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Abstract

Estimators of information theoretic measures such as entropy and mutual infor-
mation are a basic workhorse for many downstream applications in modern data
science. State of the art approaches have been either geometric (nearest neighbor
(NN) based) or kernel based (with a globally chosen bandwidth). In this paper, we
combine both these approaches to design new estimators of entropy and mutual
information that outperform state of the art methods. Our estimator uses local
bandwidth choices of k-NN distances with a finite k, independent of the sample
size. Such a local and data dependent choice improves performance in practice, but
the bandwidth is vanishing at a fast rate, leading to a non-vanishing bias. We show
that the asymptotic bias of the proposed estimator is universal; it is independent of
the underlying distribution. Hence, it can be precomputed and subtracted from the
estimate. As a byproduct, we obtain a unified way of obtaining both kernel and
NN estimators. The corresponding theoretical contribution relating the asymptotic
geometry of nearest neighbors to order statistics is of independent mathematical
interest.

1 Introduction

Unsupervised representation learning is one of the major themes of modern data science; a common
theme among the various approaches is to extract maximally “informative" features via information-
theoretic metrics (entropy, mutual information and their variations) – the primary reason for the
popularity of information theoretic measures is that they are invariant to one-to-one transformations
and that they obey natural axioms such as data processing. Such an approach is evident in many
applications, as varied as computational biology [11], sociology [20] and information retrieval [17],
with the citations representing a mere smattering of recent works. Within mainstream machine
learning, a systematic effort at unsupervised clustering and hierarchical information extraction is
conducted in recent works of [25, 23]. The basic workhorse in all these methods is the computation
of mutual information (pairwise and multivariate) from i.i.d. samples. Indeed, sample-efficient
estimation of mutual information emerges as the central scientific question of interest in a variety
of applications, and is also of fundamental interest to statistics, machine learning and information
theory communities.

While these estimation questions have been studied in the past three decades (and summarized in [28]),
the renewed importance of estimating information theoretic measures in a sample-efficient manner
is persuasively argued in a recent work [2], where the authors note that existing estimators perform
poorly in several key scenarios of central interest (especially when the high dimensional random
variables are strongly related to each other). The most common estimators (featured in scientific
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software packages) are nonparametric and involve k nearest neighbor (NN) distances between the
samples. The widely used estimator of mutual information is the one by Kraskov and Stögbauer and
Grassberger [10] and christened the KSG estimator (nomenclature based on the authors, cf. [2]) –
while this estimator works well in practice (and performs much better than other approaches such as
those based on kernel density estimation procedures), it still suffers in high dimensions. The basic
issue is that the KSG estimator (and the underlying differential entropy estimator based on nearest
neighbor distances by Kozachenko and Leonenko (KL) [9]) does not take advantage of the fact that
the samples could lie in a smaller dimensional subspace (more generally, manifold) despite the high
dimensionality of the data itself. Such lower dimensional structures effectively act as boundaries,
causing the estimator to suffer from what is known as boundary biases.

Ameliorating this deficiency is the central theme of recent works [3, 2, 16], each of which aims
to improve upon the classical KL (differential) entropy estimator of [9]. A local SVD is used
to heuristically improve the density estimate at each sample point in [2], while a local Gaussian
density (with empirical mean and covariance weighted by NN distances) is heuristically used for
the same purpose in [16]. Both these approaches, while inspired and intuitive, come with no
theoretical guarantees (even consistency) and from a practical perspective involve delicate choice
of key hyper parameters. An effort towards a systematic study is initiated in [3] which connects the
aforementioned heuristic efforts of [2, 16] to the local log-likelihood density estimation methods
[6, 15] from theoretical statistics.

