
A Probabilistic Programming Approach To
Probabilistic Data Analysis

Feras Saad
MIT Probabilistic Computing Project

fsaad@mit.edu

Vikash Mansinghka
MIT Probabilistic Computing Project

vkm@mit.edu

Abstract
Probabilistic techniques are central to data analysis, but different approaches can
be challenging to apply, combine, and compare. This paper introduces composable
generative population models (CGPMs), a computational abstraction that extends
directed graphical models and can be used to describe and compose a broad class
of probabilistic data analysis techniques. Examples include discriminative machine
learning, hierarchical Bayesian models, multivariate kernel methods, clustering
algorithms, and arbitrary probabilistic programs. We demonstrate the integration
of CGPMs into BayesDB, a probabilistic programming platform that can express
data analysis tasks using a modeling definition language and structured query
language. The practical value is illustrated in two ways. First, the paper describes
an analysis on a database of Earth satellites, which identifies records that probably
violate Kepler’s Third Law by composing causal probabilistic programs with non-
parametric Bayes in 50 lines of probabilistic code. Second, it reports the lines of
code and accuracy of CGPMs compared with baseline solutions from standard
machine learning libraries.

1 Introduction

Probabilistic techniques are central to data analysis, but can be difficult to apply, combine, and
compare. Such difficulties arise because families of approaches such as parametric statistical modeling,
machine learning and probabilistic programming are each associated with different formalisms and
assumptions. The contributions of this paper are (i) a way to address these challenges by defining
CGPMs, a new family of composable probabilistic models; (ii) an integration of this family into
BayesDB [10], a probabilistic programming platform for data analysis; and (iii) empirical illustrations
of the efficacy of the framework for analyzing a real-world database of Earth satellites.

We introduce composable generative population models (CGPMs), a computational formalism that
generalizes directed graphical models. CGPMs specify a table of observable random variables with
a finite number of columns and countably infinitely many rows. They support complex intra-row
dependencies among the observables, as well as inter-row dependencies among a field of latent random
variables. CGPMs are described by a computational interface for generating samples and evaluating
densities for random variables derived from the base table by conditioning and marginalization. This
paper shows how to package discriminative statistical learning techniques, dimensionality reduction
methods, arbitrary probabilistic programs, and their combinations, as CGPMs. We also describe
algorithms and illustrate new syntaxes in the probabilistic Metamodeling Language for building
composite CGPMs that can interoperate with BayesDB.

The practical value is illustrated in two ways. First, we describe a 50-line analysis that identifies
satellite data records that probably violate their theoretical orbital characteristics. The BayesDB script
builds models that combine non-parametric Bayesian structure learning with a causal probabilistic
program that implements a stochastic variant of Kepler’s Third Law. Second, we illustrate coverage
and conciseness of the CGPM abstraction by quantifying the improvement in accuracy and reduction
in lines of code achieved on a representative data analysis task.

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

2 Composable Generative Population Models

A composable generative population model represents a data generating process for an exchangeable
sequence of random vectors (x1,x2, . . .), called a population. Each member xr is T -dimensional,
and element x[r,t] takes values in an observation space Xt, for t ∈ [T] and r ∈ N. A CGPM G is
formally represented by a collection of variables that characterize the data generating process:

G = (α,θ,Z = {zr : r ∈ N},X = {xr : r ∈ N},Y = {yr : r ∈ N}).
• α: Known, fixed quantities about the population, such as metadata and hyperparameters.

• θ: Population-level latent variables relevant to all members of the population.

• zr = (z[r,1], . . . z[r,L]): Member-specific latent variables that govern only member r directly.

• xr = (x[r,1], . . . x[r,T]): Observable output variables for member r. A subset of these variables
may be observed and recorded in a dataset D.

• yr = (y[r,1], . . . y[r,I]): Input variables, such as “feature vectors” in a purely discriminative model.

A CGPM is required to satisfy the following conditional independence constraint:
∀r 6= r′ ∈ N,∀t, t′ ∈ [T] : x[r,t] ⊥⊥ x[r′,t′] | {α,θ, zr, zr′}. (1)

Eq (1) formalizes the notion that all dependencies across members r ∈ N are completely mediated
by the population parameters θ and member-specific variables zr. However, elements x[r,i] and x[r,j]
within a member are generally free to assume any dependence structure. Similarly, the member-
specific latents in Z may be either uncoupled or highly-coupled given population parameters θ.
CGPMs differ from the standard mathematical definition of a joint density in that they are defined in
terms of a computational interface (Listing 1). As computational objects, they explicitly distinguish
between the sampler for the random variables from their joint distribution, and the assessor of their
joint density. In particular, a CGPM is required to sample/assess the joint distribution of a subset of
output variables x[r,Q] conditioned on another subset x[r,E], and marginalizing over x[r,[T]\(Q∪E)].

