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Abstract

We provide a theoretical foundation for non-parametric estimation of functions of
random variables using kernel mean embeddings. We show that for any continuous
function f , consistent estimators of the mean embedding of a random variable X
lead to consistent estimators of the mean embedding of f(X). For Matérn kernels
and sufficiently smooth functions we also provide rates of convergence.
Our results extend to functions of multiple random variables. If the variables
are dependent, we require an estimator of the mean embedding of their joint
distribution as a starting point; if they are independent, it is sufficient to have
separate estimators of the mean embeddings of their marginal distributions. In
either case, our results cover both mean embeddings based on i.i.d. samples as well
as “reduced set” expansions in terms of dependent expansion points. The latter
serves as a justification for using such expansions to limit memory resources when
applying the approach as a basis for probabilistic programming.

1 Introduction

A common task in probabilistic modelling is to compute the distribution of f(X), given a measurable
function f and a random variable X . In fact, the earliest instances of this problem date back at least
to Poisson (1837). Sometimes this can be done analytically. For example, if f is linear and X is
Gaussian, that is f(x) = ax+ b and X ⇠ N (µ;�), we have f(X) ⇠ N (aµ+ b; a�). There exist
various methods for obtaining such analytical expressions (Mathai, 1973), but outside a small subset
of distributions and functions the formulae are either not available or too complicated to be practical.

An alternative to the analytical approach is numerical approximation, ideally implemented as a
flexible software library. The need for such tools is recognised in the general programming languages
community (McKinley, 2016), but no standards were established so far. The main challenge is in
finding a good approximate representation for random variables.

Distributions on integers, for example, are usually represented as lists of (x
i

, p(x
i

)) pairs. For real
valued distributions, integral transforms (Springer, 1979), mixtures of Gaussians (Milios, 2009), La-
guerre polynomials (Williamson, 1989), and Chebyshev polynomials (Korzeń and Jaroszewicz, 2014)
were proposed as convenient representations for numerical computation. For strings, probabilistic
finite automata are often used. All those approaches have their merits, but they only work with a
specific input type.

There is an alternative, based on Monte Carlo sampling (Kalos and Whitlock, 2008), which is to
represent X by a (possibly weighted) sample {(x

i

, w
i

)}n
i=1 (with w

i

� 0). This representation has
several advantages: (i) it works for any input type, (ii) the sample size controls the time-accuracy
trade-off, and (iii) applying functions to random variables reduces to applying the functions pointwise
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to the sample, i.e., {(f(x
i

), w
i

)} represents f(X). Furthermore, expectations of functions of random
variables can be estimated as E [f(X)] ⇡ P

i

w
i

f(x
i

)/
P

i

w
i

, sometimes with guarantees for the
convergence rate.

The flexibility of this Monte Carlo approach comes at a cost: without further assumptions on the
underlying input space X , it is hard to quantify the accuracy of this representation. For instance,
given two samples of the same size, {(x

i

, w
i

)}n
i=1 and {(x0

i

, w0
i

)}n
i=1, how can we tell which one is a

better representation of X? More generally, how could we optimize a representation with predefined
sample size?

There exists an alternative to the Monte Carlo approach, called Kernel Mean Embeddings (KME)
(Berlinet and Thomas-Agnan, 2004; Smola et al., 2007). It also represents random variables as
samples, but additionally defines a notion of similarity between sample points. As a result, (i) it
keeps all the advantages of the Monte Carlo scheme, (ii) it includes the Monte Carlo method as
a special case, (iii) it overcomes its pitfalls described above, and (iv) it can be tailored to focus
on different properties of X , depending on the user’s needs and prior assumptions. The KME
approach identifies both sample points and distributions with functions in an abstract Hilbert space.
Internally the latter are still represented as weighted samples, but the weights can be negative and
the straightforward Monte Carlo interpretation is no longer valid. Schölkopf et al. (2015) propose
using KMEs as approximate representation of random variables for the purpose of computing their
functions. However, they only provide theoretical justification for it in rather idealised settings, which
do not meet practical implementation requirements.

