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Abstract

We study the cost function for hierarchical clusterings introduced by [16] where
hierarchies are treated as first-class objects rather than deriving their cost from
projections into flat clusters. It was also shown in [16] that a top-down algorithm
returns a hierarchical clustering of cost at most O («,, logn) times the cost of
the optimal hierarchical clustering, where «,, is the approximation ratio of the
Sparsest Cut subroutine used. Thus using the best known approximation algorithm
for Sparsest Cut due to Arora-Rao-Vazirani, the top-down algorithm returns a

hierarchical clustering of cost at most O (10g3/ 2 n) times the cost of the optimal

solution. We improve this by giving an O(log n)-approximation algorithm for this
problem. Our main technical ingredients are a combinatorial characterization of
ultrametrics induced by this cost function, deriving an Integer Linear Programming
(ILP) formulation for this family of ultrametrics, and showing how to iteratively
round an LP relaxation of this formulation by using the idea of sphere growing
which has been extensively used in the context of graph partitioning. We also prove
that our algorithm returns an O(log n)-approximate hierarchical clustering for a
generalization of this cost function also studied in [16]. We also give constant
factor inapproximability results for this problem.

1 Introduction

Hierarchical clustering is an important method in cluster analysis where a data set is recursively
partitioned into clusters of successively smaller size. They are typically represented by rooted trees
where the root corresponds to the entire data set, the leaves correspond to individual data points and
the intermediate nodes correspond to a cluster of its descendant leaves. Such a hierarchy represents
several possible flat clusterings of the data at various levels of granularity; indeed every pruning of
this tree returns a possible clustering. Therefore in situations where the number of desired clusters is
not known beforehand, a hierarchical clustering scheme is often preferred to flat clustering.

The most popular algorithms for hierarchical clustering are bottoms-up agglomerative algorithms
like single linkage, average linkage and complete linkage. In terms of theoretical guarantees these
algorithms are known to correctly recover a ground truth clustering if the similarity function on the
data satisfies corresponding stability properties (see, e.g., [5]). Often, however, one wishes to think of
a good clustering as optimizing some kind of cost function rather than recovering a hidden “ground
truth”. This is the standard approach in the classical clustering setting where popular objectives are
k-means, k-median, min-sum and k-center (see Chapter 14, [23]). However as pointed out by [16]
for a lot of popular hierarchical clustering algorithms including linkage based algorithms, it is hard
to pinpoint explicitly the cost function that these algorithms are optimizing. Moreover, much of the
existing cost function based approaches towards hierarchical clustering evaluate a hierarchy based
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on a cost function for flat clustering, e.g., assigning the k-means or k-median cost to a pruning of
this tree. Motivated by this, [16] introduced a cost function for hierarchical clustering where the cost
takes into account the entire structure of the tree rather than just the projections into flat clusterings.
This cost function is shown to recover the intuitively correct hierarchies on several synthetic examples
like planted partitions and cliques. In addition, a top-down graph partitioning algorithm is presented
that outputs a tree with cost at most O(«, logn) times the cost of the optimal tree and where «v,
is the approximation guarantee of the Sparsest Cut subroutine used. Thus using the Leighton-Rao

algorithm [33] or the Arora-Rao-Vazirani algorithm [3] gives an approximation factor of O (log2 n)

and O (logB/ 2 n) respectively.

In this work we give a polynomial time algorithm to recover a hierarchical clustering of cost at most
O(logn) times the cost of the optimal clustering according to this cost function. We also analyze
a generalization of this cost function studied by [16] and show that our algorithm still returns an
O(log n) approximate clustering in this setting. We do this by giving a combinatorial characterization
of the ultrametrics induced by this cost function, writing a convex relaxation for it and showing how
to iteratively round a fractional solution into an integral one using a rounding scheme used in graph
partitioning algorithms. We also implement the integer program, its LP relaxation, and the rounding
algorithm and test it on some synthetic and real world data sets to compare the cost of the rounded
solutions to the true optimum, as well as to compare its performance to other hierarchical clustering
algorithms used in practice. Our experiments suggest that the hierarchies found by this algorithm are
often better than the ones found by linkage based algorithms as well as the k-means algorithm in
terms of the error of the best pruning of the tree compared to the ground truth. We conclude with
constant factor hardness results for this problem.