The local density estimation method is a strong generalization of the traditional kernel density
estimation methods, but requires a delicate normalization which necessitates the solution of certain
integral equations (cf. Equation (9) of [15]). Indeed, such an elaborate numerical effort is one of the
key impediments for the entropy estimator of [3] to be practically valuable. A second key impediment
is that theoretical guarantees (such as consistency) can only be provided when the bandwidth is chosen
globally (leading to poor sample complexity in practice) and consistency requires the bandwidth h
to be chosen such that nhd → ∞ and h → 0, where n is the sample size and d is the dimension
of the random variable of interest. More generally, it appears that a systematic application of local
log-likelihood methods to estimate functionals of the unknown density from i.i.d. samples is missing
in the theoretical statistics literature (despite local log-likelihood methods for regression and density
estimation being standard textbook fare [29, 14]). We resolve each of these deficiencies in this paper
by undertaking a comprehensive study of estimating the (differential) entropy and mutual information
from i.i.d. samples using sample dependent bandwidth choices (typically fixed k-NN distances). This
effort allows us to connect disparate threads of ideas from seemingly different arenas: NN methods,
local log-likelihood methods, asymptotic order statistics and sample-dependent heuristic, but inspired,
methods for mutual information estimation suggested in the work of [10].

Main Results: We make the following contributions.

1. Density estimation: Parameterizing the log density by a polynomial of degree p, we derive
simple closed form expressions for the local log-likelihood maximization problem for the
cases of p ≤ 2 for arbitrary dimensions, with Gaussian kernel choices. This derivation, posed
as an exercise in [14, Exercise 5.2], significantly improves the computational efficiency
upon similar endeavors in the recent efforts of [3, 16, 26].

2. Entropy estimation: Using resubstitution of the local density estimate, we derive a simple
closed form estimator of the entropy using a sample dependent bandwidth choice (of k-NN
distance, where k is a fixed small integer independent of the sample size): this estimator
outperforms state of the art entropy estimators in a variety of settings. Since the bandwidth
is data dependent and vanishes too fast (because k is fixed), the estimator has a bias, which
we derive a closed form expression for and show that it is independent of the underlying
distribution and hence can be easily corrected: this is our main theoretical contribution, and
involves new theorems on asymptotic statistics of nearest neighbors generalizing classical
work in probability theory [19], which might be of independent mathematical interest.

3. Generalized view: We show that seemingly very different approaches to entropy estimation
– recent works of [2, 3, 16] and the classical work of fixed k-NN estimator of Kozachenko and
Leonenko [9] – can all be cast in the local log-likelihood framework as specific kernel and
sample dependent bandwidth choices. This allows for a unified view, which we theoretically
justify by showing that resubstitution entropy estimation for any kernel choice using fixed
k-NN distances as bandwidth involves a bias term that is independent of the underlying
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distribution (but depends on the specific choice of kernel and parametric density family).
Thus our work is a strict mathematical generalization of the classical work of [9].

4. Mutual Information estimation: The inspired work of [10] constructs a mutual information
estimator that subtly altered (in a sample dependent way) the three KL entropy estimation
terms, leading to superior empirical performance. We show that the underlying idea behind
this change can be incorporated in our framework as well, leading to a novel mutual
information estimator that combines the two ideas and outperforms state of the art estimators
in a variety of settings.

In the rest of this paper we describe these main results, the sections organized in roughly the same
order as the enumerated list.

2 Local likelihood density estimation (LLDE)

Given n i.i.d. samples X1, . . . , Xn, estimating the unknown density fX(·) in Rd is a very basic
statistical task. Local likelihood density estimators [15, 6] constitute state of the art and are specified
by a weight function K : Rd → R (also called a kernel), a degree p ∈ Z+ of the polynomial
approximation, and the bandwidth h ∈ R, and maximizes the local log-likelihood:

Lx(f) =

n∑
j=1

K

(
Xj − x
h

)
log f(Xj)− n

∫
K

(
u− x
h

)
f(u) du , (1)

where maximization is over an exponential polynomial family, locally approximating f(u) near x:

loge fa,x(u) = a0 + 〈a1, u− x〉+ 〈u− x, a2(u− x)〉+ · · ·+ ap[u− x, u− x, . . . , u− x] , (2)

parameterized by a = (a0, . . . , ap) ∈ R1×d×d2×···×dp , where 〈·, ·〉 denotes the inner-product and
ap[u, . . . , u] the p-th order tensor projection. The local likelihood density estimate (LLDE) is defined
as f̂n(x) = fâ(x),x(x) = eâ0(x), where â(x) ∈ arg maxa Lx(fa,x). The maximizer is represented
by a series of nonlinear equations, and does not have a closed form in general. We present below a
few choices of the degrees and the weight functions that admit closed form solutions. Concretely, for
p = 0, it is known that LDDE reduces to the standard Kernel Density Estimator (KDE) [15]:

f̂n(x) =
1

n

n∑
i=1

K

(
x−Xi

h

)/∫
K

(
u− x
h

)
du . (3)

If we choose the step function K(u) = I(‖u‖ ≤ 1) with a local and data-dependent choice of the
bandwidth h = ρk,x where ρk,x is the k-NN distance from x, then the above estimator recovers the
popular k-NN density estimate as a special case, namely, for Cd = πd/2/Γ(d/2 + 1),

f̂n(x) =
1
n

∑n
i=1 I(‖Xi − x‖ ≤ ρk,x)

Vol{u ∈ Rd : ‖u− x‖ ≤ ρk,x}
=

k

nCd ρdk,x
. (4)

For higher degree local likelihood, we provide simple closed form solutions and provide a proof
in Section D. Somewhat surprisingly, this result has eluded prior works [16, 26] and [3] which
specifically attempted the evaluation for p = 2. Part of the subtlety in the result is to critically
use the fact that the parametric family (eg., the polynomial family in (2)) need not be normalized
themselves; the local log-likelihood maximization ensures that the resulting density estimate is
correctly normalized so that it integrates to 1.
Proposition 2.1. [14, Exercise 5.2] For a degree p ∈ {1, 2}, the maximizer of local likelihood (1)

admits a closed form solution, when using the Gaussian kernel K(u) = e−
‖u‖2

2 . In case of p = 1,

f̂n(x) =
S0

n(2π)d/2hd
exp

{
−1

2

1

S2
0

‖S1‖2
}
, (5)

where S0 ∈ R and S1 ∈ Rd are defined for given x ∈ Rd and h ∈ R as

S0 ≡
n∑
j=1

e−
‖Xj−x‖

2

2h2 , S1 ≡
n∑
j=1

1

h
(Xj − x) e−

‖Xj−x‖
2

2h2 . (6)

3



In case of p = 2, for S0 and S1 defined as above,

f̂n(x) =
S0

n(2π)d/2hd|Σ|1/2
exp

{
− 1

2

1

S2
0

ST1 Σ−1S1

}
, (7)

where |Σ| is the determinant and S2 ∈ Rd×d and Σ ∈ Rd×d are defined as

S2 ≡
n∑
j=1

1

h2
(Xj − x)(Xj − x)T e−

‖Xj−x‖
2

2h2 , Σ ≡ S0S2 − S1S
T
1

S2
0

, (8)

where it follows from Cauchy-Schwarz that Σ is positive semidefinite.

One of the major drawbacks of the KDE and k-NN methods is the increased bias near the boundaries.
LLDE provides a principled approach to automatically correct for the boundary bias, which takes
effect only for p ≥ 2 [6, 21]. This explains the performance improvement for p = 2 in the figure
below (left panel), and the gap increases with the correlation as boundary effect becomes more
prominent. We use the proposed estimators with p ∈ {0, 1, 2} to estimate the mutual information
between two jointly Gaussian random variables with correlation r, from n = 500 samples, using
resubstitution methods explained in the next sections. Each point is averaged over 100 instances.

In the right panel, we generate i.i.d. samples from a 2-dimensional Gaussian with correlation 0.9, and
found local approximation f̂(u− x∗) around x∗ denoted by the blue ∗ in the center. Standard k-NN
approach fits a uniform distribution over a circle enclosing k = 20 nearest neighbors (red circle). The
green lines are the contours of the degree-2 polynomial approximation with bandwidth h = ρ20,x.
The figure illustrates that k-NN method suffers from boundary effect, where it underestimates the
probability by over estimating the volume in (4). However, degree-2 LDDE is able to correctly
capture the local structure of the pdf, correcting for boundary biases.

