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Abstract

We study a stochastic and distributed algorithm for nonconvex problems whose
objective consists of a sum of N nonconvex Li/N -smooth functions, plus a non-
smooth regularizer. The proposed NonconvEx primal-dual SpliTTing (NESTT)
algorithm splits the problem into N subproblems, and utilizes an augmented
Lagrangian based primal-dual scheme to solve it in a distributed and stochastic
manner. With a special non-uniform sampling, a version of NESTT achieves
ε-stationary solution using O((

∑N
i=1

√
Li/N)2/ε) gradient evaluations, which

can be up to O(N) times better than the (proximal) gradient descent methods.
It also achieves Q-linear convergence rate for nonconvex `1 penalized quadratic
problems with polyhedral constraints. Further, we reveal a fundamental connec-
tion between primal-dual based methods and a few primal only methods such as
IAG/SAG/SAGA.

1 Introduction
Consider the following nonconvex and nonsmooth constrained optimization problem

min
z∈Z

f(z) :=
1

N

N∑
i=1

gi(z) + g0(z) + p(z), (1.1)

where Z ⊆ Rd; for each i ∈ {0, · · · , N}, gi : Rd → R is a smooth possibly nonconvex function
which has Li-Lipschitz continuous gradient; p(z) : Rd → R is a lower semi-continuous convex but
possibly nonsmooth function. Define g(z) := 1

N

∑N
i=1 gi(z) for notational simplicity.

Problem (1.1) is quite general. It arises frequently in applications such as machine learning and sig-
nal processing; see a recent survey [7]. In particular, each smooth functions {gi}Ni=1 can represent:
1) a mini-batch of loss functions modeling data fidelity, such as the `2 loss, the logistic loss, etc;
2) nonconvex activation functions for neural networks, such as the logit or the tanh functions; 3)
nonconvex utility functions used in signal processing and resource allocation, see [4]. The smooth
function g0 can represent smooth nonconvex regularizers such as the non-quadratic penalties [2], or
the smooth part of the SCAD or MCP regularizers (which is a concave function) [26]. The convex
function p can take the following form: 1) nonsmooth convex regularizers such as `1 and `2 func-
tions; 2) an indicator function for convex and closed feasible set Z, denoted as ιZ(·); 3) convex
functions without global Lipschitz continuous gradient, such as p(z) = z4 or p(z) = 1/z+ ιz≥0(z).

In this work we solve (1.1) in a stochastic and distributed manner. We consider the setting in which
N distributed agents each having the knowledge of one smooth function {gi}Ni=1, and they are
connected to a cluster center which handles g0 and p. At any given time, a randomly selected agent
is activated and performs computation to optimize its local objective. Such distributed computation
model has been popular in large-scale machine learning and signal processing [6]. Such model
is also closely related to the (centralized) stochastic finite-sum optimization problem [1, 9, 14, 15,
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21, 22], in which each time the iterate is updated based on the gradient information of a random
component function. One of the key differences between these two problem types is that in the
distributed setting there can be disagreement between local copies of the optimization variable z,
while in the centralized setting only one copy of z is maintained.

Our Contributions. We propose a class of NonconvEx primal-dual SpliTTing (NESTT) algorithms
for problem (1.1). We split z ∈ Rd into local copies of xi ∈ Rd, while enforcing the equality
constraints xi = z for all i. That is, we consider the following reformulation of (1.1)

min
x,z∈Rd

`(x, z) :=
1

N

N∑
i=1

gi(xi) + g0(z) + h(z), s.t. xi = z, i = 1, · · · , N, (1.2)

where h(z) := ιZ(z) + p(z), x := [x1; · · · ;xN ]. Our algorithm uses the Lagrangian relaxation of
the equality constraints, and at each iteration a (possibly non-uniformly) randomly selected primal
variable is optimized, followed by an approximate dual ascent step. Note that such splitting scheme
has been popular in the convex setting [6], but not so when the problem becomes nonconvex.