1.1 Related Work

The immediate precursor to this work is [16] where the cost function for evaluating a hierarchical
clustering was introduced. Prior to this there has been a long line of research on hierarchical
clustering in the context of phylogenetics and taxonomy (see, e.g., [22]). Several authors have also
given theoretical justifications for the success of the popular linkage based algorithms for hierarchical
clustering (see, e.g. [1]). In terms of cost functions, one approach has been to evaluate a hierarchy in
terms of the k-means or k-median cost that it induces (see [17]). The cost function and the top-down
algorithm in [16] can also be seen as a theoretical justification for several graph partitioning heuristics
that are used in practice.

LP relaxations for hierarchical clustering have also been studied in [2] where the objective is to fit
a tree metric to a data set given pairwise dissimilarities. Another work that is indirectly related to
our approach is [18] where an ILP was studied in the context of obtaining the closest ultrametric to
arbitrary functions on a discrete set. Our approach is to give a combinatorial characterization of the
ultrametrics induced by the cost function of [16] which allows us to use the tools from [18] to model
the problem as an ILP. The natural LP relaxation of this ILP turns out to be closely related to LP
relaxations considered before for several graph partitioning problems (see, e.g., [33, 19, 32]) and we
use a rounding technique studied in this context to round this LP relaxation.

Recently, we became aware of independent work by Charikar and Chatziafratis [12] obtaining similar
results for hierarchical clustering. In particular they improve the approximation factor to O (\/log n)
by showing how to round a spreading metric SDP relaxation for this cost function. They also analyze
a similar LP relaxation using the divide-and-conquer approximation algorithms using spreading
metrics paradigm of [20] together with a result of [7] to prove an O(logn) approximation. Finally,
they also give similar inapproximability results for this problem.

2 Preliminaries

A similarity based clustering problem consists of a dataset V' of n points and a similarity function
k:V x V — R such that (i, j) is a measure of the similarity between ¢ and j for any i, 5 € V. We
will assume that the similarity function is symmetric, i.e., (i, j) = k(j,4) forevery i,j € V. We
also require x > 0 as in [16]; see supplementary material for a discussion. Note that we do not make
any assumptions about the points in V' coming from an underlying metric space. For a given instance
of a clustering problem we have an associated weighted complete graph K,, with vertex set V' and



weight function given by . A hierarchical clustering of V' is a tree T' with a designated root r and
with the elements of V" as its leaves, i.e., leaves(T') = V. For any set S C V' we denote the lowest
common ancestor of S in T by lca(.S). For pairs of points 7, j € V we will abuse the notation for
the sake of simplicity and denote lca({4,j}) simply by lca(i, j). For a node v of T' we denote the
subtree of T  rooted at v by T'[v]. The following cost function was introduced by [16] to measure the
quality of the hierarchical clustering T’

cost(T) = Z k(%, §) [leaves(T'[lca(, 5)])] - (1)
{i.}eE(KR)

The intuition behind this cost function is as follows. Let 7" be a hierarchical clustering with designated
root 7 so that r represents the whole data set V. Since leaves(T') = V, every internal node v € T
represents a cluster of its descendant leaves, with the leaves themselves representing singleton clusters
of V. Starting from r and going down the tree, every distinct pair of points ¢, j € V' will be eventually
separated at the leaves. If (¢, j) is large, i.e., ¢ and j are very similar to each other then we would
like them to be separated as far down the tree as possible if T is a good clustering of V. This is
enforced in the cost function (1): if (i, j) is large then the number of leaves of lca(i, j) should be
small, i.e., lca(i, j) should be far from the root r of T'.

