
Search Improves Label for Active Learning

Alina Beygelzimer
Yahoo Research
New York, NY

beygel@yahoo-inc.com

Daniel Hsu
Columbia University

New York, NY
djhsu@cs.columbia.edu

John Langford
Microsoft Research

New York, NY
jcl@microsoft.com

Chicheng Zhang
UC San Diego
La Jolla, CA

chz038@cs.ucsd.edu

Abstract

We investigate active learning with access to two distinct oracles: LABEL (which
is standard) and SEARCH (which is not). The SEARCH oracle models the situation
where a human searches a database to seed or counterexample an existing solution.
SEARCH is stronger than LABEL while being natural to implement in many situ-
ations. We show that an algorithm using both oracles can provide exponentially
large problem-dependent improvements over LABEL alone.

1 Introduction

Most active learning theory is based on interacting with a LABEL oracle: An active learner observes
unlabeled examples, each with a label that is initially hidden. The learner provides an unlabeled
example to the oracle, and the oracle responds with the label. Using LABEL in an active learning
algorithm is known to give (sometimes exponentially large) problem-dependent improvements in
label complexity, even in the agnostic setting where no assumption is made about the underlying
distribution [e.g., Balcan et al., 2006, Hanneke, 2007, Dasgupta et al., 2007, Hanneke, 2014].

A well-known deficiency of LABEL arises in the presence of rare classes in classification problems,
frequently the case in practice [Attenberg and Provost, 2010, Simard et al., 2014]. Class imbalance
may be so extreme that simply finding an example from the rare class can exhaust the labeling budget.
Consider the problem of learning interval functions in [0, 1]. Any LABEL-only active learner needs at
least Ω(1/�) LABEL queries to learn an arbitrary target interval with error at most � [Dasgupta, 2005].
Given any positive example from the interval, however, the query complexity of learning intervals
collapses to O(log(1/�)), as we can just do a binary search for each of the end points.

A natural approach used to overcome this hurdle in practice is to search for known examples of the
rare class [Attenberg and Provost, 2010, Simard et al., 2014]. Domain experts are often adept at
finding examples of a class by various, often clever means. For instance, when building a hate speech
filter, a simple web search can readily produce a set of positive examples. Sending a random batch of
unlabeled text to LABEL is unlikely to produce any positive examples at all.

Another form of interaction common in practice is providing counterexamples to a learned predictor.
When monitoring the stream filtered by the current hate speech filter, a human editor may spot a
clear-cut example of hate speech that seeped through the filter. The editor, using all the search tools
available to her, may even be tasked with searching for such counterexamples. The goal of the
learning system is then to interactively restrict the searchable space, guiding the search process to
where it is most effective.

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.



Counterexamples can be ineffective or misleading in practice as well. Reconsidering the intervals
example above, a counterexample on the boundary of an incorrect interval provides no useful
information about any other examples. What is a good counterexample? What is a natural way to
restrict the searchable space? How can the intervals problem be generalized?

We define a new oracle, SEARCH, that provides counterexamples to version spaces. Given a set of
possible classifiers H mapping unlabeled examples to labels, a version space V ⊆ H is the subset
of classifiers still under consideration by the algorithm. A counterexample to a version space is a
labeled example which every classifier in the version space classifies incorrectly. When there is no
counterexample to the version space, SEARCH returns nothing.

How can a counterexample to the version space be used? We consider a nested sequence of hypothesis
classes of increasing complexity, akin to Structural Risk Minimization (SRM) in passive learning
[see, e.g., Vapnik, 1982, Devroye et al., 1996]. When SEARCH produces a counterexample to the
version space, it gives a proof that the current hypothesis class is too simplistic to solve the problem
effectively. We show that this guided increase in hypothesis complexity results in a radically lower
LABEL complexity than directly learning on the complex space. Sample complexity bounds for
model selection in LABEL-only active learning were studied by Balcan et al. [2010], Hanneke [2011].

SEARCH can easily model the practice of seeding discussed earlier. If the first hypothesis class
has just the constant always-negative classifier h(x) = −1, a seed example with label +1 is a
counterexample to the version space. Our most basic algorithm uses SEARCH just once before using
LABEL, but it is clear from inspection that multiple seeds are not harmful, and they may be helpful if
they provide the proof required to operate with an appropriately complex hypothesis class.