Listing 1 Computational interface for composable generative population models.

• s← simulate (G, member: r, query: Q = {qk}, evidence : x[r,E], input : yr)
Generate a sample from the distribution s ∼G x[r,Q]|{x[r,E],yr,D}.

• c← logpdf (G, member: r, query : x[r,Q], evidence : x[r,E], input : yr)
Evaluate the log density log pG(x[r,Q]|{x[r,E],yr,D}).

• G′ ← incorporate (G, measurement : x[r,t] or yr)
Record a measurement x[r,t] ∈ Xt (or yr) into the dataset D.

• G′ ← unincorporate (G, member : r)
Eliminate all measurements of input and output variables for member r.

• G′ ← infer (G, program : T)
Adjust internal latent state in accordance with the learning procedure specified by program T .

2.1 Primitive univariate CGPMs and their statistical data types

The statistical data type (Figure 1) of a population variable xt generated by a CGPM provides a
more refined taxonomy than its “observation space” Xt. The (parameterized) support of a statistical
type is the set in which samples from simulate take values. Each statistical type is also associated
with a base measure which ensures logpdf is well-defined. In high-dimensional populations with
heterogeneous types, logpdf is taken against the product measure of these base measures. The
statistical type also identifies invariants that the variable maintains. For instance, the values of a
NOMINAL variable are permutation-invariant. Figure 1 shows statistical data types provided by the
Metamodeling Language from BayesDB. The final column shows some examples of primitive CGPMs
that are compatible with each statistical type; they implement logpdf directly using univariate
probability density functions, and algorithms for simulate are well known [4]. For infer their
parameters may be fixed, or learned from data using, e.g., maximum likelihood [2, Chapter 7] or
Bayesian priors [5]. We refer to an extended version of this paper [14, Section 3] for using these
primitives to implement CGPMs for a broad collection of model classes, including non-parametric
Bayes, nearest neighbors, PCA, discriminative machine learning, and multivariate kernel methods.

2

Statistical Data Type Parameters Support Measure/σ-Algebra Primitive CGPM

BINARY - {0, 1} (#, 2{0,1}) BERNOULLI
NOMINAL symbols: S {0 . . . S−1} (#, 2[S]) CATEGORICAL
COUNT/RATE base: b {0, 1

b
, 2
b
, . . .} (#, 2N) POISSON, GEOMETRIC

CYCLIC period: p (0, p) (λ,B(R)) VON-MISES
MAGNITUDE – (0,∞) (λ,B(R)) LOGNORMAL, EXPON
NUMERICAL – (−∞,∞) (λ,B(R)) NORMAL
NUMERICAL-RANGED low: l, high:h (l, h) ⊂ R (λ,B(R)) BETA, NORMAL-TRUNC

Fr
eq

ue
nc

y

Nominal

Categorical

Count

Poisson
Geometric

Magnitude

Lognormal
Exponential

Cyclic

Von-Mises

Numerical

Normal

Numerical-Ranged

NormalTrunc
Beta

Figure 1: Statistical data types for population variables generated by CGPMs available in the
BayesDB Metamodeling Language, and samples from their marginal distributions.

2.2 Implementing general CGPMs as probabilistic programs in VentureScript

In this section, we show how to implement simulate and logpdf (Listing 1) for composable gener-
ative models written in VentureScript [8], a probabilistic programming language with programmable
inference. For simplicity, this section assumes a stronger conditional independence constraint,

∃l, l′ ∈ [L] such that (r, t) 6= (r′, t′) =⇒ x[r,t] ⊥⊥ x[r′,t′] | {α,θ, z[r,l], z[r′,l′],yr,y′r}. (2)

In words, for every observable element x[r,t], there exists a latent variable z[r,l] which (in addition
to θ) mediates all coupling with other variables in the population. The member latents Z may still
exhibit arbitrary dependencies. The approach for simulate and logpdf described below is based
on approximate inference in tagged subparts of the Venture trace, which carries a full realization
of all random choices (population and member-specific latent variables) made by the program. The
runtime system carries a set of K traces {(θk,Zk)}Kk=1 sampled from an approximate posterior
pG(θ,Z|D). These traces are assigned weights depending on the user-specified evidence x[r,E] in
the simulate/logpdf function call. G represents the CGPM as a probabilistic program, and the
input yr and latent variables Zk are treated as ambient quantities in θk. The distribution of interest is

pG(x[r,Q]|x[r,E],D) =

∫
θ

pG(x[r,Q]|x[r,E],θ,D)pG(θ|x[r,E],D)dθ

=

∫
θ

pG(x[r,Q]|x[r,E],θ,D)