The NESTT is one of the first stochastic algorithms for distributed nonconvex nonsmooth optimiza-
tion, with provable and nontrivial convergence rates. Our main contribution is given below. First,
in terms of some primal and dual optimality gaps, NESTT converges sublinearly to a point belongs
to stationary solution set of (1.2). Second, NESTT converges Q-linearly for certain nonconvex `1
penalized quadratic problems. To the best of our knowledge, this is the first time that linear conver-
gence is established for stochastic and distributed optimization of such type of problems. Third, we
show that a gradient-based NESTT with non-uniform sampling achieves an ε-stationary solution of
(1.1) using O((

∑N
i=1

√
Li/N)2/ε) gradient evaluations. Compared with the classical gradient de-

scent, which in the worst case requires O(
∑N
i=1 Li/ε) gradient evaluation to achieve ε-stationarity,

our obtained rate can be up to O(N) times better in the case where the Li’s are not equal.

Our work also reveals a fundamental connection between primal-dual based algorithms and the
primal only average-gradient based algorithm such as SAGA/SAG/IAG [5, 9, 22]. With the key
observation that the dual variables in NESTT serve as the “memory” of the past gradients, one can
specialize NESTT to SAGA/SAG/IAG. Therefore, NESTT naturally generalizes these algorithms to
the nonconvex nonsmooth setting. It is our hope that by bridging the primal-dual splitting algorithms
and primal-only algorithms (in both the convex and nonconvex setting), there can be significant
further research developments benefiting both algorithm classes.

Related Work. Many stochastic algorithms have been designed for (1.2) when it is convex. In these
algorithms the component functions gi’s are randomly sampled and optimized. Popular algorithms
include the SAG/SAGA [9, 22], the SDCA [23], the SVRG [14], the RPDG [15] and so on. When the
problem becomes nonconvex, the well-known incremental based algorithm can be used [3, 24], but
these methods generally lack convergence rate guarantees. The SGD based method has been studied
in [10], with O(1/ε2) convergence rate. Recent works [1] and [21] develop algorithms based on
SVRG and SAGA for a special case of (1.1) where the entire problem is smooth and unconstrained.
To the best of our knowledge there has been no stochastic algorithms with provable, and non-trivial,
convergence rate guarantees for solving problem (1.1). On the other hand, distributed stochastic
algorithms for solving problem (1.1) in the nonconvex setting has been proposed in [13], in which
each time a randomly picked subset of agents update their local variables. However there has been
no convergence rate analysis for such distributed stochastic scheme. There has been some recent
distributed algorithms designed for (1.1) [17], but again without global convergence rate guarantee.

Preliminaries. The augmented Lagrangian function for problem (1.1) is given by:

L (x, z;λ) =

N∑
i=1

(
1

N
gi(xi) + 〈λi, xi − z〉+

ηi
2
‖xi − z‖2

)
+ g0(z) + h(z), (1.3)

where λ := {λi}Ni=1 is the set of dual variables, and η := {ηi > 0}Ni=1 are penalty parameters.

We make the following assumptions about problem (1.1) and the function (1.3).

A-(a) The function f(z) is bounded from below over Z ∩ int(dom f): f := minz∈Z f(z) > −∞.
p(z) is a convex lower semi-continuous function; Z is a closed convex set.

A-(b) The gi’s and g have Lipschitz continuous gradients, i.e.,

‖∇g(y)−∇g(z)‖ ≤ L‖y − z‖, and ‖∇gi(y)−∇gi(z)‖ ≤ Li‖y − z‖, ∀ y, z
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Algorithm 1 NESTT-G Algorithm
1: for r = 1 to R do
2: Pick ir ∈ {1, 2, · · · , N} with probability pir and update (x, λ)

xr+1
ir

= arg min
xir

Vir (xir , z
r, λrir ) ; (2.4)

λr+1
ir

= λrir + αirηir
(
xr+1
ir
− zr

)
; (2.5)

λr+1
j = λrj , xr+1

j = zr, ∀ j 6= ir; (2.6)

Update z: zr+1 = arg min
z∈Z

L({xr+1
i }, z;λr). (2.7)

3: end for
4: Output: (zm, xm, λm) where m randomly picked from {1, 2, · · · , R}.