Defining SEARCH with respect to a version space rather than a single classifier allows us to formalize
“counterexample far from the boundary” in a general fashion which is compatible with the way
LABEL-based active learning algorithms work.

Related work. The closest oracle considered in the literature is the Class Conditional Query
(CCQ) [Balcan and Hanneke, 2012] oracle. A query to CCQ specifies a finite set of unlabeled
examples and a label while returning an example in the subset with the specified label, if one exists.

In contrast, SEARCH has an implicit query set that is an entire region of the input space rather than
a finite set. Simple searches over this large implicit domain can more plausibly discover relevant
counterexamples: When building a detector for penguins in images, the input to CCQ might be a
set of images and the label “penguin”. Even if we are very lucky and the set happens to contain a
penguin image, a search amongst image tags may fail to find it in the subset because it is not tagged
appropriately. SEARCH is more likely to discover counterexamples—surely there are many images
correctly tagged as having penguins.

Why is it natural to define a query region implicitly via a version space? There is a practical
reason—it is a concise description of a natural region with an efficiently implementable membership
filter [Beygelzimer et al., 2010, 2011, Huang et al., 2015]. (Compare this to an oracle call that has
to explicitly enumerate a large set of examples. The algorithm of Balcan and Hanneke [2012] uses
samples of size roughly dν/�2.)

The use of SEARCH in this paper is also substantially different from the use of CCQ by Balcan and
Hanneke [2012]. Our motivation is to use SEARCH to assist LABEL, as opposed to using SEARCH
alone. This is especially useful in any setting where the cost of SEARCH is significantly higher
than the cost of LABEL—we hope to avoid using SEARCH queries whenever it is possible to make
progress using LABEL queries. This is consistent with how interactive learning systems are used in
practice. For example, the Interactive Classification and Extraction system of Simard et al. [2014]
combines LABEL with search in a production environment.

The final important distinction is that we require SEARCH to return the label of the optimal predictor
in the nested sequence. For many natural sequences of hypothesis classes, the Bayes optimal
classifier is eventually in the sequence, in which case it is equivalent to assuming that the label in a
counterexample is the most probable one, as opposed to a randomly-drawn label from the conditional
distribution (as in CCQ and LABEL).

Is this a reasonable assumption? Unlike with LABEL queries, where the labeler has no choice of
what to label, here the labeler chooses a counterexample. If a human editor finds an unquestionable

2



example of hate speech that seeped through the filter, it is quite reasonable to assume that this
counterexample is consistent with the Bayes optimal predictor for any sensible feature representation.

Organization. Section 2 formally introduces the setting. Section 3 shows that SEARCH is at least
as powerful as LABEL. Section 4 shows how to use SEARCH and LABEL jointly in the realizable
setting where a zero-error classifier exists in the nested sequence of hypothesis classes. Section 5
handles the agnostic setting where LABEL is subject to label noise, and shows an amortized approach
to combining the two oracles with a good guarantee on the total cost.

2 Definitions and Setting

In active learning, there is an underlying distribution D over X × Y , where X is the instance space
and Y := {−1,+1} is the label space. The learner can obtain independent draws from D, but the
label is hidden unless explicitly requested through a query to the LABEL oracle. Let DX denote the
marginal of D over X .

We consider learning with a nested sequence of hypotheses classes H0 ⊂ H1 ⊂ · · · ⊂ Hk · · · ,
where Hk ⊆ YX has VC dimension dk. For a set of labeled examples S ⊆ X × Y , let Hk(S) :=
{h ∈ Hk : ∀(x, y) ∈ S � h(x) = y} be the set of hypotheses in Hk consistent with S. Let
err(h) := Pr(x,y)∼D[h(x) �= y] denote the error rate of a hypothesis h with respect to distribution
D, and err(h, S) be the error rate of h on the labeled examples in S. Let h∗

k = argminh∈Hk
err(h)

breaking ties arbitrarily and let k∗ := argmink≥0 err(h
∗
k) breaking ties in favor of the smallest such

k. For simplicity, we assume the minimum is attained at some finite k∗. Finally, define h∗ := h∗
k∗ ,

the optimal hypothesis in the sequence of classes. The goal of the learner is to learn a hypothesis
with error rate not much more than that of h∗.

In addition to LABEL, the learner can also query SEARCH with a version space.