(
pG(x[r,E]|θ,D)pG(θ|D)

pG(x[r,E]|D)

)
dθ (3)

≈ 1∑K
k=1 w

k

K∑
k=1

pG(x[r,Q]|x[r,E],θ
k,D)wk where θk ∼G |D. (4)

The weight wk = pG(x[r,E]|θk,D) of trace θk is the likelihood of the evidence. The weighting
scheme (4) is a computational trade-off avoiding the requirement to run posterior inference on
population parameters θ for a query about member r. It suffices to derive the distribution for only θk,

pG(x[r,Q]|x[r,E],θ
k,D) =

∫
zk
r

pG(x[r,Q], z
k
r |x[r,E],θ

k,D)dzkr (5)

=

∫
zk
r

∏
q∈Q

(
pG(x[r,q]|zkr ,θk)

)
pG(z

k
r |x[r,E],θ

k,D)dzkr ≈
1

J

J∑
j=1

∏
q∈Q

pG(x[r,q]|zk,jr ,θk), (6)

where zk,jr ∼G |{x[r,E],θ
k,D}. Eq (5) suggests that simulate can be implemented by sampling

(x[r,Q], z
k
r) ∼G |{x[r,E],θ

k,D} from the joint local posterior, then returning elements x[r,Q]. Eq (6)
shows that logpdf can be implemented by first sampling the member latents zkr ∼G |{x[r,E],θ

k,D}
from the local posterior; using the conditional independence constraint (2), the query x[r,Q] then
factors into a product of density terms for each element x[r,q].

3

To aggregate over {θk}Kk=1, for simulate the runtime obtains the queried sample by first drawing
k ∼ CATEGORICAL({w1, . . . , wK}), then returns the sample x[r,Q] drawn from trace θk. Similarly,
logpdf is computed using the weighted Monte Carlo estimator (6). Algorithms 2a and 2b summarize
implementations of simulate and logpdf in a general probabilistic programming environment.

Algorithm 2a simulate for CGPMs in a probabilistic programming environment.

1: function SIMULATE(G, r, Q, x[r,E],yr)
2: for k = 1, . . . ,K do . for each trace k
3: if zk

r 6∈ Zk then . if member r has unknown local latents
4: zk

r ∼G |{θk,Zk,D} . sample them from the prior
5: wk ←

∏
e∈E pG(x[r,e]|θ

k,zk
r) . weight the trace by likelihood of evidence

6: k ∼ CATEGORICAL ({w1, . . . , wk}) . importance resample the traces
7: {x[r,Q],z

k
r } ∼G |{θk,Zk,D ∪ {yr,x[r,E]}} . run a transition operator leaving target invariant

8: return x[r,Q] . select query variables from the resampled trace

Algorithm 2b logpdf for CGPMs in a probabilistic programming environment.

1: function LOGPDF(G, r, x[r,Q], x[r,E],yr)
2: for k = 1, . . . ,K do . for each trace k
3: Run steps 2 through 5 from Algorithm 2a . retrieve the trace weight
4: for j = 1, . . . , J do . obtain J samples of latents in scope of member r
5: zk,j

r ∼G |{θk,Zk,D ∪ {yr,x[r,E]}} . run a transition operator leaving target invariant
6: hk,j ←

∏
q∈Q pG(x[r,q]|θ

k,zk,j
r) . compute the density estimate

7: rk ← 1
J

∑J
j=1 h

k,j . aggregate density estimates by simple Monte Carlo
8: qk ← rkwk . importance weight the estimate
9: return log

(∑K
k=1 q

k
)
− log

(∑K
k=1 w

k
)

. weighted importance sampling over all traces

2.3 Inference in a composite network of CGPMs

This section shows how CGPMs are composed by applying the output of one to the input of another.
This allows us to build complex probabilistic models out of simpler primitives directly as software.
Section 3 demonstrates surface-level syntaxes in the Metamodeling Language for constructing these
composite structures. We report experiments including up to three layers of composed CGPMs.