Clearly L ≤ 1/N
∑N
i=1 Li, and the equality can be achieved in the worst case. For sim-

plicity of analysis we will further assume that L0 ≤ 1
N

∑N
i=1 Li.

A-(c) Each ηi in (1.3) satisfies ηi > Li/N ; if g0 is nonconvex, then
∑N
i=1 ηi > 3L0.

Assumption A-(c) implies that L (x, z;λ) is strongly convex w.r.t. each xi and z, with modulus
γi := ηi − Li/N and γz =

∑N
i=1 ηi − L0, respectively [27, Theorem 2.1].

We then define the prox-gradient (pGRAD) for (1.1), which will serve as a measure of stationarity.
It can be checked that the pGRAD vanishes at the set of stationary solutions of (1.1) [20].
Definition 1.1. The proximal gradient of problem (1.1) is given by (for any γ > 0)

∇̃fγ(z) := γ
(
z − proxγp+ιZ [z − 1/γ∇(g(z) + g0(z))]

)
, with proxγp+ιZ [u] := argmin

u∈Z
p(u)+

γ

2
‖z−u‖2.

2 The NESTT-G Algorithm
Algorithm Description. We present a primal-dual splitting scheme for the reformulated problem
(1.2). The algorithm is referred to as the NESTT with Gradient step (NESTT-G) since each agent
only requires to know the gradient of each component function. To proceed, let us define the fol-
lowing function (for some constants {αi > 0}Ni=1):

Vi(xi, z;λi) =
1

N
gi(z) +

1

N
〈∇gi(z), xi − z〉+ 〈λi, xi − z〉+

αiηi
2
‖xi − z‖2.

Note that Vi(·) is related to L(·) in the following way: it is a quadratic approximation (approximated
at the point z) of L(x, y;λ) w.r.t. xi. The parameters α := {αi}Ni=1 give some freedom to the
algorithm design, and they are critical in improving convergence rates as well as in establishing
connection between NESTT-G with a few primal only stochastic optimization schemes.

The algorithm proceeds as follows. Before each iteration begins the cluster center broadcasts z to
everyone. At iteration r + 1 a randomly selected agent ir ∈ {1, 2, · · ·N} is picked, who minimizes
Vir (·) w.r.t. its local variable xir , followed by a dual ascent step for λir . The rest of the agents
update their local variables by simply setting them to z. The cluster center then minimizes L(x, z;λ)
with respect to z. See Algorithm 1 for details. We remark that NESTT-G is related to the popular
ADMM method for convex optimization [6]. However our particular update schedule (randomly
picking (xi, λi) plus deterministic updating z), combined with the special x-step (minimizing an
approximation of L(·) evaluated at a different block variable z) is not known before. These features
are critical in our following rate analysis.

Convergence Analysis. To proceed, let us define r(j) as the last iteration in which the jth block
is picked before iteration r + 1. i.e. r(j) := max{t | t < r + 1, j = i(t)}. Define yrj := zr(j) if
j 6= ir, and yrir = zr. Define the filtration Fr as the σ-field generated by {i(t)}r−1t=1 .

A few important observations are in order. Combining the (x, z) updates (2.4) – (2.7), we have

xr+1
q = zr − 1

αqηq
(λrq +

1

N
∇gq(zr)),

1

N
∇gq(zr) + λrq + αqηq(x

r+1
q − zr) = 0, with q = ir (2.8a)

λr+1
ir

= − 1

N
∇gir (zr), λr+1

j = − 1

N
∇gj(zr(j)), ∀ j 6= ir, ⇒ λr+1

i = − 1

N
∇gi(yri ), ∀ i (2.8b)

xr+1
j

(2.6)
= zr

(2.8b)
= zr − 1

αjηj
(λrj +

1

N
∇gj(zr(j))), ∀ j 6= ir. (2.8c)

3



The key here is that the dual variables serve as the “memory” for the past gradients of gi’s. To
proceed, we first construct a potential function using an upper bound of L(x, y;λ). Note that