Oracle SEARCHH(V ) (where H ∈ {Hk}∞k=0)

input: Set of hypotheses V ⊂ H
output: Labeled example (x, h∗(x)) s.t. h(x) �= h∗(x) for all h ∈ V , or ⊥ if there is no such

example.

Thus if SEARCHH(V ) returns an example, this example is a systematic mistake made by all hypothe-
ses in V . (If V = ∅, we expect SEARCH to return some example, i.e., not ⊥.)

Our analysis is given in terms of the disagreement coefficient of Hanneke [2007], which has been
a central parameter for analyzing active learning algorithms. Define the region of disagreement of
a set of hypotheses V as Dis(V ) := {x ∈ X : ∃h, h� ∈ V s.t. h(x) �= h�(x)}. The disagreement
coefficient of V at scale r is θV (r) := suph∈V,r�≥r PrDX [Dis(BV (h, r

�))]/r�, where BV (h, r
�) =

{h� ∈ V : Prx∼DX [h
�(x) �= h(x)] ≤ r�} is the ball of radius r� around h.

The Õ(·) notation hides factors that are polylogarithmic in 1/δ and quantities that do appear, where δ
is the usual confidence parameter.

3 The Relative Power of the Two Oracles

Although SEARCH cannot always implement LABEL efficiently, it is as effective at reducing the region
of disagreement. The clearest example is learning threshold classifiers H := {hw : w ∈ [0, 1]}
in the realizable case, where hw(x) = +1 if w ≤ x ≤ 1, and −1 if 0 ≤ x < w. A simple
binary search with LABEL achieves an exponential improvement in query complexity over passive
learning. The agreement region of any set of threshold classifiers with thresholds in [wmin, wmax] is
[0, wmin)∪[wmax, 1]. Since SEARCH is allowed to return any counterexample in the agreement region,
there is no mechanism for forcing SEARCH to return the label of a particular point we want. However,
this is not needed to achieve logarithmic query complexity with SEARCH: If binary search starts with
querying the label of x ∈ [0, 1], we can query SEARCHH(Vx), where Vx := {hw ∈ H : w < x}
instead. If SEARCH returns ⊥, we know that the target w∗ ≤ x and can safely reduce the region of
disagreement to [0, x). If SEARCH returns a counterexample (x0,−1) with x0 ≥ x, we know that
w∗ > x0 and can reduce the region of disagreement to (x0, 1].

3



This observation holds more generally. In the proposition below, we assume that LABEL(x) = h∗(x)
for simplicity. If LABEL(x) is noisy, the proposition holds for any active learning algorithm that
doesn’t eliminate any h ∈ H : h(x) = LABEL(x) from the version space.

Proposition 1. For any call x ∈ X to LABEL such that LABEL(x) = h∗(x), we can construct a call
to SEARCH that achieves a no lesser reduction in the region of disagreement.

Proof. For any V ⊆ H , let HSEARCH(V ) be the hypotheses in H consistent with the output of
SEARCHH(V ): if SEARCHH(V ) returns a counterexample (x, y) to V , then HSEARCH(V ) := {h ∈
H : h(x) = y}; otherwise, HSEARCH(V ) := V . Let HLABEL(x) := {h ∈ H : h(x) = LABEL(x)}.
Also, let Vx := H+1(x) := {h ∈ H : h(x) = +1}. We will show that Vx is such that
HSEARCH(Vx) ⊆ HLABEL(x), and hence Dis(HSEARCH(Vx)) ⊆ Dis(HLABEL(x)).

There are two cases to consider: If h∗(x) = +1, then SEARCHH(Vx) returns ⊥. In this case,
HLABEL(x) = HSEARCH(Vx) = H+1(x), and we are done. If h∗(x) = −1, SEARCH(Vx) returns a
valid counterexample (possibly (x,−1)) in the region of agreement of H+1(x), eliminating all of
H+1(x). Thus HSEARCH(Vx) ⊂ H \H+1(x) = HLABEL(x), and the claim holds also.

As shown by the problem of learning intervals on the line, SEARCH can be exponentially more
powerful than LABEL.

4 Realizable Case

We now turn to general active learning algorithms that combine SEARCH and LABEL. We focus
on algorithms using both SEARCH and LABEL since LABEL is typically easier to implement than
SEARCH and hence should be used where SEARCH has no significant advantage. (Whenever SEARCH
is less expensive than LABEL, Section 3 suggests a transformation to a SEARCH-only algorithm.)