In this paper, we build on this work and provide general theoretical guarantees for the proposed esti-
mators. Specifically, we prove statements of the form “if {(x

i

, w
i

)}n
i=1 provides a good estimate for

the KME of X , then {(f(x
i

), w
i

)}n
i=1 provides a good estimate for the KME of f(X)”. Importantly,

our results do not assume joint independence of the observations x
i

(and weights w
i

). This makes
them a powerful tool. For instance, imagine we are given data {(x

i

, w
i

)}n
i=1 from a random variable

X that we need to compress. Then our theorems guarantee that, whatever compression algorithm we
use, as long as the compressed representation {(x0

j

, w0
j

)}n
j=1 still provides a good estimate for the

KME of X , the pointwise images {(f(x0
j

), w0
j

)}n
j=1 provide good estimates of the KME of f(X).

In the remainder of this section we first introduce KMEs and discuss their merits. Then we explain
why and how we extend the results of Schölkopf et al. (2015). Section 2 contains our main results. In
Section 2.1 we show consistency of the relevant estimator in a general setting, and in Section 2.2 we
provide finite sample guarantees when Matérn kernels are used. In Section 3 we show how our results
apply to functions of multiple variables, both interdependent and independent. Section 4 concludes
with a discussion.

1.1 Background on kernel mean embeddings

Let X be a measurable input space. We use a positive definite bounded and measurable kernel
k : X ⇥ X ! R to represent random variables X ⇠ P and weighted samples ˆX := {(x

i

, w
i

)}n
i=1

as two functions µk

X

and µ̂k

X

in the corresponding Reproducing Kernel Hilbert Space (RKHS) H
k

by
defining

µk

X

:=

Z
k(x, .) dP (x) and µ̂k

X

:=

X

i

w
i

k(x
i

, .) .

These are guaranteed to exist, since we assume the kernel is bounded (Smola et al., 2007). When
clear from the context, we omit the kernel k in the superscript. µ

X

is called the KME of P , but we
also refer to it as the KME of X . In this paper we focus on computing functions of random variables.
For f : X ! Z , where Z is a measurable space, and for a positive definite bounded k

z

: Z ⇥Z ! R
we also write

µk

z

f(X) :=

Z
k
z

(f(x), .) dP (x) and µ̂k

z

f(X) :=

X

i

w
i

k
z

(f(x
i

), .) . (1)

The advantage of mapping random variables X and samples ˆX to functions in the RKHS is that
we may now say that ˆX is a good approximation for X if the RKHS distance kµ̂

X

� µ
X

k is
small. This distance depends on the choice of the kernel and different kernels emphasise different
information about X . For example if on X := [a, b] ⇢ R we choose k(x, x0

) := x · x0
+ 1, then
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µ
X

(x) = E
X⇠P

[X]x+ 1. Thus any two distributions and/or samples with equal means are mapped
to the same function in H

k

so the distance between them is zero. Therefore using this particular k,
we keep track only of the mean of the distributions. If instead we prefer to keep track of all first
p moments, we may use the kernel k(x, x0

) := (x · x0
+ 1)

p. And if we do not want to loose any
information at all, we should choose k such that µk is injective over all probability measures on X .
Such kernels are called characteristic. For standard spaces, such as X = Rd, many widely used
kernels were proven characteristic, such as Gaussian, Laplacian, and Matérn kernels (Sriperumbudur
et al., 2010, 2011).

The Gaussian kernel k(x, x0
) := e�

kx�x

0k2

2�2 may serve as another good illustration of the flexibility
of this representation. Whatever positive bandwidth �2 > 0, we do not lose any information about
distributions, because k is characteristic. Nevertheless, if �2 grows, all distributions start looking the
same, because their embeddings converge to a constant function 1. If, on the other hand, �2 becomes
small, distributions look increasingly different and µ̂

X

becomes a function with bumps of height w
i

at every x
i

. In the limit when �2 goes to zero, each point is only similar to itself, so µ̂
X

reduces to
the Monte Carlo method. Choosing �2 can be interpreted as controlling the degree of smoothing in
the approximation.

1.2 Reduced set methods

An attractive feature when using KME estimators is the ability to reduce the number of ex-
pansion points (i.e., the size of the weighted sample) in a principled way. Specifically, if
ˆX 0

:= {(x0
j

, 1/N)}N
j=1 then the objective is to construct ˆX := {(x

i

, w
i

)}n
i=1 that minimises

kµ̂
X

0 � µ̂
X

k with n < N . Often the resulting x
i

are mutually dependent and the w
i

certainly
depend on them. The algorithms for constructing such expansions are known as reduced set methods
and have been studied by the machine learning community (Schölkopf and Smola, 2002, Chapter 18).