1

N
gj(x

r+1
j ) + 〈λrj , xr+1

j − zr〉+
ηj
2
‖xr+1

j − zr‖2 =
1

N
gj(z

r), ∀ j 6= ir (2.9)

1

N
gir (xr+1

ir
) + 〈λrir , x

r+1
ir
− zr〉+

ηi
2
‖xr+1

ir
− zr‖2

(i)

≤ 1

N
gir (zr) +

ηir + Lir/N

2
‖xr+1

ir
− zr‖2

(ii)
=

1

N
gir (zr) +

ηir + Lir/N

2(αirηir )2
‖1/N(∇gir (yr−1

ir
)−∇gir (zr))‖2 (2.10)

where (i) uses (2.8b) and applies the descent lemma on the function 1/Ngi(·); in (ii) we have used
(2.5) and (2.8b). Since each i is picked with probability pi, we have

Eir [L(xr+1, zr;λr) | Fr]

≤
N∑
i=1

1

N
gi(z

r) +

N∑
i=1

pi(ηi + Li/N)

2(αiηi)2
‖1/N(∇gi(yr−1i )−∇gi(zr))‖2 + g0(zr) + h(zr)

≤
N∑
i=1

1

N
gi(z

r) +
N∑
i=1

3piηi
(αiηi)2

‖1/N(∇gi(yr−1i )−∇gi(zr))‖2 + g0(zr) + h(zr) := Qr,

where in the last inequality we have used Assumption [A-(c)]. In the following, we will use EFr [Qr]
as the potential function, and show that it decreases at each iteration.
Lemma 2.1. Suppose Assumption A holds, and pick

αi = pi = βηi, where β :=
1∑N
i=1 ηi

, and ηi ≥
9Li
Npi

, i = 1, · · ·N. (2.11)

Then the following descent estimate holds true for NESTT-G

E[Qr −Qr−1|Fr−1] ≤ −
∑N
i=1 ηi

8
Ezr‖zr − zr−1‖2 −

N∑
i=1

1

2ηi
‖ 1

N
(∇gi(zr−1)−∇gi(yr−2

i ))‖2. (2.12)

Sublinear Convergence. Define the optimality gap as the following:

E[Gr] := E
[
‖∇̃1/βf(zr)‖2

]
=

1

β2
E
[
‖zr − prox1/β

h [zr − β∇(g(zr) + g0(zr))]‖2
]
. (2.13)

Note that when h, g0 ≡ 0, E[Gr] reduces to E[‖∇g(zr)‖2]. We have the following result.
Theorem 2.1. Suppose Assumption A holds, and pick (for i = 1, · · · , N )

αi = pi =

√
Li/N∑N

i=1

√
Li/N

, ηi = 3

(
N∑
i=1

√
Li/N

)√
Li/N, β =

1

3(
∑N
i=1

√
Li/N)2

. (2.14)

Then every limit point generated by NESTT-G is a stationary solution of problem (1.2). Further,

1) E[Gm] ≤ 80

3

( N∑
i=1

√
Li/N

)2E[Q1 −QR+1]

R
;

2) E[Gm] + E

[
N∑
i=1

3η2i
∥∥xmi − zm−1

∥∥2] ≤ 80

3

(
N∑
i=1

√
Li/N

)2

E[Q1 −QR+1]

R
.

Note that Part (1) is useful in the centralized finite-sum minimization setting, as it shows the sublin-
ear convergence of NESTT-G, measured only by the primal optimality gap evaluated at zr. Mean-
while, part (2) is useful in the distributed setting, as it also shows that the expected constraint vio-
lation, which measures the consensus among agents, shrinks in the same order. We also comment
that the above result suggests that to achieve an ε-stationary solution, the NESTT-G requires about

O

((∑N
i=1

√
Li/N

)2

/ε

)
number of gradient evaluations (for simplicity we have ignored an ad-

ditive N factor for evaluating the gradient of the entire function at the initial step of the algorithm).
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Algorithm 2 NESTT-E Algorithm
1: for r = 1 to R do
2: Update z by minimizing the augmented Lagrangian:

zr+1 = arg min
z

L(xr, z;λr). (3.15)

3: Randomly pick ir ∈ {1, 2, · · ·N} with probability pir :

xr+1
ir

= argmin
xir

Uir (xir , z
r+1;λrir ); (3.16)

λr+1
ir

= λrir + αirηir
(
xr+1
ir
− zr+1) ; (3.17)

xr+1
j = xrj , λr+1

j = λrj ∀ j 6= ir. (3.18)

4: end for
5: Output: (zm, xm, λm) where m randomly picked from {1, 2, · · · , R}.