This section considers the realizable case, in which we assume that the hypothesis h∗ = h∗
k∗ ∈ Hk∗

has err(h∗) = 0. This means that LABEL(x) returns h∗(x) for any x in the support of DX .

4.1 Combining LABEL and SEARCH

Our algorithm (shown as Algorithm 1) is called LARCH, because it combines LABEL and SEARCH.
Like many selective sampling methods, LARCH uses a version space to determine its LABEL queries.

For concreteness, we use (a variant of) the algorithm of Cohn et al. [1994], denoted by CAL, as a
subroutine in LARCH. The inputs to CAL are: a version space V , the LABEL oracle, a target error
rate, and a confidence parameter; and its output is a set of labeled examples (implicitly defining a new
version space). CAL is described in Appendix B; its essential properties are specified in Lemma 1.

LARCH differs from LABEL-only active learners (like CAL) by first calling SEARCH in Step 3. If
SEARCH returns ⊥, LARCH checks to see if the last call to CAL resulted in a small-enough error,
halting if so in Step 6, and decreasing the allowed error rate if not in Step 8. If SEARCH instead
returns a counterexample, the hypothesis class Hk must be impoverished, so in Step 12, LARCH
increases the complexity of the hypothesis class to the minimum complexity sufficient to correctly
classify all known labeled examples in S. After the SEARCH, CAL is called in Step 14 to discover a
sufficiently low-error (or at least low-disagreement) version space with high probability.

When LARCH advances to index k (for any k ≤ k∗), its set of labeled examples S may imply a
version space Hk(S) ⊆ Hk that can be actively-learned more efficiently than the whole of Hk. In our
analysis, we quantify this through the disagreement coefficient of Hk(S), which may be markedly
smaller than that of the full Hk.

The following theorem bounds the oracle query complexity of Algorithm 1 for learning with both
SEARCH and LABEL in the realizable setting. The proof is in section 4.2.

Theorem 1. Assume that err(h∗) = 0. For each k� ≥ 0, let θk�(·) be the disagreement coefficient
of Hk�(S[k�]), where S[k�] is the set of labeled examples S in LARCH at the first time that k ≥ k�.
Fix any �, δ ∈ (0, 1). If LARCH is run with inputs hypothesis classes {Hk}∞k=0, oracles LABEL and
SEARCH, and learning parameters �, δ, then with probability at least 1− δ: LARCH halts after at
most k∗+log2(1/�) for-loop iterations and returns a classifier with error rate at most �; furthermore,

4



Algorithm 1 LARCH

input: Nested hypothesis classes H0 ⊂ H1 ⊂ · · · ; oracles LABEL and SEARCH; learning parame-
ters �, δ ∈ (0, 1)

1: initialize S ← ∅, (index) k ← 0, � ← 0
2: for i = 1, 2, . . . do
3: e ← SEARCHHk

(Hk(S))
4: if e = ⊥ then # no counterexample found
5: if 2−� ≤ � then
6: return any h ∈ Hk(S)
7: else
8: � ← �+ 1
9: end if

10: else # counterexample found
11: S ← S ∪ {e}
12: k ← min{k� : Hk�(S) �= ∅}
13: end if
14: S ← S ∪ CAL(Hk(S), LABEL, 2−�, δ/(i2 + i))
15: end for

it draws at most Õ(k∗dk∗/�) unlabeled examples from DX , makes at most k∗ + log2(1/�) queries to
SEARCH, and at most Õ (

�
k∗ + log(1/�)

�
· (maxk�≤k∗ θk�(�)) · dk∗ · log2(1/�)) queries to LABEL.

Union-of-intervals example. We now show an implication of Theorem 1 in the case where the
target hypothesis h∗ is the union of non-trivial intervals in X := [0, 1], assuming that DX is uniform.
For k ≥ 0, let Hk be the hypothesis class of the union of up to k intervals in [0, 1] with H0 containing
only the always-negative hypothesis. (Thus, h∗ is the union of k∗ non-empty intervals.) The
disagreement coefficient of H1 is Ω(1/�), and hence LABEL-only active learners like CAL are not
very effective at learning with such classes. However, the first SEARCH query by LARCH provides a
counterexample to H0, which must be a positive example (x1,+1). Hence, H1(S[1]) (where S[1] is
defined in Theorem 1) is the class of intervals that contain x1 with disagreement coefficient θ1 ≤ 4.