Despite the advantages of the LLDE, it requires the bandwidth to be data independent and vanishingly
small (sublinearly in sample size) for consistency almost everywhere – both of these are impediments
to practical use since there is no obvious systematic way of choosing these hyperparameters. On the
other hand, if we restrict our focus to functionals of the density, then both these issues are resolved:
this is the focus of the next section where we show that the bandwidth can be chosen to be based on
fixed k-NN distances and the resulting universal bias easily corrected.
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Î
)2

]

X1

X2

Figure 1: The boundary bias becomes less significant and the gap closes as correlation decreases for
estimating the mutual information (left). Local approximation around the blue ∗ in the center. The
degree-2 local likelihood approximation (contours in green) automatically captures the local structure
whereas the standard k-NN approach (uniform distribution in red circle) fails (left).

3 k-LNN Entropy Estimator

We consider resubstitution entropy estimators of the form Ĥ(x) = −(1/n)
∑n
i=1 log f̂n(Xi) and

propose to use the local likelihood density estimator in (7) and a choice of bandwidth that is local
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(varying for each point x) and adaptive (based on the data). Concretely, we choose, for each sample
point Xi, the bandwidth hXi to be the the distance to its k-th nearest neighbor ρk,i. Precisely, we
propose the following k-Local Nearest Neighbor (k-LNN) entropy estimator of degree-2:

Ĥ
(n)
kLNN(X) = − 1

n

n∑
i=1

{
log

S0,i

n(2π)d/2ρdk,i|Σi|1/2
− 1

2

1

S2
0,i

ST1,iΣ
−1
i S1,i

}
−Bk,d , (9)

where subtracting Bk,d defined in Theorem 1 removes the asymptotic bias, and k ∈ Z+ is the only
hyper parameter determining the bandwidth. In practice k is a small integer fixed to be in the range
4 ∼ 8. We only use the dlog ne nearest subset of samples Ti = {j ∈ [n] : j 6= i and ‖Xi −Xj‖ ≤
ρdlogne,i} in computing the quantities below:

S0,i ≡
∑

j∈Ti,m

e
−
‖Xj−Xi‖

2

2ρ2
k,i , S1,i ≡

∑
j∈Ti,m

1

ρk,i
(Xj −Xi)e

−
‖Xj−Xi‖

2

2ρ2
k,i ,

S2,i ≡
∑

j∈Ti,m

1

ρ2k,i
(Xj −Xi)(Xj −Xi)

T e
−
‖Xj−Xi‖

2

2ρ2
k,i , Σi ≡

S0,iS2,i − S1,iS
T
1,i

S2
0,i

. (10)

The truncation is important for computational efficiency, but the analysis works as long as m =
O(n1/(2d)−ε) for any positive ε that can be arbitrarily small. For a larger m, for example of Ω(n),
those neighbors that are further away have a different asymptotic behavior. We show in Theorem 1
that the asymptotic bias is independent of the underlying distribution and hence can be precomputed
and removed, under mild conditions on a twice continuously differentiable pdf f(x) (cf. Lemma 3.1
below).
Theorem 1. For k ≥ 3 and X1, X2, . . . , Xn ∈ Rd are i.i.d. samples from a twice continuously
differentiable pdf f(x), then

lim
n→∞

E[Ĥ
(n)
kLNN(X)] = H(X) , (11)

where Bk,d in (9) is a constant that only depends on k and d. Further, if E[(log f(X))2] <∞ then
the variance of the proposed estimator is bounded by Var[Ĥ

(n)
kLNN(X)] = O((log n)2/n).