Under the cost function (1), one can interpret the tree 7" as inducing an ultrametric d7 on V' given by
dr(i,j) == |leaves(T'[lca (4, §)])| — 1. This is an ultrametric since dr (¢, j) = 0 iff i = j and for any
triple 4, j, k € V we have dr(i,j) < max{dr(i,k),dr(j, k)}. The following definition introduces
the notion of non-trivial ultrametrics. These turn out to be precisely the ultrametrics that are induced
by tree decompositions of V' corresponding to cost function (1), as we will show in Lemma 5.

Definition 1. An ultrametric d on a set of points V' is non-trivial if the following conditions hold.

1. For every non-empty set S C V, there is a pair of points i, j € S such that d(i, j) > |S| — 1.

2. For any t if Sy is an equivalence class of V under the relation i ~ j iff d(i,j) < t, then
max; jes, d(i, j) < [Se| — L.

Note that for an equivalence class S; where d(7, j) < t for every i, j € S; it follows from Condition 1
that ¢t > |S¢| — 1. Thus in the case when ¢t = |S;| — 1 the two conditions imply that the maximum
distance between any two points in S is ¢ and that there is a pair ¢, j € .S for which this maximum
is attained. The following lemma shows that non-trivial ultrametrics behave well under restrictions
to equivalence classes S; of the form i ~ j iff d(4, j) < t. Due to page limitation full proofs are
included in the supplementary material.

Lemma 2. Let d be a non-trivial ultrametric on V and let Sy C V be an equivalence class under the
relation i ~ j iff d(i,j) < t. Then d restricted to Sy is a non-trivial ultrametric on Si.

The intuition behind the two conditions in Definition 1 is as follows. Condition 1 imposes a certain
lower bound by ruling out trivial ultrametrics where, e.g., d(i, 7) = 1 for every distinct pair i, j € V.
On the other hand Condition 2 discretizes and imposes an upper bound on d by restricting its range
to the set {0,1,...,n — 1} (see Lemma 3). This rules out the other spectrum of triviality where for
example d(7, j) = n for every distinct pair i, j € V with |V| = n.

Lemma 3. Let d be a non-trivial ultrametric on the set V. Then the range of d is contained in the set
{0,1,...,n—1} with |V| = n.

3 Ultrametrics and Hierarchical Clusterings

In this section we study the combinatorial properties of the ultrametrics induced by cost function (1).
We start with the following easy lemma showing that if a subset S C V has r as its lowest common
ancestor, then there must be a pair of points 4, j € S for which r = lca(s, j).

Lemmad. Let S C V of size > 2. If r = lca(S) then there is a pairi,j € S such that lca(i, j) = r.

The following lemma shows that non-trivial ultrametrics exactly capture the ultrametrics that are
induced by tree decompositions of V' using cost function (1). The proof of Lemma 5 is inductive and
uses Lemma 4 as a base case. As it turns out, the inductive proof also gives an algorithm to build the
corresponding hierarchical clustering given such a non-trivial ultrametric in polynomial time. Since



this algorithm is relatively straightforward, we refer the reader to the supplementary material for the
details.

Lemma 5. Let T be a hierarchical clustering on 'V and let dr be the ultrametric on V induced
by cost function (1). Then dr is a non-trivial ultrametric on V. Conversely, let d be a non-trivial
ultrametric on V. Then there is a hierarchical clustering T' on V' such that for any pairi,j € V we
have dr (i, j) = |leaves(T'[lca (4, j)])| — 1 = d(i, j). Moreover this hierarchy can be constructed in
time O (n*) where |V| = n.