Let Ga be a CGPM with output xa
∗ and input ya

∗ , and Gb have output xb
∗ and input yb

∗ (the symbol ∗
indexes all members r ∈ N). The composition GbB ◦ GaA applies the subset of outputs xa

[∗,A] of Ga to
the inputs yb

[∗,B] of Gb, where |A| = |B| and the variables are type-matched (Figure 1). This operation
results in a new CGPM Gc with output xa

∗ ∪ xb
∗ and input ya

∗ ∪ yb
[∗,\B]. In general, a collection

{Gk : k ∈ [K]} of CGPMs can be organized into a generalized directed graph G[K], which itself is a
CGPM. Node k is an “internal” CGPM Gk, and the labeled edge aA → bB denotes the composition
GaA ◦ GbB. The directed acyclic edge structure applies only to edges between elements of different
CGPMs in the network; elements xk[∗,i], x

k
[∗,j] within Gk may satisfy the more general constraint (1).

Algorithms 3a and 3b show sampling-importance-resampling and ratio-likelihood weighting algo-
rithms that combine simulate and logpdf from each individual Gk to compute queries against
network G[K]. The symbol πk = {(p, t) : xp[∗,t] ∈ y

k
∗} refers to the set of all output elements from

upstream CGPMs connected to the inputs of Gk, so that {πk : k ∈ [K]} encodes the graph adjacency
matrix. Subroutine 3c generates a full realization of all unconstrained variables, and weights forward
samples from the network by the likelihood of constraints. Algorithm 3b is based on ratio-likelihood
weighting (both terms in line 6 are computed by unnormalized importance sampling) and admits an
analysis with known error bounds when logpdf and simulate of each Gk are exact [7].
Algorithm 3a simulate in a directed acyclic network of CGPMs.

1: function SIMULATE(Gk, r,Qk,xk
[r,Ek],y

k
r , for k ∈ [K])

2: for j = 1, . . . , J do . generate J importance samples
3: (sj , wj)←WEIGHTED-SAMPLE ({xk

[r,Ek] : k ∈ [K]}) . retrieve jth weighted sample

4: m← CATEGORICAL ({w1, . . . , wJ}) . resample by importance weights
5: return {xk

[r,Qk] ∈ sm : k ∈ [K]} . return query variables from the selected sample

4

Algorithm 3b logpdf in a directed acyclic network of CGPMs.

1: function SIMULATE(Gk, r,xk
Q,x

k
[r,Ek],y

k
r , for k ∈ [K])

2: for j = 1, . . . , J do . generate J importance samples
3: (sj , wj)← WEIGHTED-SAMPLE ({xk

[r,Qk∪Ek] : k ∈ [K]}) . joint density of query/evidence

4: for j = 1, . . . , J ′ do . generate J ′ importance samples
5: (s′j , w′j)← WEIGHTED-SAMPLE ({xk

[r,Ek] : k ∈ [K]}) . marginal density of evidence

6: return log
(∑

[J] w
j/
∑

[J′] w
′j
)
− log(J/J ′) . return likelihood ratio importance estimate

Algorithm 3c Weighted forward sampling in a directed acyclic network of CGPMs.

1: function WEIGHTED-SAMPLE (constraints: xk
[r,Ck], for k ∈ [K])

2: (s, logw)← (∅, 0) . initialize empty sample with zero weight
3: for k ∈ TOPOSORT ({π1, . . . , πK}) do . topologically sort CGPMs using adjacency matrix
4: ỹk

r ← yk
r ∪ {xp[r,t] ∈ s : (p, t) ∈ πk} . retrieve required inputs at node k

5: logw← logw + logpdf (Gk, r,xk
[r,Ck],∅, ỹ

k
r) . update weight by likelihood of constraint

6: xk
[r,\Ck]← simulate (Gk, r, \Ck,xk

[r,Ck], ỹ
k
r) . simulate unconstrained nodes

7: s← s ∪ xk
[r,Ck∪\Ck] . append all node values to sample

8: return (s, w) . return the overall sample and its weight

3 Analyzing satellites using CGPMs built from causal probabilistic
programs, discriminative machine learning, and Bayesian
non-parametrics

This section outlines a case study applying CGPMs to a database of 1163 satellites maintained by
the Union of Concerned Scientists [12]. The dataset contains 23 numerical and categorical features
of each satellite such as its material, functional, physical, orbital and economic characteristics. The
list of variables and examples of three representative satellites are shown in Table 1. A detailed
study of this database using BayesDB provided in [10]. Here, we compose the baseline CGPM
in BayesDB, CrossCat [9], a non-parametric Bayesian structure learner for high dimensional data
tables, with several CGPMs: a classical physics model written in VentureScript, a random forest
classifier, factor analysis, and an ordinary least squares regressor. These composite models allow us
to identify satellites that probably violate their orbital mechanics (Figure 2), as well as accurately
infer the anticipated lifetimes of new satellites (Figure 3). We refer to [14, Section 6] for several
more experiments on a broader set of data analysis tasks, as well as comparisons to baseline machine
learning solutions.