This proves the L1 and L2 consistency of the k-LNN estimator; we relegate the proof to Section F
for ease of reading the main part of the paper. The proof assumes Ansatz 1 (also stated in Section F),
which states that a certain exchange of limit holds. As noted in [18], such an assumption is common
in the literature on consistency of k-NN estimators, where it has been implicitly assumed in existing
analyses of entropy estimators including [9, 5, 12, 27], without explicitly stating that such assumptions
are being made. Our choice of a local adaptive bandwidth hXi = ρk,i is crucial in ensuring that
the asymptotic bias Bk,d does not depend on the underlying distribution f(x). This relies on a
fundamental connection to the theory of asymptotic order statistics made precise in Lemma 3.1,
which also gives the explicit formula for the bias below.

The main idea is that the empirical quantities used in the estimate (10) converge in large n limit to
similar quantities defined over order statistics. We make this intuition precise in the next section.
We define order statistics over i.i.d. standard exponential random variables E1, E2, . . . , Em and i.i.d.
random variables ξ1, ξ2, . . . , ξm drawn uniformly (the Haar measure) over the unit sphere in Rd, for
a variable m ∈ Z+. We define for α ∈ {0, 1, 2},

S̃(m)
α ≡

m∑
j=1

ξ
(α)
j

(
∑j
`=1E`)

α

(
∑k
`=1E` )α

exp

{
−

(
∑j
`=1E` )2

2(
∑k
`=1E` )2

}
, (12)

where ξ(0)j = 1, ξ(1)j = ξj ∈ Rd, and ξ(2)j = ξjξ
T
j ∈ Rd×d, and let S̃α = limm→∞ S̃

(m)
α and

Σ̃ = (1/S̃0)2(S̃0S̃2 − S̃1S̃
T
1 ). We show that the limiting S̃α’s are well-defined (in the proof of

Theorem 1) and are directly related to the bias terms in the resubstitution estimator of entropy:

Bk,d = E[ log(

k∑
`=1

E`) +
d

2
log 2π − logCd − log S̃0 +

1

2
log
∣∣Σ̃∣∣+ (

1

2S̃2
0

S̃T1 Σ̃−1S̃1) ] . (13)
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In practice, we propose using a fixed small k such as five. For k ≤ 3 the estimator has a very large
variance, and numerical evaluation of the corresponding bias also converges slowly. For some typical
choices of k, we provide approximate evaluations below, where 0.0183(±6) indicates empirical mean
µ = 183× 10−4 with confidence interval 6× 10−4. In these numerical evaluations, we truncated
the summation at m = 50, 000. Although we prove that Bk,d converges in m, in practice, one can
choose m based on the number of samples and Bk,d can be evaluated for that m.

Theoretical contribution: Our key technical innovation is a fundamental connection between nearest
neighbor statistics and asymptotic order statistics, stated below as Lemma 3.1: we show that the
(normalized) distances ρ`,i’s jointly converge to the standardized uniform order statistics and the
directions (Xj` −Xi)/‖Xj` −Xi‖’s converge to independent uniform distribution (Haar measure)
over the unit sphere.

k
4 5 6 7 8 9

d
1 -0.0183(±6) -0.0233(±6) -0.0220(±4) -0.0200(±4) -0.0181(±4) -0.0171(±3)
2 -0.1023(±5) -0.0765(±4) -0.0628(±4) -0.0528(±3) -0.0448(±3) -0.0401(±3)

Table 1: Numerical evaluation of Bk,d, via sampling 1, 000, 000 instances for each pair (k, d).

Conditioned on Xi = x, the proposed estimator uses nearest neighbor statistics on Z`,i ≡ Xj` − x
where Xj` is the `-th nearest neighbor from x such that Z`,i = ((Xj` − Xi)/‖Xj` − Xi‖)ρ`,i.
Naturally, all the techniques we develop in this paper generalize to any estimators that depend on the
nearest neighbor statistics {Z`,i}i,`∈[n] – and the value of such a general result is demonstrated later
(in Section 4) when we evaluate the bias in similarly inspired entropy estimators [2, 3, 16, 9].
Lemma 3.1. Let E1, E2, . . . , Em be i.i.d. standard exponential random variables and ξ1, ξ2, . . . , ξm
be i.i.d. random variables drawn uniformly over the unit (d− 1)-dimensional sphere in d dimensions,
independent of the Ei’s. Suppose f is twice continuously differentiable and x ∈ Rd satisfies that
there exists ε > 0 such that f(a) > 0, ‖∇f(a)‖ = O(1) and ‖Hf (a)‖ = O(1) for any ‖a− x‖ < ε.
Then for any m = O(log n), we have the following convergence conditioned on Xi = x:

lim
n→∞

dTV((cdnf(x))1/d(Z1,i, . . . , Zm,i ) , ( ξ1E
1/d
1 , . . . , ξm(

m∑
`=1

E`)
1/d )) = 0 . (14)

where dTV(·, ·) is the total variation and cd is the volume of unit Euclidean ball in Rd.

Empirical contribution: Numerical experiments suggest that the proposed estimator outperforms
state-of-the-art entropy estimators, and the gap increases with correlation. The idea of using k-NN
distance as bandwidth for entropy estimation was originally proposed by Kozachenko and Leonenko
in [9], and is a special case of the k-LNN method we propose with degree 0 and a step kernel. We
refer to Section 4 for a formal comparison. Another popular resubstitution entropy estimator is to
use KDE in (3) [7], which is a special case of the k-LNN method with degree 0, and the Gaussian
kernel is used in simulations. As comparison, we also study a new estimator [8] based on von Mises
expansion (as opposed to simple re-substitution) which has an improved convergence rate in the large
sample regime. We relegate simulation results to Section. B in the appendix.

4 Universality of the k-LNN approach

In this section, we show that Theorem 1 holds universally for a general family of entropy estimators,
specified by the choice of k ∈ Z+, degree p ∈ Z+, and a kernel K : Rd → R, thus allowing a unified
view of several seemingly disparate entropy estimators [9, 2, 3, 16]. The template of the entropy
estimator is the following: given n i.i.d. samples, we first compute the local density estimate by
maximizing the local likelihood (1) with bandwidth ρk,i, and then resubstitute it to estimate entropy:
Ĥ

(n)
k,p,K(X) = −(1/n)

∑n
i=1 log f̂n(Xi).

Theorem 2. For the family of estimators described above, under the hypotheses of Theorem 1, if
the solution to the maximization â(x) = arg maxa Lx(fa,x) exists for all x ∈ {X1, . . . , Xn}, then
for any choice of k ≥ p+ 1, p ∈ Z+, and K : Rd → R, the asymptotic bias is independent of the
underlying distribution:

lim
n→∞

E[Ĥ
(n)
k,p,K(X)] = H(X) + B̃k,p,K,d , (15)
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for some constant B̃k,d,p,K that only depends on k, p,K and d.

We provide a proof in Section G. Although in general there is no simple analytical characterization of
the asymptotic bias B̃k,p,K,d it can be readily numerically computed: since B̃k,p,K,d is independent
of the underlying distribution, one can run the estimator over i.i.d. samples from any distribution and
numerically approximate the bias for any choice of the parameters. However, when the maximization
â(x) = arg maxa Lx(fa,x) admits a closed form solution, as is the case with proposed k-LNN, then
B̃k,p,K,d can be characterized explicitly in terms of uniform order statistics.

This family of estimators is general: for instance, the popular KL estimator is a special case with
p = 0 and a step kernel K(u) = I(‖u‖ ≤ 1). [9] showed (in a remarkable result at the time)
that the asymptotic bias is independent of the dimension d and can be computed exactly to be
log n−ψ(n)+ψ(k)− log k and ψ(k) is the digamma function defined as ψ(x) = Γ−1(x)dΓ(x)/dx.
The dimension independent nature of this asymptotic bias term (of O(n−1/2) for d = 1 in [24,
Theorem 1] and O(n−1/d) for general d in [4]) is special to the choice of p = 0 and the step kernel;
we explain this in detail in Section G, later in the paper. Analogously, the estimator in [2] can be
viewed as a special case with p = 0 and an ellipsoidal step kernel.