Therefore to find the hierarchical clustering of minimum cost, it suffices to minimize (x, d) over
non-trivial ultrametrics d : V x V. — {0,...,n — 1}. A natural approach is to formulate this
problem as an Integer Linear Program (ILP) and then study Linear Programming (LP) relaxations of
it. We consider the following ILP for this problem that is motivated by [18]. We have the variables
Tisee ,xfj_l for every distinct pair i, j € V' with xf; = 1 if and only if d(i, j) > t. For any positive
integer n, let [n] == {1,2,...,n}.

n—1
min Z Z K(i, )z (ILP-ultrametric)
t=1 {i,j}eE(K,)
st ap; >t Vi,j € V,t € [n—2] 2)
xi; + ahy > o), Vi, j, k€ Vit € n—1] (3)
> al; >0 Vien—1,SCV,|S|=t+1 4)
i,j€ES

Soal <ISP [ Y al+> (1-af) Vel -1,ScV 5)

i,jES i,jES €S

igs
ai; = T, 05 =0 Vi,jeViten—1] (6)
zj; € {0,1} Vi,j eVt en—1] @)

Note that constraint (3) is the same as the strong triangle inequality since the variables xfj are in
{0,1}. Constraint 6 ensures that the ultrametric is symmetric. Constraint 4 ensures the ultrametric
satisfies Condition 1 of non-triviality: for every S C V of size t + 1 we know that there must be
points i, j € S such that d(i, j) = d(j,7) > t or in other words z!, = x%, = 1. Constraint 5 ensures
that the ultrametric satisfies Condition 2 of non-triviality. To see this note that the constraint is
active only when 3, ;o i, = 0and -, g ;o5(1 — 27;) = 0. In other words d(i, j) <t — 1 for
every i,j € S and S is a maximal such set since if i € S and j ¢ S then d(4,j) > t. Thus S is

an equivalence class under the relation ¢ ~ j iff d(i,j) < ¢ — 1 and so for every i, j € S we have
d(i,j) < |S| — 1 or equivalently x'zf‘
given by d(i,j) = Z?;ll k.

Definition 6. For any {«!; |t € [n —1],i,j € V'} let E; be defined as Ey, := {{i,j} | zi; = 0}.
Note that if xfj is feasible for ILP-ultrametric then Ey C Eyy4 for any t since :Cf»j > xijl The sets

{E;}7= ! induce a natural sequence of graphs {G;}7—}' where Gy = (V, E}) with V being the data
set.

= 0. The ultrametric d represented by a feasible solution z* ;18

For afixedt € {1,...,n — 1} itis instructive to study the combinatorial properties of the so called
layer-t problem, where we fix a choice of ¢ and restrict ourselves to the constraints corresponding to
that particular ¢. In particular we drop the inter-layer constraint (2), and constraints (3), (4) and (5)
only range over i, j, k € V and S C V with ¢ fixed. The following lemma provides a combinatorial
characterization of feasible solutions to the layer-¢ problem.

Lemma 7. Fixa choice of t € [n—1]. Let Gy = (V, E}) be the graph as in Definition 6 corresponding

to a solution xfj to the layer-t problem. Then G is a disjoint union of cliques of size < t. Moreover

this exactly characterizes all feasible solutions to the layer-t ILP.



By Lemma 7 the layer-t problem is to find a subset E; C E(K,,) of minimum weight under x, such
that the complement graph G; = (V, E;) is a disjoint union of cliques of size < ¢. Our algorithmic
approach is to solve an LP relaxation of ILP-ultrametric and then round the solution to get a feasible
solution to ILP-ultrametric. The rounding however proceeds iteratively in a layer-wise manner and so
we need to make sure that the rounded solution satisfies the inter-layer constraints (2) and (5). The
following lemma gives a combinatorial characterization of solutions that satisfy these two constraints.
Lemma 8. Forevery t € [n — 1], let x; be feasible for the layer-t problem. Let Gy = (V, E;) be
the graph as in Definition 6 corresponding to xﬁj, so that by Lemma 7, Gy is a disjoint union of
cliqgues K¢, .. ., Kltt each of size at most t. Then xﬁj is feasible for ILP-ultrametric if and only if the
following conditions hold.

Nested cliques For any s <t every clique K for some p € [ls] in G is a subclique of some clique
Kt in Gy where q € [l;].

Realization If |Kf,| = s for some s < t, then G4 contains K ; as a component clique, i.e., K} = Kf,
Sfor some q € [l;).