Although reduced set methods provide significant efficiency gains, their application raises certain
concerns when it comes to computing functions of random variables. Let P,Q be distributions of X
and f(X) respectively. If x0

j

⇠
i.i.d.

P , then f(x0
j

) ⇠
i.i.d.

Q and so µ̂
f(X0) =

1
N

P
j

k(f(x0
j

), .)

reduces to the commonly used
p
N -consistent empirical estimator of µ

f(X) (Smola et al., 2007).
Unfortunately, this is not the case after applying reduced set methods, and it is not known under
which conditions µ̂

f(X) is a consistent estimator for µ
f(X).

Schölkopf et al. (2015) advocate the use of reduced expansion set methods to save computational
resources. They also provide some reasoning why this should be the right thing to do for characteristic
kernels, but as they state themselves, their rigorous analysis does not cover practical reduced set
methods. Motivated by this and other concerns listed in Section 1.4, we provide a generalised analysis
of the estimator µ̂

f(X), where we do not make assumptions on how x
i

and w
i

were generated.

Before doing that, however, we first illustrate how the need for reduced set methods naturally emerges
on a concrete problem.

1.3 Illustration with functions of two random variables

Suppose that we want to estimate µ
f(X,Y ) given i.i.d. samples ˆX 0

= {x0
i

, 1/N}N
i=1 and ˆY 0

=

{y0
j

, 1/N}N
j=1 from two independent random variables X 2 X and Y 2 Y respectively. Let Q be

the distribution of Z = f(X,Y ).

The first option is to consider what we will call the diagonal estimator µ̂1 :=

1
N

P
n

i=1 kz
�
f(x0

i

, y0
i

), .
�
.

Since f(x0
i

, y0
i

) ⇠
i.i.d.

Q, µ̂1 is
p
N -consistent (Smola et al., 2007). Another option is to con-

sider the U-statistic estimator µ̂2 :=

1
N

2

P
N

i,j=1 kz
�
f(x0

i

, y0
j

), .
�
, which is also known to be

p
N -

consistent. Experiments show that µ̂2 is more accurate and has lower variance than µ̂1 (see Figure 1).
However, the U-statistic estimator µ̂2 needs O(n2

) memory rather than O(n). For this reason
Schölkopf et al. (2015) propose to use a reduced set method both on ˆX 0 and ˆY 0 to get new sam-
ples ˆX = {x

i

, w
i

}n
i=1 and ˆY = {y

j

, u
j

}n
j=1 of size n ⌧ N , and then estimate µ

f(X,Y ) using
µ̂3 :=

P
n

i,j=1 wi

u
j

k
x

(f(x
i

, y
j

), .).
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We ran experiments on synthetic data to show how accurately µ̂1, µ̂2 and µ̂3 approximate µ
f(X,Y )

with growing sample size N . We considered three basic arithmetic operations: multiplication
X · Y , division X/Y , and exponentiation XY , with X ⇠ N (3; 0.5) and Y ⇠ N (4; 0.5). As the
true embedding µ

f(X,Y ) is unknown, we approximated it by a U-statistic estimator based on a large
sample (125 points). For µ̂3, we used the simplest possible reduced set method: we randomly sampled
subsets of size n = 0.01 ·N of the x

i

, and optimized the weights w
i

and u
i

to best approximate µ̂
X

and µ̂
Y

. The results are summarised in Figure 1 and corroborate our expectations: (i) all estimators
converge, (ii) µ̂2 converges fastest and has the lowest variance, and (iii) µ̂3 is worse than µ̂2, but
much better than the diagonal estimator µ̂1. Note, moreover, that unlike the U-statistic estimator
µ̂2, the reduced set based estimator µ̂3 can be used with a fixed storage budget even if we perform
a sequence of function applications—a situation naturally appearing in the context of probabilistic
programming.

Schölkopf et al. (2015) prove the consistency of µ̂3 only for a rather limited case, when the points
of the reduced expansions {x

i

}n
i=1 and {y

i

}n
i=1 are i.i.d. copies of X and Y , respectively, and

the weights {(w
i

, u
i

)}n
i=1 are constants. Using our new results we will prove in Section 3.1 the

consistency of µ̂3 under fairly general conditions, even in the case when both expansion points and
weights are interdependent random variables.

Figure 1: Error of kernel mean estimators for basic arithmetic functions of two variables, X · Y ,
X/Y and XY , as a function of sample size N . The U -statistic estimator µ̂2 works best, closely
followed by the proposed estimator µ̂3, which outperforms the diagonal estimator µ̂1.