Now consider the inductive case. Just before LARCH advances its index to a value k (for any k ≤ k∗),
SEARCH returns a counterexample (x, h∗(x)) to the version space; every hypothesis in this version
space (which could be empty) is a union of fewer than k intervals. If the version space is empty, then
S must already contain positive examples from at least k different intervals in h∗ and at least k − 1
negative examples separating them. If the version space is not empty, then the point x is either a
positive example belonging to a previously uncovered interval in h∗ or a negative example splitting
an existing interval. In either case, S[k] contains positive examples from at least k distinct intervals
separated by at least k − 1 negative examples. The disagreement coefficient of the set of unions of k
intervals consistent with S[k] is at most 4k, independent of �.

The VC dimension of Hk is O(k), so Theorem 1 implies that with high probability, LARCH makes at
most k∗ + log(1/�) queries to SEARCH and Õ((k∗)3 log(1/�) + (k∗)2 log3(1/�)) queries to LABEL.

4.2 Proof of Theorem 1

The proof of Theorem 1 uses the following lemma regarding the CAL subroutine, proved in Ap-
pendix B. It is similar to a result of Hanneke [2011], but an important difference here is that the input
version space V is not assumed to contain h∗.
Lemma 1. Assume LABEL(x) = h∗(x) for every x in the support of DX . For any hypothesis set
V ⊆ YX with VC dimension d < ∞, and any �, δ ∈ (0, 1), the following holds with probability at
least 1− δ. CAL(V, LABEL, �, δ) returns labeled examples T ⊆ {(x, h∗(x)) : x ∈ X} such that for
any h in V (T ), Pr(x,y)∼D[h(x) �= y ∧ x ∈ Dis(V (T ))] ≤ �; furthermore, it draws at most Õ(d/�)

unlabeled examples from DX , and makes at most Õ (θV (�) · d · log2(1/�)) queries to LABEL.

We now prove Theorem 1. By Lemma 1 and a union bound, there is an event with probability
at least 1 − �

i≥1 δ/(i
2 + i) ≥ 1 − δ such that each call to CAL made by LARCH satisfies the

high-probability guarantee from Lemma 1. We henceforth condition on this event.

5



We first establish the guarantee on the error rate of a hypothesis returned by LARCH. By the
assumed properties of LABEL and SEARCH, and the properties of CAL from Lemma 1, the labeled
examples S in LARCH are always consistent with h∗. Moreover, the return property of CAL
implies that at the end of any loop iteration, with the present values of S, k, and �, we have
Pr(x,y)∼D[h(x) �= y ∧ x ∈ Dis(Hk(S))] ≤ 2−� for all h ∈ Hk(S). (The same holds trivially before
the first loop iteration.) Therefore, if LARCH halts and returns a hypothesis h ∈ Hk(S), then there is
no counterexample to Hk(S), and Pr(x,y)∼D[h(x) �= y∧x ∈ Dis(Hk(S))] ≤ �. These consequences
and the law of total probability imply err(h) = Pr(x,y)∼D[h(x) �= y ∧ x ∈ Dis(Hk(S))] ≤ �.

We next consider the number of for-loop iterations executed by LARCH. Let Si, ki, and �i be,
respectively, the values of S, k, and � at the start of the i-th for-loop iteration in LARCH. We claim
that if LARCH does not halt in the i-th iteration, then one of k and � is incremented by at least one.
Clearly, if there is no counterexample to Hki

(Si) and 2−�i > �, then � is incremented by one (Step 8).
If, instead, there is a counterexample (x, y), then Hki

(Si∪{(x, y)}) = ∅, and hence k is incremented
to some index larger than ki (Step 12). This proves that ki+1 + �i+1 ≥ ki + �i + 1. We also have
ki ≤ k∗, since h∗ ∈ Hk∗ is consistent with S, and �i ≤ log2(1/�), as long as LARCH does not halt
in for-loop iteration i. So the total number of for-loop iterations is at most k∗ + log2(1/�). Together
with Lemma 1, this bounds the number of unlabeled examples drawn from DX .