Name International Space Station AAUSat-3 Advanced Orion 5 (NRO L-32, USA 223)
Country of Operator Multinational Denmark USA
Operator Owner NASA/Multinational Aalborg University National Reconnaissance Office (NRO)
Users Government Civil Military
Purpose Scientific Research Technology Development Electronic Surveillance
Class of Orbit LEO LEO GEO
Type of Orbit Intermediate NaN NaN
Perigee km 401 770 35500
Apogee km 422 787 35500
Eccentricity 0.00155 0.00119 0
Period minutes 92.8 100.42 NaN
Launch Mass kg NaN 0.8 5000
Dry Mass kg NaN NaN NaN
Power watts NaN NaN NaN
Date of Launch 36119 41330 40503
Anticipated Lifetime 30 1 NaN
Contractor Boeing Satellite Systems/Multinational Aalborg University National Reconnaissance Laboratory
Country of Contractor Multinational Denmark USA
Launch Site Baikonur Cosmodrome Satish Dhawan Space Center Cape Canaveral
Launch Vehicle Proton PSLV Delta 4 Heavy
Source Used for Orbital Data www.satellitedebris.net 12/12 SC - ASCR SC - ASCR
longitude radians of geo NaN NaN 1.761037215
Inclination radians 0.9005899 1.721418241 0

Table 1: Variables in the satellite population, and three representative satellites. The records are
multivariate, heterogeneously typed, and contain arbitrary patterns of missing data.

5

1 CREATE TABLE satellites_ucs FROM 'satellites.csv';
2 CREATE POPULATION satellites FOR satellites_ucs WITH SCHEMA (GUESS STATTYPES FOR (*));
3
4 CREATE METAMODEL satellites_hybrid FOR satellites WITH BASELINE CROSSCAT (
5
6 OVERRIDE GENERATIVE MODEL FOR type_of_orbit
7 GIVEN apogee_km, perigee_km, period_minutes, users, class_of_orbit
8 USING RANDOM_FOREST (num_categories = 7);
9

10 OVERRIDE GENERATIVE MODEL FOR launch_mass_kg, dry_mass_kg, power_watts, perigee_km, apogee_km
11 USING FACTOR_ANALYSIS (dimensionality = 2);
12
13 OVERRIDE GENERATIVE MODEL FOR period_minutes
14 AND EXPOSE kepler_cluster_id CATEGORICAL, kepler_noise NUMERICAL
15 GIVEN apogee_km, perigee_km USING VENTURESCRIPT (program = '
16 define dpmm_kepler = () -> { // Definition of DPMM Kepler model program.
17 assume keplers_law = (apogee, perigee) -> {
18 (GM, earth_radius) = (398600, 6378);
19 a = .5*(abs(apogee) + abs(perigee)) + earth_radius;
20 2 * pi * sqrt(a**3 / GM) / 60 };
21 // Latent variable priors.
22 assume crp_alpha = gamma(1,1);
23 assume cluster_id_sampler = make_crp(crp_alpha);
24 assume noise_sampler = mem((cluster) -> make_nig_normal(1, 1, 1, 1));
25 // Simulator for latent variables (kepler_cluster_id and kepler_noise).
26 assume sim_cluster_id = mem((rowid, apogee, perigee) -> {
27 cluster_id_sampler() #rowid:1 });
28 assume sim_noise = mem((rowid, apogee, perigee) -> {
29 cluster_id = sim_cluster_id(rowid, apogee, perigee);
30 noise_sampler(cluster_id)() #rowid:2 });
31 // Simulator for observable variable (period_minutes).
32 assume sim_period = mem((rowid, apogee, perigee) -> {
33 keplers_law(apogee, perigee) + sim_noise(rowid, apogee, perigee) });
34 assume outputs = [sim_period, sim_cluster_id, sim_noise]; // List of output variables.
35 };
36 // Procedures for observing the output variables.
37 define obs_cluster_id = (rowid, apogee, perigee, value, label) -> {
38 $label: observe sim_cluster_id($rowid, $apogee, $perigee) = atom(value); };
39 define obs_noise = (rowid, apogee, perigee, value, label) -> {
40 $label: observe sim_noise($rowid, $apogee, $perigee) = value; };
41 define obs_period = (rowid, apogee, perigee, value, label) -> {
42 theoretical_period = run(sample keplers_law($apogee, $perigee));
43 obs_noise(rowid, apogee, perigee, value - theoretical_period, label); };
44 define observers = [obs_period, obs_cluster_id, obs_noise]; // List of observer procedures.
45 define inputs = ["apogee", "perigee"]; // List of input variables.
46 define transition = (N) -> { default_markov_chain(N) }; // Transition operator.
47 '));
48 INITIALIZE 10 MODELS FOR satellites_hybrid;
49 ANALYZE satellites_hybrid FOR 100 ITERATIONS;
50 INFER name, apogee_km, perigee_km, period_minutes, kepler_cluster_id, kepler_noise FROM satellites;