1.4 Other sources of non-i.i.d. samples

Although our discussion above focuses on reduced expansion set methods, there are other popular
algorithms that produce KME expansions where the samples are not i.i.d. Here we briefly discuss
several examples, emphasising that our selection is not comprehensive. They provide additional
motivation for stating convergence guarantees in the most general setting possible.

An important notion in probability theory is that of a conditional distribution, which can also be
represented using KME (Song et al., 2009). With this representation the standard laws of probability,
such as sum, product, and Bayes’ rules, can be stated using KME (Fukumizu et al., 2013). Applying
those rules results in KME estimators with strong dependencies between samples and their weights.

Another possibility is that even though i.i.d. samples are available, they may not produce the best
estimator. Various approaches, such as kernel herding (Chen et al., 2010; Lacoste-Julien et al.,
2015), attempt to produce a better KME estimator by actively generating pseudo-samples that are not
i.i.d. from the underlying distribution.

2 Main results

This section contains our main results regarding consistency and finite sample guarantees for the
estimator µ̂

f(X) defined in (1). They are based on the convergence of µ̂
X

and avoid simplifying
assumptions about its structure.
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2.1 Consistency

If k
x

is c0-universal (see Sriperumbudur et al. (2011)), consistency of µ̂
f(X) can be shown in a rather

general setting.
Theorem 1. Let X and Z be compact Hausdorff spaces equipped with their Borel �-algebras,
f : X ! Z a continuous function, k

x

, k
z

continuous kernels on X ,Z respectively. Assume k
x

is
c0-universal and that there exists C such that

P
i

|w
i

|  C independently of n. The following holds:

If µ̂k

x

X

! µk

x

X

then µ̂k

z

f(X) ! µk

z

f(X) as n ! 1.

Proof. Let P be the distribution of X and ˆP
n

=

P
n

i=1 wi

�
x

i

. Define a new kernel on X by
ek
x

(x1, x2) := k
z

�
f(x1), f(x2)

�
. X is compact and { ˆP

n

|n 2 N} [ {P} is a bounded set (in
total variation norm) of finite measures, because k ˆP

n

k
TV

=

P
n

i=1 |wi

|  C. Furthermore, k
x

is continuous and c0-universal. Using Corollary 52 of Simon-Gabriel and Schölkopf (2016) we
conclude that: µ̂k

x

X

! µk

x

X

implies that ˆP converges weakly to P . Now, k
z

and f being continuous,
so is ek

x

. Thus, if ˆP converges weakly to P , then µ̂
e
k

x

X

! µ
e
k

x

X

(Simon-Gabriel and Schölkopf, 2016,
Theorem 44, Points (1) and (iii)). Overall, µ̂k

x

X

! µk

x

X

implies µ̂e
k

x

X

! µ
e
k

x

X

. We conclude the proof
by showing that convergence in He

k

x

leads to convergence in H
k

z

:
���µ̂k

z

f(X) � µk

z

f(X)

���
2

k

z

=

���µ̂e
k

x

X

� µ
e
k

x

X

���
2

e
k

x

! 0.

For a detailed version of the above, see Appendix A.

The continuity assumption is rather unrestrictive. All kernels and functions defined on a discrete
space are continuous with respect to the discrete topology, so the theorem applies in this case. For
X = Rd, many kernels used in practice are continuous, including Gaussian, Laplacian, Matérn and
other radial kernels. The slightly limiting factor of this theorem is that k

x

must be c0-universal, which
often can be tricky to verify. However, most standard kernels—including all radial, non-constant
kernels—are c0-universal (see Sriperumbudur et al., 2011). The assumption that the input domain
is compact is satisfied in most applications, since any measurements coming from physical sensors
are contained in a bounded range. Finally, the assumption that

P
i

|w
i

|  C can be enforced, for
instance, by applying a suitable regularization in reduced set methods.