Finally, we bound the number of queries to SEARCH and LABEL. The number of queries to SEARCH
is the same as the number of for-loop iterations—this is at most k∗ + log2(1/�). By Lemma 1 and
the fact that V (S� ∪ S��) ⊆ V (S�) for any hypothesis space V and sets of labeled examples S�, S��,
the number of LABEL queries made by CAL in the i-th for-loop iteration is at most Õ(θki

(�) · dki
·

�2i · polylog(i)). The claimed bound on the number of LABEL queries made by LARCH now readily
follows by taking a max over i, and using the facts that i ≤ k∗ and dk� ≤ dk∗ for all k� ≤ k.

4.3 An Improved Algorithm

LARCH is somewhat conservative in its use of SEARCH, interleaving just one SEARCH query between
sequences of LABEL queries (from CAL). Often, it is advantageous to advance to higher complexity
hypothesis classes quickly, as long as there is justification to do so. Counterexamples from SEARCH
provide such justification, and a ⊥ result from SEARCH also provides useful feedback about the
current version space: outside of its disagreement region, the version space is in complete agreement
with h∗ (even if the version space does not contain h∗). Based on these observations, we propose an
improved algorithm for the realizable setting, which we call SEABEL. Due to space limitations, we
present it in Appendix C. We prove the following performance guarantee for SEABEL.
Theorem 2. Assume that err(h∗) = 0. Let θk(·) denote the disagreement coefficient of V ki

i
at the first iteration i in SEABEL where ki ≥ k. Fix any �, δ ∈ (0, 1). If SEABEL is run
with inputs hypothesis classes {Hk}∞k=0, oracles SEARCH and LABEL, and learning parame-
ters �, δ ∈ (0, 1), then with probability 1 − δ: SEABEL halts and returns a classifier with
error rate at most �; furthermore, it draws at most Õ((dk∗ + log k∗)/�) unlabeled examples
from DX , makes at most k∗ + O (log(dk∗/�) + log log k∗) queries to SEARCH, and at most
Õ (maxk≤k∗ θk(2�) · (dk∗ log2(1/�) + log k∗)) queries to LABEL.

It is not generally possible to directly compare Theorems 1 and 2 on account of the algorithm-
dependent disagreement coefficient bounds. However, in cases where these disagreement coefficients
are comparable (as in the union-of-intervals example), the SEARCH complexity in Theorem 2 is
slightly higher (by additive log terms), but the LABEL complexity is smaller than that from Theorem 1
by roughly a factor of k∗. For the union-of-intervals example, SEABEL would learn target union of
k∗ intervals with k∗ +O(log(k∗/�)) queries to SEARCH and Õ((k∗)2 log2(1/�)) queries to LABEL.

5 Non-Realizable Case

In this section, we consider the case where the optimal hypothesis h∗ may have non-zero error rate,
i.e., the non-realizable (or agnostic) setting. In this case, the algorithm LARCH, which was designed
for the realizable setting, is no longer applicable. First, examples obtained by LABEL and SEARCH
are of different quality: those returned by SEARCH always agree with h∗, whereas the labels given
by LABEL need not agree with h∗. Moreover, the version spaces (even when k = k∗) as defined by
LARCH may always be empty due to the noisy labels.

6



Another complication arises in our SRM setting that differentiates it from the usual agnostic active
learning setting. When working with a specific hypothesis class Hk in the nested sequence, we
may observe high error rates because (i) the finite sample error is too high (but additional labeled
examples could reduce it), or (ii) the current hypothesis class Hk is impoverished. In case (ii), the best
hypothesis in Hk may have a much larger error rate than h∗, and hence lower bounds [Kääriäinen,
2006] imply that active learning on Hk instead of Hk∗ may be substantially more difficult.

These difficulties in the SRM setting are circumvented by an algorithm that adaptively estimates the
error of h∗. The algorithm, A-LARCH (Algorithm 5), is presented in Appendix D.