The combinatorial interpretation of the individual layer-¢ problems allow us to simplify the formu-

lation of ILP-ultrametric by replacing the constraints for sets of a specific size (Constraint 4) by a
global constraint about all sets.

Lemma 9. We may replace Constraint 4 of ILP-ultrametric by the following equivalent constraint
Yjes @iy > S| =t foreveryt € [n—1], S CVandi€S.

4 Rounding an LP relaxation

In this section we consider the following natural LP relaxation for ILP-ultrametric. We keep the
variables x}; for every t € [n — 1] and i, j € V' but relax the integrality constraint on the variables.

n—1

min Z Z k(i )y, (LP-ultrametric)
t=1{ij}€E(K)

st al; > alf! Vi,j e Vit €[n—2| (8)
iy + Ty, > ag, Vi,j,keV,ten—1] ©)
> k> |-t Vien—1,SCV,ieS (10)
JjeS
xi; = al, 2 =0 Vi,jeV,iten—1] (11)
0<al,<1 Vi, j e Vit €[n—1] (12)

Note that the LP relaxation LP-ultrametric differs from ILP-ultrametric in not having constraint 5. A
feasible solution ! ; to LP-ultrametric induces a sequence {dt}te[n_l] of distance metrics over V'
defined as d¢ (i, j) = z! ;- Constraint 10 enforces an additional restriction on this metric: informally
points in a “large enough” subset S should be spread apart according to the metric d;. Metrics of
type d; are called spreading metrics and were first studied by [19, 20] in relation to graph partitioning
problems. The following lemma gives a technical interpretation of spreading metrics (see, e.g.,
[19, 20]).

Lemma 10. Let x; be feasible for LP-ultrametric and for a fixed t € [n — 1], let d; be the induced
spreading metric. Leti € V be an arbitrary vertex and let S C V be a set containing i such that
|S| > (1 + ¢)t for some € > 0. Then max;es di(i, j) > 15

The following lemma states that we can optimize over LP-ultrametric in polynomial time.

Lemma 11. An optimal solution to LP-ultrametric can be computed in time polynomial in n and
log (max; ; (%, 7))

From now on we will simply refer to a feasible solution of LP-ultrametric by the sequence of
spreading metrics {d; }+c[,—1] it induces. The following definition introduces the notion of an open



ball By (i, r,t) of radius r centered at ¢ € V' according to the metric d; and restricted to the set
UcvV.

Definition 12. Ler {d; |t € [n — 1|} be the sequence of spreading metrics feasible for LP-
ultrametric. Let U C 'V be an arbitrary subset of V. For avertexi € U, r € R, and t € [n — 1] we
define the open ball By (i,7,t) of radius r centered at i as

By (i,rt) ={j € U | de(i,j) <r} CU.
IfU =V then we denote By (i,r,t) simply by B (i,r,t).

To round LP-ultrametric to get a feasible solution for ILP-ultrametric, we will use the technique of
sphere growing which was introduced in [33] to show an O(logn) approximation for the maximum
multicommodity flow problem. The basic idea is to grow a ball around a vertex until the expansion of
this ball is below a certain threshold, chop off this ball and declare it as a partition and recurse on
the remaining vertices. Since then this idea has been used by [25, 19, 14] to design approximation
algorithms for various graph partitioning problems. The first step is to associate to every ball
By (i,7,t) a volume vol (By (4, r,t)) and a boundary 0By (i, r,t) so that its expansion is defined.
Forany ¢t € [n — 1] and U C V we denote by 7 the value of the layer-¢ objective for solution d;
restricted to the set U, i.e., v == > i jev k(i,7)di(i, ). When U = V we refer to 7 simply by
i<j

v¢. Since k 1 V' x V' — Ry, it follows that ’th < ¢ forany U C V. We are now ready to define
the volume, boundary and expansion of a ball By (¢, 7, t). We use the definition of [19] modified for
restrictions to arbitrary subsets U C V.