It is interesting to observe that our choice of pi is proportional to the square root of the Lipschitz
constant of each component function, rather than to Li. Because of such choice of the sampling
probability, the derived convergence rate has a mild dependency on N and Li’s. Compared with the
conventional gradient-based methods, our scaling can be up to N times better. Detailed discussion
and comparison will be given in Section 4.

Note that similar sublinear convergence rates can be obtained for the case αi = 1 for all i (with
different scaling constants). However due to space limitation, we will not present those results here.

Linear Convergence. In this section we show that the NESTT-G is capable of linear convergence
for a family of nonconvex quadratic problems, which has important applications, for example in
high-dimensional statistical learning [16]. To proceed, we will assume the following.

B-(a) Each function gi(z) is a quadratic function of the form gi(z) = 1/2zTAiz + 〈b, z〉, where
Ai is a symmetric matrix but not necessarily positive semidefinite;

B-(b) The feasible set Z is a closed compact polyhedral set;

B-(c) The nonsmooth function p(z) = µ‖z‖1, for some µ ≥ 0.
Our linear convergence result is based upon certain error bound condition around the stationary
solutions set, which has been shown in [18] for smooth quadratic problems and has been extended
to including `1 penalty in [25, Theorem 4]. Due to space limitation the statement of the condition
will be given in the supplemental material, along with the proof of the following result.

Theorem 2.2. Suppose that Assumptions A, B are satisfied. Then the sequence {E[Qr+1]}∞r=1
converges Q-linearly 4 to some Q∗ = f(z∗), where z∗ is a stationary solution for problem (1.1).
That is, there exists a finite r̄ > 0, ρ ∈ (0, 1) such that for all r ≥ r̄, E[Qr+1−Q∗]≤ ρE[Qr −Q∗].
Linear convergence of this type for problems satisfying Assumption B has been shown for (deter-
ministic) proximal gradient based methods [25, Theorem 2, 3]. To the best of our knowledge, this is
the first result that shows the same linear convergence for a stochastic and distributed algorithm.

3 The NESTT-E Algorithm

Algorithm Description. In this section, we present a variant of NESTT-G, which is named NESTT
with Exact minimization (NESTT-E). Our motivation is the following. First, in NESTT-G every
agent should update its local variable at every iteration [cf. (2.4) or (2.6)]. In practice this may not
be possible, for example at any given time a few agents can be in the sleeping mode so they cannot
perform (2.6). Second, in the distributed setting it has been generally observed (e.g., see [8, Section
V]) that performing exact minimization (whenever possible) instead of taking the gradient steps for
local problems can significantly speed up the algorithm. The NESTT-E algorithm to be presented in
this section is designed to address these issues. To proceed, let us define a new function as follows:

U(x, z;λ) :=

N∑
i=1

Ui(xi, z;λi) :=

N∑
i=1

(
1

N
gi(xi) + 〈λi, xi − z〉+

αiηi
2
‖xi − z‖2

)
.

4A sequence {xr} is said to converge Q-linearly to some x̄ if lim supr ‖xr+1 − x̄‖/‖xr − x̄‖ ≤ ρ, where
ρ ∈ (0, 1) is some constant; cf [25] and references therein.
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Note that if αi = 1 for all i, then the L(x, z;λ) = U(x, z;λ) + p(z) + h(z). The algorithm details
are presented in Algorithm 2.