0 10000 20000 30000 40000

Perigee [km]

0

1000

2000

3000

4000

5000

P
er

io
d

[m
in

s]

Orion6

Geotail

Meridian4

Amos5

NavStar

Clusters Identified by Kepler CGPM

Cluster 1
Cluster 2
Cluster 3
Cluster 4
Theoretically
Feasible Orbits

1e-10 1e-5 1e0 1e5 1e10
Magntiude of Deviation from Keplerś Law [mins2]

20

21

22

23

24

25

26

27

28

N
um

be
r

of
S

at
el

lit
es

Orion6

Geotail

Meridian4Amos5

Empirical Distribution of Orbital Deviations

Negligible
Noticeable
Large
Extreme

Figure 2: A session in BayesDB to detect satellites whose orbits are likely violations of
Kepler’s Third Law using a causal composable generative population model written in
VentureScript. The dpmm_kepler CGPM (line 17) learns a DPMM on the residuals of each
satellite’s deviation from its theoretical orbit. Both the cluster identity and inferred noise are
exposed latent variables (line 14). Each dot in the scatter plot (left) is a satellite in the population,
and its color represents the latent cluster assignment learned by dpmm_kepler. The histogram
(right) shows that each of the four detected clusters roughly translates to a qualitative description
of the deviation: yellow (negligible), magenta (noticeable), green (large), and blue (extreme).

6

1 CREATE TABLE data_train FROM 'sat_train.csv';
2 .nullify data_train 'NaN';
3
4 CREATE POPULATION satellites FOR data_train
5 WITH SCHEMA(
6 GUESS STATTYPES FOR (*)
7);
8
9 CREATE METAMODEL crosscat_ols FOR satellites

10 WITH BASELINE CROSSCAT(
11 OVERRIDE GENERATIVE MODEL FOR
12 anticipated_lifetime
13 GIVEN
14 type_of_orbit, perigee_km, apogee_km,
15 period_minutes, date_of_launch,
16 launch_mass_kg
17 USING LINEAR_REGRESSION
18);
19
20 INITIALIZE 4 MODELS FOR crosscat_ols;
21 ANALYZE crosscat_ols FOR 100 ITERATION WAIT;
22
23 CREATE TABLE data_test FROM 'sat_test.csv';
24 .nullify data_test 'NaN';
25 .sql INSERT INTO data_train
26 SELECT * FROM data_test;
27
28 CREATE TABLE predicted_lifetime AS
29 INFER EXPLICIT
30 PREDICT anticipated_lifetime
31 CONFIDENCE prediction_confidence
32 FROM satellites WHERE _rowid_ > 1000;

(a) Full session in BayesDB which loads the
training and test sets, creates a hybrid CGPM,
and runs the regression using CrossCat+OLS.

def dummy_code_categoricals(frame, maximum=10):

def dummy_code_categoricals(series):
categories = pd.get_dummies(

series, dummy_na=1)
if len(categories.columns) > maximum-1:

return None
if sum(categories[np.nan]) == 0:

del categories[np.nan]
categories.drop(

categories.columns[-1], axis=1,
inplace=1)

return categories

def append_frames(base, right):
for col in right.columns:

base[col] = pd.DataFrame(right[col])

numerical = frame.select_dtypes([float])
categorical = frame.select_dtypes([object])

categorical_coded = filter(
lambda s: s is not None,
[dummy_code_categoricals(categorical[c])

for c in categorical.columns])

joined = numerical

for sub_frame in categorical_coded:
append_frames(joined, sub_frame)

return joined

(b) Ad-hoc Python routine (used by baselines)
for coding nominal predictors in a dataframe
with missing values and mixed data types.