Theorem 3. Assume err(h∗) = ν. Let θk(·) denote the disagreement coefficient of V ki
i at the first

iteration i in A-LARCH where ki ≥ k. Fix any �, δ ∈ (0, 1). If A-LARCH is run with inputs hypothe-
sis classes {Hk}∞k=0, oracles SEARCH and LABEL, learning parameter δ, and unlabeled example
budget Õ((dk∗ + log k∗)(ν + �)/�2), then with probability 1 − δ: A-LARCH returns a classifier
with error rate ≤ ν + �; it makes at most k∗ +O (log(dk∗/�) + log log k∗) queries to SEARCH, and
Õ (maxk≤k∗ θk(2ν + 2�) · (dk∗ log2(1/�) + log k∗) · (1 + ν2/�2)) queries to LABEL.

The proof is in Appendix D. The LABEL query complexity is at least a factor of k∗ better than
that in Hanneke [2011], and sometimes exponentially better thanks to the reduced disagreement
coefficient of the version space when consistency constraints are incorporated.

5.1 AA-LARCH: an Opportunistic Anytime Algorithm

In many practical scenarios, termination conditions based on quantities like a target excess error rate
� are undesirable. The target � is unknown, and we instead prefer an algorithm that performs as well
as possible until a cost budget is exhausted. Fortunately, when the primary cost being considered are
LABEL queries, there are many LABEL-only active learning algorithms that readily work in such an
“anytime” setting [see, e.g., Dasgupta et al., 2007, Hanneke, 2014].

The situation is more complicated when we consider both SEARCH and LABEL: we can often make
substantially more progress with SEARCH queries than with LABEL queries (as the error rate of the
best hypothesis in Hk� for k� > k can be far lower than in Hk). AA-LARCH (Algorithm 2) shows
that although these queries come at a higher cost, the cost can be amortized.

AA-LARCH relies on several subroutines: SAMPLE-AND-LABEL, ERROR-CHECK,
PRUNE-VERSION-SPACE and UPGRADE-VERSION-SPACE (Algorithms 6, 7, 8, and 9).
The detailed descriptions are deferred to Appendix E. SAMPLE-AND-LABEL performs standard
disagreement-based selective sampling using oracle LABEL; labels of examples in the disagreement
region are queried, otherwise inferred. PRUNE-VERSION-SPACE prunes the version space given the
labeled examples collected, based on standard generalization error bounds. ERROR-CHECK checks if
the best hypothesis in the version space has large error; SEARCH is used to find a systematic mistake
for the version space; if either event happens, AA-LARCH calls UPGRADE-VERSION-SPACE to
increase k, the level of our working hypothesis class.

Theorem 4. Assume err(h∗) = ν. Let θk�(·) denote the disagreement coefficient of Vi at the first
iteration i after which k ≥ k�. Fix any � ∈ (0, 1). Let n� = Õ(maxk≤k∗ θk(2ν+2�)dk∗(1+ν2/�2))
and define C� = 2(n� + k∗τ). Run Algorithm 2 with a nested sequence of hypotheses {Hk}∞k=0,
oracles LABEL and SEARCH, confidence parameter δ, cost ratio τ ≥ 1, and upper bound N =
Õ(dk∗/�2). If the cost spent is at least C�, then with probability 1− δ, the current hypothesis h̃ has
error at most ν + �.

The proof is in Appendix E. A comparison to Theorem 3 shows that AA-LARCH is adaptive: for any
cost complexity C, the excess error rate � is roughly at most twice that achieved by A-LARCH.

6 Discussion

The SEARCH oracle captures a powerful form of interaction that is useful for machine learning. Our
theoretical analyses of LARCH and variants demonstrate that SEARCH can substantially improve
LABEL-based active learners, while being plausibly cheaper to implement than oracles like CCQ.

7



Algorithm 2 AA-LARCH

input: Nested hypothesis set H0 ⊆ H1 ⊆ · · · ; oracles LABEL and SEARCH; learning parameter
δ ∈ (0, 1); SEARCH-to-LABEL cost ratio τ , dataset size upper bound N .

output: hypothesis h̃.
1: Initialize: consistency constraints S ← ∅, counter c ← 0, k ← 0, verified labeled dataset L̃ ← ∅,

working labeled dataset L0 ← ∅, unlabeled examples processed i ← 0, Vi ← Hk(S).
2: loop
3: Reset counter c ← 0.
4: repeat
5: if ERROR-CHECK(Vi, Li, δi) then
6: (k, S, Vi) ← UPGRADE-VERSION-SPACE(k, S, ∅)
7: Vi ← PRUNE-VERSION-SPACE(Vi, L̃, δi)