Definition 13. [19] Let U be an arbitrary subset of V. For a vertex i € U, radius r € R, and
t € [n—1], let By (i,7,t) be the ball of radius r as in Definition 12. Then we define its volume as

U
vol (By (i,r, 1)) = —t— - S" k(R G R+ Y KGR (- di(i, ) -

nlogn ) , -
J,k€By (i,r,t) JEBy (i,7,t)
j<k k¢ By (i,rt)

keU

The boundary of the ball OBy (i, r,t) is the partial derivative of volume with respect to the radius, i.e.,

OBy (i,r,t) == W The expansion ¢(By (i,r,t)) ofthaeBbc(zll B)U (i,7,t) is then defined
u(2,r,t

as the ratio of its boundary to its volume, i.e., ¢ (By (i,7,1)) = I By ()

The following theorem establishes that the rounding procedure of Algorithm 1 ensures that the cliques
in C; are “small” and that the cost of the edges removed to form them are not too high. It also

n—1
1+e

shows that Algorithm 1 can be implemented to run in time polynomial in n. Let m, := L

Algorithm 1.

Theorem 14. Let {xfj |t € [me),i,j € V} be the output of Algorithm 1 on a feasible solution

{di }tein—1) of LP-ultrametric and any choice of ¢ € (0,1). For any t € [m.], x}; is feasible

for the layer-| (1 + €) t| problem and there is a constant c¢(€) > 0 depending only on € such that
Gorerr, K 7)xt; < c(e)(logn)ye. Moreover, Algorithm I can be implemented to run in time

polynomial in n.

J as in

We are now ready to state the main theorem showing that we can obtain a low cost non-trivial
ultrametric from Algorithm 1. The proof idea of the main theorem is to use the combinatorial
characterization of Lemma 8 to show that the rounded solution is feasible for ILP-ultrametric besides
using Theorem 14 for the individual layer-¢ guarantees.

Theorem 15. Let {z}; | t € [m.],i,j € V} be the output of Algorithm 1 on an optimal solution
{di}1ejn—1) of LP-ultrametric for any choice of ¢ € (0,1). Define the sequence {yf]} for every
ten—1]andi,j €V as yﬁj = xZL;/(He)J ift >14¢cand yfj = 1 otherwise. Then yﬁj is feasible
for ILP-ultrametric and satisfies Z?:_ll DY EB(K) w(i, 7)yi; < (2¢(e) logn) OPT, where OPT
is the optimal solution to ILP-ultrametric and c(€) is the constant in the statement of Theorem 14.

Lemma 11 and Theorem 15 imply the following corollary where we put everything together to obtain

a hierarchical clustering of V' in time polynomial in n with |V| = n. Let 7 denote the set of all
possible hierarchical clusterings of V.



Algorithm 1: Iterative rounding algorithm to find a low cost ultrametric
Input: Data set V, {d; }icin—1): V xV,e>0,k:V XV = Rx

Output: A solution set of the form {a:f] e{0,1} |t e H’f;gﬂ ,i,j € V}
Me H;;J

t < me

Ct+1 — {V}

A 5

while ¢t > 1 do

Cy 0

for U € Ct+1 do

if [U| < (1 +¢)t then
Ct — Ct U {U}
Go to line 1

end

while U # () do

Let ¢ be arbitrary in U

Letr € (0,A] bes.t. ¢ (By (i,r,1)) < L log (M)

vol(By (2,0,t))
Ce < G U{By (i, 1)}
U+ U\BU (i,’/’,t)

end

end

af;=1ifie Uy €C,je Uy e Crand Uy # U, else xf; = 0
t—t—1

end
return {z!; | t € [m.],i,j € V}

Corollary 16. Given a data set V of n points and a similarity function k : V. XV —
R>o, there is an algorithm to compute a hierarchical clustering T of V satisfying cost(T") <
O (logn) mingr ¢ cost(1") in time polynomial in n and log (max; jev (i, j)).