2.2 Finite sample guarantees

Theorem 1 guarantees that the estimator µ̂
f(X) converges to µ

f(X) when µ̂
X

converges to µ
X

.
However, it says nothing about the speed of convergence. In this section we provide a convergence
rate when working with Matérn kernels, which are of the form

ks
x

(x, x0
) =

2

1�s

�(s)
kx� x0ks�d/2

2 B
d/2�s

(kx� x0k2) , (2)

where B
↵

is a modified Bessel function of the third kind (also known as Macdonald function) of
order ↵, � is the Gamma function and s > d

2 is a smoothness parameter. The RKHS induced by
ks
x

is the Sobolev space W s

2 (Rd

) (Wendland, 2004, Theorem 6.13 & Chap.10) containing s-times
differentiable functions. The finite-sample bound of Theorem 2 is based on the analysis of Kanagawa
et al. (2016), which requires the following assumptions:

Assumptions 1. Let X be a random variable over X = Rd with distribution P and let ˆX =

{(x
i

, w
i

)}n
i=1 be random variables over Xn⇥Rn with joint distribution S. There exists a probability

distribution Q with full support on Rd and a bounded density, satisfying the following properties:

(i) P has a bounded density function w.r.t. Q;
(ii) there is a constant D > 0 independent of n, such that

E
S

"
1

n

nX

i=1

g2(x
i

)

#
 D kgk2L2(Q) , 8g 2 L

2
(Q) .
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These assumptions were shown to be fairly general and we refer to Kanagawa et al. (2016, Section
4.1) for various examples where they are met. Next we state the main result of this section.

Theorem 2. Let X = Rd, Z = Rd

0
, and f : X ! Z be an ↵-times differentiable function (↵ 2 N+).

Take s1 > d/2 and s2 > d0 such that s1, s2/2 2 N+. Let ks1
x

and ks2
z

be Matérn kernels over X and
Z respectively as defined in (2). Assume X ⇠ P and ˆX = {(x

i

, w
i

)}n
i=1 ⇠ S satisfy 1. Moreover,

assume that P and the marginals of x1, . . . xn

have a common compact support. Suppose that, for
some constants b > 0 and 0 < c  1/2:

(i) E
S

h
kµ̂

X

� µ
X

k2
k

s1
x

i
= O(n�2b

) ;
(ii)

P
n

i=1 w
2
i

= O(n�2c
) (with probability 1) .

Let ✓ = min(

s2
2s1

, ↵

s1
, 1) and assume ✓b� (1/2� c)(1� ✓) > 0. Then

E
S

���µ̂
f(X) � µ

f(X)

���
2

k

s2
z

�
= O

⇣
(log n)d

0
n�2 (✓b�(1/2�c)(1�✓))

⌘
. (3)

Before we provide a short sketch of the proof, let us briefly comment on this result. As a benchmark,
remember that when x1, . . . xn

are i.i.d. observations from X and ˆX = {(x
i

, 1/n)}n
i=1, we get

kµ̂
f(X) � µ

f(X)k2 = O
P

(n�1
), which was recently shown to be a minimax optimal rate (Tolstikhin

et al., 2016). How do we compare to this benchmark? In this case we have b = c = 1/2 and our rate
is defined by ✓. If f is smooth enough, say ↵ > d/2 + 1, and by setting s2 > 2s1 = 2↵, we recover
the O(n�1

) rate up to an extra (log n)d
0

factor.

However, Theorem 2 applies to much more general settings. Importantly, it makes no i.i.d. assump-
tions on the data points and weights, allowing for complex interdependences. Instead, it asks the
convergence of the estimator µ̂

X

to the embedding µ
X

to be sufficiently fast. On the downside, the
upper bound is affected by the smoothness of f , even in the i.i.d. setting: if ↵ ⌧ d/2 the rate will
become slower, as ✓ = ↵/s1. Also, the rate depends both on d and d0. Whether these are artefacts of
our proof remains an open question.

Proof. Here we sketch the main ideas of the proof and develop the details in Appendix C. Throughout
the proof, C will designate a constant that depends neither on the sample size n nor on the variable R
(to be introduced). C may however change from line to line. We start by showing that:

E
S

���µ̂k

z

f(X) � µk

z

f(X)

���
2

k

z

�
= (2⇡)

d

0
2

Z

Z
E
S

⇣
[µ̂h

f(X) � µh

f(X)](z)
⌘2

�
dz, (4)

where h is Matérn kernel over Z with smoothness parameter s2/2. Second, we upper bound the
integrand by roughly imitating the proof idea of Theorem 1 from Kanagawa et al. (2016). This
eventually yields:

E
S

⇣
[µ̂h

f(X) � µh

f(X)](z)
⌘2

�
 Cn�2⌫ , (5)

where ⌫ := ✓b� (1/2� c)(1� ✓). Unfortunately, this upper bound does not depend on z and can
not be integrated over the whole Z in (4). Denoting B

R

the ball of radius R, centred on the origin of
Z , we thus decompose the integral in (4) as:

Z

Z
E
⇣

[µ̂h

f(X) � µh

f(X)](z)
⌘2

�
dz

=

Z

B

R

E
⇣

[µ̂h

f(X) � µh

f(X)](z)
⌘2

�
dz +

Z

Z\B
R

E
⇣

[µ̂h

f(X) � µh

f(X)](z)
⌘2

�
dz.