101 102

Lines of Code

100

101

102

M
ea

n
S

qu
ar

ed
E

rr
or ridge

ols
lasso
kernel
forest
bayesdb(crosscat+ols)
bayesdb(crosscat)

Figure 3: In a high-dimensional regression problem with mixed data types and missing data,
the composite CGPM improves prediction accuracy over purely generative and purely discrim-
inative baselines. The task is to infer the anticipated lifetime of a held-out satellite given categorical
and numerical features such as type of orbit, launch mass, and orbital period. As feature vectors in
the test set have missing entries, purely discriminative models (ridge, lasso, OLS) either heuristically
impute missing features, or ignore the features and predict the anticipated lifetime using the mean
in the training set. The purely generative model (CrossCat) can impute missing features from their
joint distribution, but only indirectly mediates dependencies between the predictors and response
through latent variables. The composite CGPM (CrossCat+OLS) in panel (a) combines advantages
of both approaches; statistical imputation followed by regression on the features leads to improved
predictive accuracy. The reduced code size is a result of using SQL, BQL, & MML, for preprocessing,
model-building and predictive querying, as opposed to collections of ad-hoc scripts such as panel (b).

Figure 2 shows the MML program for constructing the hybrid CGPM on the satellites population. In
terms of the compositional formalism from Section 2.3, the CrossCat CGPM (specified by the MML
BASELINE keyword) learns the joint distribution of variables at the “root” of the network (i.e., all
variables from Table 1 which do not appear as arguments to an MML OVERRIDE command). The
dpmm_kepler CGPM in line 16 of the top panel in Figure 2 accepts apogee_km and perigee_km
as input variables y = (A,P), and produces as output the period_minutes x = (T). These
variables characterize the elliptical orbit of a satellite and are constrained by the relationships
e = (A− P)/(A+ P) and T = 2π

√
((A+ P)/2))3/GM where e is the eccentricity andGM

7

is a physical constant. The program specifies a stochastic version of Kepler’s Law using a Dirichlet
process mixture model for the distribution over errors (between the theoretical and observed period),

P ∼ DP(α,NORMAL-INVERSE-GAMMA(m,V, a, b)), (µr, σ
2
r)|P ∼ P

εr|{µr, σ
2
r ,yr} ∼ NORMAL(·|µr, σ

2
r), where εr := Tr − KEPLER(Ar, Pr).

The lower panels of Figure 2 illustrate how the dpmm_kepler CGPM clusters satellites based on the
magnitude of the deviation from their theoretical orbits; the variables (deviation, cluster identity, etc)
in these figures are obtained from the BQL query on line 50. For instance, the satellite Orion6 shown
in the right panel of Figure 2, belongs to a component with “extreme” deviation. Further investigation
reveals that Orion6 has a recorded period 23.94 minutes, most likely a data entry error for the true
period of 24 hours (1440 minutes); we have reported such errors to the maintainers of the database.

The data analysis task in Figure 3 is to infer the anticipated_lifetime xr of a new satellite, given
a set of features yr such as its type_of_orbit and perigee_km. A simple OLS regressor with
normal errors is used for the response pGols(xr|yr). The CrossCat baseline learns a joint generative
model for the covariates pGcrosscat(yr). The composite CGPM crosscat_ols built Figure 3 (left
panel) thus carries the full joint distribution over the predictors and response pG(xr,yr), leading to
more accurate predictions. Advantages of this hybrid approach are further discussed in the figure.

4 Related Work and Discussion

This paper has shown that it is possible to use a computational formalism in probabilistic programming
to uniformly apply, combine, and compare a broad class of probabilistic data analysis techniques.
By integrating CGPMs into BayesDB [10] and expressing their compositions in the Metamodeling
Language, we have shown it is possible to combine CGPMs synthesized by automatic model discovery
[9] with custom probabilistic programs, which accept and produce multivariate inputs and outputs,
into coherent joint probabilistic models. Advantages of this hybrid approach to modeling and inference
include combining the strengths of both generative and discriminative techniques, as well as savings
in code complexity from the uniformity of the CGPM interface.