Convergence Analysis. We begin analyzing NESTT-E. The proof technique is quite different from
that for NESTT-G, and it is based upon using the expected value of the Augmented Lagrangian func-
tion as the potential function; see [11, 12, 13]. For the ease of description we define the following
quantities:

w := (x, z, λ), β :=
1∑N
i=1 ηi

, ci :=
L2
i

αiηiN2
− γi

2
+

1− αi
αi

Li
N
, α := {αi}Ni=1.

To measure the optimality of NESTT-E, define the prox-gradient of L(x, z;λ) as:

∇̃L(w) =

[
(z − proxh[z −∇z(L(w)− h(z))]);∇x1L(w); · · · ;∇xNL(w)

]
∈ R(N+1)d. (3.19)

We define the optimality gap by adding to ‖∇̃L(w)‖2 the size of the constraint violation [13]:

H(wr) := ‖∇̃L(wr)‖2 +

N∑
i=1

L2
i

N2
‖xri − zr‖2.

It can be verified that H(wr) → 0 implies that wr reaches a stationary solution for problem (1.2).
We have the following theorem regarding the convergence properties of NESTT-E.
Theorem 3.1. Suppose Assumption A holds, and that (ηi, αi) are chosen such that ci < 0 . Then
for some constant f , we have

E[L(wr)] ≥ E[L(wr+1)] ≥ f > −∞, ∀ r ≥ 0.

Further, almost surely every limit point of {wr} is a stationary solution of problem (1.2). Finally,
for some function of α denoted as C(α) = σ1(α)/σ2(α), we have the following:

E[H(wm)] ≤ C(α)E[L(w1)− L(wR+1)]

R
, (3.20)

where σ1 := max(σ̂1(α), σ̃1) and σ2 := max(σ̂2(α), σ̃2), and these constants are given by

σ̂1(α) = max
i

{
4

(
L2
i

N2
+ η2i +

(
1

αi
− 1

)2
L2
i

N2

)
+ 3

(
L4
i

αiη2iN
4

+
L2
i

N2

)}
,

σ̃1 =

N∑
i=1

4η2i + (2 +

N∑
i=1

ηi + L0)2 + 3

N∑
i=1

L2
i

N2
,

σ̂2(α) = max
i

{
pi

(
γi
2
− L2

i

N2αiηi
− 1− αi

αi

Li
N

)}
, σ̃2 =

∑N
i=1 ηi − L0

2
.

We remark that the above result shows the sublinear convergence of NESTT-E to the set of stationary
solutions. Note that γi = ηi − Li/N , to satisfy ci < 0, a simple derivation yields

ηi >
Li
(

(2− αi) +
√

(αi − 2)2 + 8αi
)

2Nαi
.

Further, the above result characterizes the dependency of the rates on various parameters of the
algorithm. For example, to see the effect of α on the convergence rate, let us set pi = Li∑N

i=1 Li
,

and ηi = 3Li/N , and assume L0 = 0, then consider two different choices of α: α̂i = 1, ∀ i and
α̃i = 4, ∀ i. One can easily check that applying these different choices leads to following results:

C(α̂) = 49

N∑
i=1

Li/N, C(α̃) = 28

N∑
i=1

Li/N.

The key observation is that increasing αi’s reduces the constant in front of the rate. Hence, we
expect that in practice larger αi’s will yield faster convergence.

4 Connections and Comparisons with Existing Works
In this section we compare NESTT-G/E with a few existing algorithms in the literature. First, we
present a somewhat surprising observation, that NESTT-G takes the same form as some well-known
algorithms for convex finite-sum problems. To formally state such relation, we show in the following
result that NESTT-G in fact admits a compact primal-only characterization.
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Table 1: Comparison of # of gradient evaluations for NESTT-G and GD in the worst case
NESTT-G GD

# of Gradient Evaluations O
(

(
∑N
i=1

√
Li/N)2/ε

)
O
(∑N

i=1 Li/ε
)

Case I: Li = 1, ∀i O(N/ε) O(N/ε)

Case II : O(
√
N) terms with Li = N

the rest with Li = 1
O(N/ε) O(N3/2/ε)