On B
R

we upper bound the integral by (5) times the ball’s volume (which grows like Rd):
Z

B

R

E
⇣

[µ̂h

f(X) � µh

f(X)](z)
⌘2

�
dz  CRdn�2⌫ . (6)

On X\B
R

, we upper bound the integral by a value that decreases with R, which is of the form:
Z

Z\B
R

E
⇣

[µ̂h

f(X) � µh

f(X)](z)
⌘2

�
dz  Cn1�2c

(R� C 0
)

s2�2e�2(R�C

0) (7)
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with C 0 > 0 being a constant smaller than R. In essence, this upper bound decreases with R because
[µ̂h

f(X) � µh

f(X)](z) decays with the same speed as h when kzk grows indefinitely. We are now left
with two rates, (6) and (7), which respectively increase and decrease with growing R. We complete
the proof by balancing these two terms, which results in setting R ⇡ (log n)1/2.

3 Functions of Multiple Arguments

The previous section applies to functions f of one single variable X . However, we can apply its
results to functions of multiple variables if we take the argument X to be a tuple containing multiple
values. In this section we discuss how to do it using two input variables from spaces X and Y , but
the results also apply to more inputs. To be precise, our input space changes from X to X ⇥ Y , input
random variable from X to (X,Y ), and the kernel on the input space from k

x

to k
xy

.

To apply our results from Section 2, all we need is a consistent estimator µ̂(X,Y ) of the joint embedding
µ(X,Y ). There are different ways to get such an estimator. One way is to sample (x0

i

, y0
i

) i.i.d. from
the joint distribution of (X,Y ) and construct the usual empirical estimator, or approximate it using
reduced set methods. Alternatively, we may want to construct µ̂(X,Y ) based only on consistent
estimators of µ

X

and µ
Y

. For example, this is how µ̂3 was defined in Section 1.3. Below we show
that this can indeed be done if X and Y are independent.

3.1 Application to Section 1.3

Following Schölkopf et al. (2015), we consider two independent random variables X ⇠ P
x

and
Y ⇠ P

y

. Their joint distribution is P
x

⌦ P
y

. Consistent estimators of their embeddings are
given by µ̂

X

=

P
n

i=1 wi

k
x

(x
i

, .) and µ̂
Y

=

P
n

j=1 uj

k
y

(y
i

, .). In this section we show that
µ̂
f(X,Y ) =

P
n

i,j=1 wi

u
j

k
z

�
f(x

i

, y
j

), .
�

is a consistent estimator of µ
f(X,Y ).

We choose a product kernel k
xy

�
(x1, y1), (x2, y2)

�
= k

x

(x1, x2)ky(y1, y2), so the corresponding
RKHS is a tensor product H

k

xy

= H
k

x

⌦H
k

y

(Steinwart and Christmann, 2008, Lemma 4.6) and
the mean embedding of the product random variable (X,Y ) is a tensor product of their marginal
mean embeddings µ(X,Y ) = µ

X

⌦ µ
Y

. With consistent estimators for the marginal embeddings we
can estimate the joint embedding using their tensor product

µ̂(X,Y ) = µ̂
X

⌦ µ̂
Y

=

nX

i,j=1

w
i

u
j

k
x

(x
i

, .)⌦ k
y

(y
j

, .) =

nX

i,j=1

w
i

u
j

k
xy

�
(x

i

, y
j

), (. , .)
�
.

If points are i.i.d. and w
i

= u
i

= 1/n, this reduces to the U-statistic estimator µ̂2 from Section 1.3.
Lemma 3. Let (s

n

)

n

be any positive real sequence converging to zero. Suppose k
xy

= k
x

k
y

is a
product kernel, µ(X,Y ) = µ

X

⌦ µ
Y

, and µ̂(X,Y ) = µ̂
X

⌦ µ̂
Y

. Then:
(
kµ̂

X

� µ
X

k
k

x

= O(s
n

);

kµ̂
Y

� µ
Y

k
k

y

= O(s
n

)

implies
���µ̂(X,Y ) � µ(X,Y )

���
k

xy

= O(s
n

) .