5 k-LNN Mutual information estimator

Given an entropy estimator ĤKL, mutual information can be estimated: Î3KL = ĤKL(X) +

ĤKL(Y )− ĤKL(X,Y ). In [10], Kraskov and Stögbauer and Grassberger introduced ÎKSG(X;Y )
by coupling the choices of the bandwidths. The joint entropy is estimated in the usual way, but for the
marginal entropy, instead of using kNN distances from {Xj}, the bandwidth hXi = ρk,i(X,Y ) is
chosen, which is the k nearest neighbor distance from (Xi, Yi) for the joint data {(Xj , Yj)}. Consider
Î3LNN(X;Y ) = ĤkLNN(X) + ĤkLNN(Y ) − ĤkLNN(X,Y ). Inspired by [10], we introduce the
following novel mutual information estimator we denote by ÎLNN−KSG(X;Y ). where for the joint
(X,Y ) we use the LNN entropy estimator we proposed in (9), and for the marginal entropy we
use the bandwidth hXi = ρk,i(X,Y ) coupled to the joint estimator. Empirically, we observe ÎKSG

outperforms Î3KL everywhere, validating the use of correlated bandwidths. However, the performance
of ÎLNN−KSG is similar to Î3LNN–sometimes better and sometimes worse.

Empirical Contribution: Numerical experiments show that for most regimes of correlation, both
3LNN and LNN-KSG outperforms other state-of-the-art estimators, and the gap increases with
correlation r. In the large sample limit, all estimators find the correct mutual information, but both
LNN and LNN-KSG are significantly more robust compared to other approaches. Mutual information
estimators have been recently proposed in [2, 3, 16] based on local likelihood maximization. However,
they involve heuristic choices of hyper-parameters or solving elaborate optimization and numerical
integrations, which are far from being easy to implement. Simulation results can be found in
Section. C in the appendix.

6 Breaking the bandwidth barrier

While k-NN distance based bandwidth are routine in practical usage [21], the main finding of this work
is that they also turn out to be the “correct" mathematical choice for the purpose of asymptotically
unbiased estimation of an integral functional such as the entropy: −

∫
f(x) log f(x); we briefly

discuss the ramifications below. Traditionally, when the goal is to estimate f(x), it is well known
that the bandwidth should satisfy h → 0 and nhd → ∞, for KDEs to be consistent. As a rule of
thumb, h = 1.06σ̂n−1/5 is suggested when d = 1 where σ̂ is the sample standard deviation [29,
Chapter 6.3]. On the other hand, when estimating entropy, as well as other integral functionals, it is
known that resubstitution estimators of the form −(1/n)

∑n
i=1 log f̂(Xi) achieve variances scaling

as O(1/n) independent of the bandwidth [13]. This allows for a bandwidth as small as O(n−1/d).

The bottleneck in choosing such a small bandwidth is the bias, scaling asO(h2+(nhd)−1+En) [13],
where the lower order dependence on n, dubbedEn, is generally not known. The barrier in choosing a
global bandwidth of h = O(n−1/d) is the strictly positive bias whose value depends on the unknown
distribution and cannot be subtracted off. However, perhaps surprisingly, the proposed local and
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adaptive choice of the k-NN distance admits an asymptotic bias that is independent of the unknown
underlying distribution. Manually subtracting off the non-vanishing bias gives an asymptotically
unbiased estimator, with a potentially faster convergence as numerically compared below. Figure 2
illustrates how k-NN based bandwidth significantly improves upon, say a rule-of-thumb choice of
O(n−1/(d+4)) explained above and another choice of O(n−1/(d+2)). In the left figure, we use the
setting from Figure 3 (right) but with correlation r = 0.999. On the right, we generate X ∼ N (0, 1)
and U from uniform [0, 0.01] and let Y = X + U and estimate I(X;Y ). Following recent advances
in [12, 22], the proposed local estimator has a potential to be extended to, for example, Renyi entropy,
but with a multiplicative bias as opposed to additive.
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Figure 2: Local and adaptive bandwidth significantly improves over rule-of-thumb fixed bandwidth.
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