5 Generalized Cost Function

In this section we study the following natural generalization of cost function (1) also introduced
by [16] where the distance between the two points is scaled by a function f : R>g — Rx>g i.e.,
costy(T) = > ; iyem(x,) £(i,J) [ ([leaves T(lca(i, j)]). In order for this cost function to make

sense, f should be strictly increasing and satisfy f(0) = 0. Possible choices for f could be in
{2?%,e* — 1,log(1 + z)}. The top-down heuristic in [16] finds the optimal hierarchical clustering up
to an approximation factor of ¢, log n with ¢,, being defined as ¢,, := 3o, max;<pn/<p % and
where a,, is the approximation factor from the Sparsest Cut algorithm used.

A naive approach to solving this problem using the ideas of Algorithm 1 would be to replace
the objective function of ILP-ultrametric by 3¢, -1 c g, ) £(i, 7) f (21:11 xfj) . This makes the
corresponding analogue of LP-ultrametric non-linear however, and for a general « and f it is not
clear how to compute an optimum solution in polynomial time. Using a small trick, one can still

prove that Algorithm 1 returns a good approximation in this case as the following theorem states. For
more details on the generalized cost function we refer the reader to the supplementary material.

Theorem 17. Let a,, := max, ¢, (f(n') — f(n' — 1)). Given a data set V of n points and a
similarity function k : 'V x V. — Ry, there is an algorithm to compute a hierarchical clus-
tering T of V satisfying cost;(T) < O (logn + a,,) ming e cost ¢ (1") in time polynomial in n,
log (max; jev k(i, j)) and log f(n).

Note that, in this case we pay a price of O (log f(n)) in the running time due to binary search.



6 Experiments

Finally, we describe the experiments we performed. We implemented a generalized version of
ILP-ultrametric where one can plug in any strictly increasing function f satisfying f(0) = 0. For the
sake of exposition, we limited ourselves to {x, 22, log(1 + z),e” — 1} for the function f. We used
the dual simplex method and separate constraints (9) and (10) to obtain fast computations. For the
similarity function x we limited ourselves to using cosine similarity k.,s and the Gaussian kernel
Kgauss With o = 1. Since Algorithm 1 requires x > 0, in practice we use 1 + k.o, instead of K¢os.
Note that both Ward’s method and the k-means algorithm work on the squared Euclidean distance
and thus need vector representations of the data set. For the linkage based algorithms we use the
same similarity function that we use for Algorithm 1.

We considered synthetic data sets and some data sets from the UCI database [36]. The synthetic data
sets were mixtures of Gaussians in various small dimensional spaces and for some of the larger data
sets we subsampled a smaller number of points uniformly at random for a number of times depending
on the performance of the MIP and LP solver. For a comparison of the cost of the hierarchy returned
by Algorithm 1 and the optimal hierarchy obtained by solving ILP-ultrametric, see the supplementary
material.

To compare the different hierarchical clustering algorithms, we prune the hierarchy to get the best k
flat clusters and measure its error relative to the ground truth. We use the following notion of error
also known as Classification Error that is standard in the literature for hierarchical clustering (see,
e.g., [37D.

Definition 18. Given a proposed clustering h : V. — {1,... k} its classification error relative
to a target clustering g : V. — {1,...,k} is denoted by err (g, h) and is defined as err (g, h) =
minges, [Proev[h(z) # o(g(2))].

Figure 1 shows that Algorithm 1 often gives better prunings compared to the other standard clustering
algorithms with respect to this notion of error.

7 Conclusion

In this work we have studied the cost function introduced by [16] for hierarchical clustering of data
under a pairwise similarity function. We have shown a combinatorial characterization of ultrametrics
induced by this cost function leading to an improved approximation algorithm for this problem. It
remains for future work to investigate combinatorial algorithms for this cost function as well as
algorithms for other cost functions of a similar flavor; see supplementary material for a discussion.

= Algorithm 1 = Algorithm 1

Error with respect to ground truth

Error with respect to ground truth

Data sets Data sets

Figure 1: Comparison of Algorithm 1 with other algorithms for clustering using 1 + k.5 (left) and
Kgauss (right)
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