Proof. For a detailed expansion of the first inequality see Appendix B.
���µ̂(X,Y ) � µ(X,Y )

���
k

xy

 kµ
X

k
k

x

kµ̂
Y

� µ
Y

k
k

y

+ kµ
Y

k
k

y

kµ̂
X

� µ
X

k
k

x

+ kµ̂
X

� µ
X

k
k

x

kµ̂
Y

� µ
Y

k
k

y

= O(s
n

) +O(s
n

) +O(s2
n

) = O(s
n

).

Corollary 4. If µ̂
X

����!
n!1

µ
X

and µ̂
Y

����!
n!1

µ
Y

, then µ̂(X,Y ) ����!
n!1

µ(X,Y ).

Together with the results from Section 2 this lets us reason about estimators resulting from applying
functions to multiple independent random variables. Write

µ̂
k

xy

XY

=

nX

i,j=1

w
i

u
j

k
xy

�
(x

i

, y
j

), .
�
=

n

2X

`=1

!
`

k
xy

(⇠
`

, .),
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where ` enumerates the (i, j) pairs and ⇠
`

= (x
i

, y
j

), !
`

= w
i

u
j

. Now if µ̂k

x

X

! µk

x

X

and µ̂
k

y

Y

! µ
k

y

Y

then µ̂
k

xy

XY

! µ
k

xy

(X,Y ) (according to Corollary 4) and Theorem 1 shows that
P

n

i,j=1 wi

u
j

k
z

�
f(x

i

, y
j

), .
�

is consistent as well. Unfortunately, we cannot apply Theorem 2 to get
the speed of convergence, because a product of Matérn kernels is not a Matérn kernel any more.

One downside of this overall approach is that the number of expansion points used for the estimation
of the joint increases exponentially with the number of arguments of f . This can lead to prohibitively
large computational costs, especially if the result of such an operation is used as an input to another
function of multiple arguments. To alleviate this problem, we may use reduced expansion set methods
before or after applying f , as we did for example in Section 1.2.

To conclude this section, let us summarize the implications of our results for two practical scenarios
that should be distinguished.

. If we have separate samples from two random variables X and Y , then our results justify
how to provide an estimate of the mean embedding of f(X,Y ) provided that X and Y are
independent. The samples themselves need not be i.i.d. — we can also work with weighted
samples computed, for instance, by a reduced set method.

. How about dependent random variables? For instance, imagine that Y = �X , and
f(X,Y ) = X + Y . Clearly, in this case the distribution of f(X,Y ) is a delta mea-
sure on 0, and there is no way to predict this from separate samples of X and Y . However,
it should be stressed that our results (consistency and finite sample bound) apply even to
the case where X and Y are dependent. In that case, however, they require a consistent
estimator of the joint embedding µ(X,Y ).

. It is also sufficient to have a reduced set expansion of the embedding of the joint distribution.
This setting may sound strange, but it potentially has significant applications. Imagine that
one has a large database of user data, sampled from a joint distribution. If we expand the
joint’s embedding in terms of synthetic expansion points using a reduced set construction
method, then we can pass on these (weighted) synthetic expansion points to a third party
without revealing the original data. Using our results, the third party can nevertheless
perform arbitrary continuous functional operations on the joint distribution in a consistent
manner.

4 Conclusion and future work

This paper provides a theoretical foundation for using kernel mean embeddings as approximate
representations of random variables in scenarios where we need to apply functions to those random
variables. We show that for continuous functions f (including all functions on discrete domains),
consistency of the mean embedding estimator of a random variable X implies consistency of the
mean embedding estimator of f(X). Furthermore, if the kernels are Matérn and the function f
is sufficiently smooth, we provide bounds on the convergence rate. Importantly, our results apply
beyond i.i.d. samples and cover estimators based on expansions with interdependent points and
weights. One interesting future direction is to improve the finite-sample bounds and extend them to
general radial and/or translation-invariant kernels.

Our work is motivated by the field of probabilistic programming. Using our theoretical results,
kernel mean embeddings can be used to generalize functional operations (which lie at the core of
all programming languages) to distributions over data types in a principled manner, by applying the
operations to the points or approximate kernel expansions. This is in principle feasible for any data
type provided a suitable kernel function can be defined on it. We believe that the approach holds
significant potential for future probabilistic programming systems.
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