Case III : O(1) terms with Li = N2

the rest with Li = 1
O(N/ε) O(N2/ε)

Proposition 4.1. The NESTT-G can be written into the following compact form:

zr+1 = arg min
z

h(z) + g0(z) +
1

2β
‖z − ur+1‖2 (4.21a)

with ur+1 := zr − β
( 1

Nαir
(∇gir (zr)−∇gir (yr−1

ir
)) +

1

N

N∑
i=1

∇gi(yr−1
i )

)
. (4.21b)

Based on this observation, the following comments are in order.
(1) Suppose h ≡ 0, g0 ≡ 0 and αi = 1, pi = 1/N for all i. Then (4.21) takes the same form as the

SAG presented in [22]. Further, when the component functions gi’s are picked cyclically in a
Gauss-Seidel manner, the iteration (4.21) takes the same form as the IAG algorithm [5].

(2) Suppose h 6= 0 and g0 6= 0, and αi = pi = 1/N for all i. Then (4.21) is the same as the SAGA
algorithm [9], which is design for optimizing convex nonsmooth finite sum problems.

Note that SAG/SAGA/IAG are all designed for convex problems. Through the lens of primal-dual
splitting, our work shows that they can be generalized to nonconvex nonsmooth problems as well.

Secondly, NESTT-E is related to the proximal version of the nonconvex ADMM [13, Algorithm 2].
However, the introduction of αi’s is new, which can significantly improve the practical performance
but complicates the analysis. Further, there has been no counterpart of the sublinear and linear
convergence rate analysis for the stochastic version of [13, Algorithm 2].

Thirdly, we note that a recent paper [21] has shown that SAGA works for smooth and unconstrained
nonconvex problem. Suppose that h ≡ 0, g0 6= 0, Li = Lj , ∀ i, j and αi = pi = 1/N , the au-
thors show that SAGA achieves ε-stationarity using O(N2/3(

∑N
i=1 Li/N)/ε) gradient evaluations.

Compared with GD, which achieves ε-stationarity using O(
∑N
i=1 Li/ε) gradient evaluations in the

worse case (in the sense that
∑N
i=1 Li/N = L), the rate in [21] is O(N1/3) times better. How-

ever, the algorithm in [21] is different from NESTT-G in two aspects: 1) it does not generalize to
the nonsmooth constrained problem (1.1); 2) it samples two component functions at each iteration,
while NESTT-G only samples once. Further, the analysis and the scaling are derived for the case of
uniform Li’s, therefore it is not clear how the algorithm and the rates can be adapted for the non-
uniform case. On the other hand, our NESTT works for the general nonsmooth constrained setting.
The non-uniform sampling used in NESTT-G is well-suited for problems with non-uniform Li’s,
and our scaling can be up to N times better than GD (or its proximal version) in the worst case.
Note that problems with non-uniform Li’s for the component functions are common in applications
such as sparse optimization and signal processing. For example in LASSO problem the data matrix
is often normalized by feature (or “column-normalized” [19]), therefore the `2 norm of each row of
the data matrix (which corresponds to the Lipschitz constant for each component function) can be
dramatically different.

In Table 1 we list the comparison of the number of gradient evaluations for NESTT-G and GD, in
the worst case (in the sense that

∑N
i=1 Li/N = L). For simplicity, we omitted an additive constant

of O(N) for computing the initial gradients.

5 Numerical Results
In this section we evaluate the performance of NESTT. Consider the high dimensional regression
problem with noisy observation [16], where M observations are generated by y = Xν + ε. Here
y ∈ RM is the observed data sample; X ∈ RM×P is the covariate matrix; ν ∈ RP is the ground
truth, and ε ∈ RM is the noise. Suppose that the covariate matrix is not perfectly known, i.e., we
observe A = X + W where W ∈ RM×P is the noise matrix with known covariance matrix ΣW .
Let us define Γ̂ := 1/M(A>A) − ΣW , and γ̂ := 1/M(A>y). To estimate the ground truth ν, let
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Figure 1: Comparison of NESTT-G/E, SAGA, SGD on problem (5.22). The x-axis denotes the number of

passes of the dataset. Left: Uniform Sampling pi = 1/N ; Right: Non-uniform Sampling (pi =

√
Li/N∑N

i=1

√
Li/N

).

