLVE outperforms the baselines
significantly, since we explicitly reason and model the effect that past consumption behaviors change
users’ interests and items’ features. In particular, compared with LOWRANKHAWKES, our model
captures the interactions of each user-item pair with a multi-dimensional temporal point processes. It is
more expressive than the respective one-dimensional Hawkes process used by LOWRANKHAWKES,
which ignores the mutual influence among items. Furthermore, since the unit time is hour, the
improvement over the state-of-art on IPTV is around two weeks and on Reddit is around two days.
Hence our method significantly helps online services make better demand predictions.

For item recommendation, COEVOLVE also achieves competitive performance comparable with
LOWRANKHAWKES on IPTV and Reddit. The reason behind the phenomena is that one needs to
compute the rank of the intensity function for the item prediction task, and the value of intensity
function for time prediction. LOWRANKHAWKES might be good at differentiating the rank of
intensity better than COEVOLVE. However, it may not be able to learn the actual value of the intensity
accurately. Hence our method has the order of magnitude improvement in the time prediction task.

In addition to the superb predictive performance, COEVOLVE also learns the time-varying latent
features of users and items. Figure 4 (a) shows that the user is initially interested in TV programs
of adventures, but then the interest changes to Sitcom, Family and Comedy and finally switches to
the Romance TV programs. Figure 4 (b) shows that Facebook and Apple are the two hot topics in
the month of January 2014. The discussions about Apple suddenly increased on 01/21/2014, which
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Figure 3: Prediction results on IPTV, Reddit and Yelp. Results are averaged over five runs with
different portions of training data and error bar represents the variance.
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Figure 4: Learned time-varying features of a user in IPTV and a group in Reddit.

can be traced to the news that Apple won lawsuit against Samsung1. It further demonstrates that our
model can better explain and capture the user behavior in the real world.

6 Conclusion
We have proposed an efficient framework for modeling the co-evolution nature of users’ and items’
latent features. Empirical evaluations on large synthetic and real-world datasets demonstrate its scala-
bility and superior predictive performance. Future work includes extending it to other applications
such as modeling dynamics of social groups, and understanding peoples’ behaviors on Q&A sites.
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http://techcrunch.com/2014/01/22/apple-wins-big-against-samsung-in-court/
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