8: Li ← L̃
9: continue loop

10: end if
11: i ← i+ 1
12: (Li, c) ← SAMPLE-AND-LABEL(Vi−1, LABEL, Li−1, c)
13: Vi ← PRUNE-VERSION-SPACE(Vi−1, Li, δi)
14: until c = τ or li = N
15: e ← SEARCHHk

(Vi)
16: if e �= ⊥ then
17: (k, S, Vi) ← UPGRADE-VERSION-SPACE(k, S, {e})
18: Vi ← PRUNE-VERSION-SPACE(Vi, L̃, δi)

19: Li ← L̃
20: else
21: Update verified dataset L̃ ← Li.
22: Store temporary solution h̃ = argminh�∈Vi

err(h�, L̃).
23: end if
24: end loop

Are there examples where CCQ is substantially more powerful than SEARCH? This is a key question,
because a good active learning system should use minimally powerful oracles. Another key question
is: Can the benefits of SEARCH be provided in a computationally efficient general purpose manner?

References
Josh Attenberg and Foster J. Provost. Why label when you can search? alternatives to active learning

for applying human resources to build classification models under extreme class imbalance. In
Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, Washington, DC, USA, July 25-28, 2010, pages 423–432, 2010.

Maria-Florina Balcan and Steve Hanneke. Robust interactive learning. In COLT, 2012.

Maria-Florina Balcan, Alina Beygelzimer, and John Langford. Agnostic active learning. In ICML,
2006.

Maria-Florina Balcan, Steve Hanneke, and Jennifer Wortman Vaughan. The true sample complexity
of active learning. Machine learning, 80(2-3):111–139, 2010.

Alina Beygelzimer, Daniel Hsu, John Langford, and Tong Zhang. Agnostic active learning without
constraints. In Advances in Neural Information Processing Systems 23, 2010.

Alina Beygelzimer, Daniel Hsu, Nikos Karampatziakis, John Langford, and Tong Zhang. Efficient
active learning. In ICML Workshop on Online Trading of Exploration and Exploitation, 2011.

David A. Cohn, Les E. Atlas, and Richard E. Ladner. Improving generalization with active learning.
Machine Learning, 15(2):201–221, 1994.

8



Sanjoy Dasgupta. Coarse sample complexity bounds for active learning. In Advances in Neural
Information Processing Systems 18, 2005.

Sanjoy Dasgupta, Daniel Hsu, and Claire Monteleoni. A general agnostic active learning algorithm.
In Advances in Neural Information Processing Systems 20, 2007.

Luc Devroye, László Györfi, and Gabor Lugosi. A Probabilistic Theory of Pattern Recognition.
Springer Verlag, 1996.

Steve Hanneke. A bound on the label complexity of agnostic active learning. In ICML, pages
249–278, 2007.

Steve Hanneke. Rates of convergence in active learning. The Annals of Statistics, 39(1):333–361,
2011.

Steve Hanneke. Theory of disagreement-based active learning. Foundations and Trends R� in Machine
Learning, 7(2-3):131–309, 2014. ISSN 1935-8237. doi: 10.1561/2200000037.

Tzu-Kuo Huang, Alekh Agarwal, Daniel Hsu, John Langford, and Robert E. Schapire. Efficient and
parsimonious agnostic active learning. In Advances in Neural Information Processing Systems 28,
2015.

Matti Kääriäinen. Active learning in the non-realizable case. In Algorithmic Learning Theory, 17th
International Conference, ALT 2006, Barcelona, Spain, October 7-10, 2006, Proceedings, pages
63–77, 2006.

Patrice Y. Simard, David Maxwell Chickering, Aparna Lakshmiratan, Denis Xavier Charles, Léon
Bottou, Carlos Garcia Jurado Suarez, David Grangier, Saleema Amershi, Johan Verwey, and Jina
Suh. ICE: enabling non-experts to build models interactively for large-scale lopsided problems.
CoRR, abs/1409.4814, 2014. URL http://arxiv.org/abs/1409.4814.

Vladimir N. Vapnik. Estimation of Dependences Based on Empirical Data. Springer-Verlag, 1982.

Vladimir N. Vapnik and Alexey Ya. Chervonenkis. On the uniform convergence of relative frequencies
of events to their probabilities. Theory of Probability and Its Applications, 16(2):264–280, 1971.

9