Table 2: Optimality gap ‖∇̃1/βf(zr)‖2 for different algorithms, with 100 passes of the datasets.
SGD NESTT-E (α = 10) NESTT-G SAGA

N Uniform Non-Uni Uniform Non-Uni Uniform Non-Uni Uniform Non-Uni
10 3.4054 0.2265 2.6E-16 6.16E-19 2.3E-21 6.1E-24 2.7E-17 2.8022
20 0.6370 6.9087 2.4E-9 5.9E-9 1.2E-10 2.9E-11 7.7E-7 11.3435
30 0.2260 0.1639 3.2E-6 2.7E-6 4.5E-7 1.4E-7 2.5E-5 0.1253
40 0.0574 0.3193 5.8E-4 8.1E-5 1.8E-5 3.1E-5 4.1E-5 0.7385
50 0.0154 0.0409 8.3E.-4 7.1E-4 1.2E-4 2.7E-4 2.5E-4 3.3187

us consider the following (nonconvex) optimization problem posed in [16, problem (2.4)] (where
R > 0 controls sparsity):

min
z

z>Γ̂z − γ̂z s.t. ‖z‖1 ≤ R. (5.22)

Due to the existence of noise, Γ̂ is not positive semidefinite hence the problem is not convex. Note
that this problem satisfies Assumption A– B, then by Theorem 2.2 NESTT-G converges Q-linearly.

To test the performance of the proposed algorithm, we generate the problem following similar setups
as [16]. Let X = (X1; · · · , XN ) ∈ RM×P with

∑
iNi = M and each Xi ∈ RNi×P corresponds

to Ni data points, and it is generated from i.i.d Gaussian. Here Ni represents the size of each mini-
batch of samples. Generate the observations yi = Xi×ν∗+εi ∈ RNi , where ν∗ is aK-sparse vector
to be estimated, and εi ∈ RNi is the random noise. Let W = [W1; · · · ;WN ], with Wi ∈ RNi×P

generated with i.i.d Gaussian. Therefore we have z>Γ̂z = 1
N

∑N
i=1

N
M z>

(
X>i Xi −W>i Wi

)
z.

We set M = 100, 000, P = 5000, N = 50, K = 22 ≈
√
P ,and R = ‖ν∗‖1. We implement

NESTT-G/E, the SGD, and the nonconvex SAGA proposed in [21] with stepsize β = 1
3LmaxN2/3

(with Lmax := maxi Li). Note that the SAGA proposed in [21] only works for the unconstrained
problems with uniform Li, therefore when applied to (5.22) it is not guaranteed to converge. Here
we only include it for comparison purposes.

In Fig. 1 we compare different algorithms in terms of the gap ‖∇̃1/βf(zr)‖2. In the left figure
we consider the problem with Ni = Nj for all i, j, and we show performance of the proposed
algorithms with uniform sampling (i.e., the probability of picking ith block is pi = 1/N ). On the
right one we consider problems in which approximately half of the component functions have twice
the size of Li’s as the rest, and consider the non-uniform sampling (pi =

√
Li/N/

∑N
i=1

√
Li/N ).

Clearly in both cases the proposed algorithms perform quite well. Furthermore, it is clear that the
NESTT-E performs well with large α := {αi}Ni=1, which confirms our theoretical rate analysis. Also
it is worth mentioning that when the Ni’s are non-uniform, the proposed algorithms [NESTT-G and
NESTT-E (with α = 10)] significantly outperform SAGA and SGD. In Table 2 we further compare
different algorithms when changing the number of component functions (i.e., the number of mini-
batches N ) while the rest of the setup is as above. We run each algorithm with 100 passes over
the dataset. Similarly as before, our algorithms perform well, while SAGA seems to be sensitive to
the uniformity of the size of the mini-batch [note that there is no convergence guarantee for SAGA
applied to the nonconvex constrained problem (5.22)].
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