While our experiments have constructed CGPMs using VentureScript and Python implementations,
the general probabilistic programming interface of CGPMs makes it possible for BayesDB to interact
with a variety systems such as BUGS [15], Stan [1], BLOG [11], Figaro [13], and others. Each of
these systems provides varying levels of model expressiveness and inference capabilities, and can
be used to be construct domain-specific CGPMs with different performance properties based on
the data analysis task on hand. Moreover, by expressing the data analysis tasks in BayesDB using
the model-independent Bayesian Query Language [10, Section 3], CGPMs can be queried without
necessarily exposing their internal structures to end users. Taken together, these characteristics help
illustrate the broad utility of the BayesDB probabilistic programming platform and architecture [14,
Section 5], which in principle can be used to create and query novel combinations of black-box
machine learning, statistical modeling, computer simulation, and probabilistic generative models.

Our applications have so far focused on CGPMs for analyzing populations from standard multivariate
statistics. A promising area for future work is extending the computational abstraction of CGPMs,
as well as the Metamodeling and Bayesian Query Languages, to cover analysis tasks in other
domains such longitudinal populations [3], statistical relational settings [6], or natural language
processing and computer vision. Another extension, important in practice, is developing alternative
compositional algorithms for querying CGPMs (Section 2.3). The importance sampling strategy used
for compositional simulate and logpdf may only be feasible when the networks are shallow and
the constituent CGPMs are fairly noisy; better Monte Carlo strategies or perhaps even variational
strategies may be needed for deeper networks. Additional future work for composite CGPMs include
(i) algorithms for jointly learning the internal parameters of each individual CGPM, using, e.g.,
imputations from its parents, and (ii) new meta-algorithms for structure learning among a collection
of compatible CGPMs, in a similar spirit to the non-parametric divide-and-conquer method from [9].

We hope the formalisms in this paper lead to practical, unifying tools for data analysis that integrate
these ideas, and provide abstractions that enable the probabilistic programming community to
collaboratively explore these research directions.

8

References
[1] B. Carpenter, A. Gelman, M. Hoffman, D. Lee, B. Goodrich, M. Betancourt, M. A. Brubaker,

J. Guo, P. Li, and A. Riddell. Stan: A probabilistic programming language. J Stat Softw, 2016.

[2] G. Casella and R. Berger. Statistical Inference. Duxbury advanced series in statistics and
decision sciences. Thomson Learning, 2002.

[3] M. Davidian and D. M. Giltinan. Nonlinear models for repeated measurement data, volume 62.
CRC press, 1995.

[4] L. Devroye. Sample-based non-uniform random variate generation. In Proceedings of the 18th
conference on Winter simulation, pages 260–265. ACM, 1986.

[5] D. Fink. A compendium of conjugate priors. 1997.

[6] N. Friedman, L. Getoor, D. Koller, and A. Pfeffer. Learning probabilistic relational models. In
Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence, IJCAI 99,
Stockholm, Sweden, July 31 - August 6, 1999. 2 Volumes, 1450 pages, pages 1300–1309, 1999.

[7] D. Koller and N. Friedman. Probabilistic graphical models: principles and techniques. MIT
press, 2009.

[8] V. Mansinghka, D. Selsam, and Y. Perov. Venture: a higher-order probabilistic programming
platform with programmable inference. CoRR, abs/1404.0099, 2014.

[9] V. Mansinghka, P. Shafto, E. Jonas, C. Petschulat, M. Gasner, and J. B. Tenenbaum. Crosscat:
A fully bayesian nonparametric method for analyzing heterogeneous, high dimensional data.
arXiv preprint arXiv:1512.01272, 2015.

[10] V. Mansinghka, R. Tibbetts, J. Baxter, P. Shafto, and B. Eaves. Bayesdb: A probabilistic program-
ming system for querying the probable implications of data. arXiv preprint arXiv:1512.05006,
2015.

[11] B. Milch, B. Marthi, S. Russell, D. Sontag, D. L. Ong, and A. Kolobov. 1 blog: Probabilistic
models with unknown objects. Statistical relational learning, page 373, 2007.

[12] U. of Concerned Scientists. UCS Satellite Database, 2015.

[13] A. Pfeffer. Figaro: An object-oriented probabilistic programming language. Charles River
Analytics Technical Report, 137, 2009.

[14] F. Saad and V. Mansinghka. Probabilistic data analysis with probabilistic programming. arXiv
preprint arXiv:1608.05347, 2016.

[15] D. J. Spiegelhalter, A. Thomas, N. G. Best, W. Gilks, and D. Lunn. Bugs: Bayesian inference
using gibbs sampling. Version 0.5,(version ii) http://www. mrc-bsu. cam. ac. uk/bugs, 19, 1996.

9

