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Abstract

We develop efficient solution methods for a robust empirical risk minimization
problem designed to give calibrated confidence intervals on performance and
provide optimal tradeoffs between bias and variance. Our methods apply to dis-
tributionally robust optimization problems proposed by Ben-Tal et al., which put
more weight on observations inducing high loss via a worst-case approach over a
non-parametric uncertainty set on the underlying data distribution. Our algorithm
solves the resulting minimax problems with nearly the same computational cost
of stochastic gradient descent through the use of several carefully designed data
structures. For a sample of size n, the per-iteration cost of our method scales as
O(log n), which allows us to give optimality certificates that distributionally robust
optimization provides at little extra cost compared to empirical risk minimization
and stochastic gradient methods.

1 Introduction

In statistical learning or other data-based decision-making problems, it is desirable to give solutions
that come with guarantees on performance, at least to some specified confidence level. For tasks
such as driving or medical diagnosis where safety and reliability are crucial, confidence levels
have additional importance. Classical techniques in machine learning and statistics, including
regularization, stability, concentration inequalities, and generalization guarantees [6, 25] provide
such guarantees, though often a more fine-tuned certificate—one with calibrated confidence—is
desirable. In this paper, we leverage techniques from the robust optimization literature [e.g. 2],
building an uncertainty set around the empirical distribution of the data and studying worst case
performance in this uncertainty set. Recent work [15, 13] shows how this approach can give (i)
calibrated statistical optimality certificates for stochastic optimization problems, (ii) performs a
natural type of regularization based on the variance of the objective and (iii) achieves fast rates of
convergence under more general conditions than empirical risk minimization by trading off bias
(approximation error) and variance (estimation error) optimally. In this paper, we propose efficient
algorithms for such distributionally robust optimization problems.

We now provide our formal setting. Let X ⇢ Rd be a compact convex set, and for a convex
function f : R

+

! R with f(1) = 0, define the f -divergence between distributions P and Q by
D

f

(P ||Q) =

R

f( dP
dQ

)dQ. Letting P
⇢,n

:= {p 2 Rn

: p> = 1, p � 0, D
f

(p|| /n)  ⇢

n

} be an
uncertainty set around the uniform distribution /n, we develop methods for solving the robust
empirical risk minimization problem

minimize

x2X
sup

p2P⇢,n

n

X

i=1

p
i

`
i

(x). (1)
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In problem (1), the functions `
i

: X ! R
+

are convex and subdifferentiable, and we consider the
situation in which `

i

(x) = `(x; ⇠
i

) for ⇠
i

iid⇠ P
0

. We let `(x) = [`
1

(x) · · · `
n

(x)]> 2 Rn denote the
vector of convex losses, so the robust objective (1) is sup

p2P⇢,n
pT `(x).

A number of authors show how the robust formulation (1) provides guarantees. Duchi et al. [15]
show that the objective (1) is a convex approximation to regularizing the empirical risk by variance,

sup

p2P⇢,n

n

X

i=1

p
i

`
i

(x) =
1

n

n

X

i=1

`
i

(x) +

r

⇢

n
Var

P0(`(x; ⇠)) + o
P0(n

� 1
2
) (2)

uniformly in x 2 X . Since the right hand side naturally trades off good loss performance (ap-
proximation error) and minimizing variance (estimation error) which is usually non-convex, the
robust formulation (1) provides a convex regularization for the standard empirical risk minimization
(ERM) problem. This trading between bias and variance leads to certificates on the optimal value
inf

x2X E
P0 [`(x; ⇠)] so that under suitable conditions, we have

lim

n!1
P
✓

inf

x2X
E
P0 [`(x; ⇠)]  u

n

◆

= P (W � �p⇢) for W ⇠ N(0, 1) (3)

where u
n

= inf

x2X sup

p2P⇢,n
pT `(x) is the optimal robust objective. Duchi and Namkoong [13]

provide finite sample guarantees for the special case that f(t) = 1

2

(t� 1)

2, making the expansion (2)
more explicit and providing a number of consequences for estimation and optimization based on this
expansion (including fast rates for risk minimization). A special case of their results [13, §3.1] is as
follows. Let bxrob 2 argmin

x2X sup

p2P⇢,n
pT `(x), let VC(F) denote the VC-(subgraph)-dimension

of the class of functions F := {`(x; ·) | x 2 X}, assume that M � `(x; ⇠) for all x 2 X , ⇠ 2 ⌅, and
for some fixed � > 0, define ⇢ = log

1

�

+10VC(F) logVC(F). Then, with probability at least 1� �,

E
P0 [`(bx

rob

; ⇠)]  u
n

+O(1)

M⇢

n
 inf

x2X

8

<

:

E
P0 [`(x; ⇠)] + 2

s

2⇢Var b
Pn

(`(x; ⇠))

n

9

=

;

+O(1)

M⇢

n

(4)

For large n, evaluating the objective (1) may be expensive; with fixed p = /n, this has motivated an
extensive literature in stochastic and online optimization [27, 23, 19, 16, 18]. The problem (1) does
not admit quite such a straightforward approach. A first idea, common in the robust optimization
literature [3], is to obtain a problem that may be written as a sum of individual terms by taking the
dual of the inner supremum, yielding the convex problem

inf

x2X
sup

p2P⇢,n

p>`(x) = inf

x2X ,��0,⌘2R
1

n

n

X

i=1

�f⇤
✓

`
i

(x)� ⌘
�

◆

+

⇢

n
�+ ⌘. (5)

Here f⇤
(s) = sup

t�0

{st � f(t)} is the Fenchel conjugate of the convex function f . While the
above dual reformulation is jointly convex in (x,�, ⌘), canonical stochastic gradient descent (SGD)
procedures [23] generally fail because the variance of the objective (and its subgradients) explodes as
�! 0. (This is not just a theoretical issue: in extensive simulations that we omit because they are a
bit boring, SGD and other heuristic approaches that impose shrinking bounds of the form �

t

� c
t

> 0

at each iteration t all fail to optimize the objective (5).)

Instead, we view the robust ERM problem (1) as a game between the x (minimizing) player and p
(maximizing) player. Each player performs a variant of mirror descent (ascent), and we show how
such an approach yields strong convergence guarantees, as well as good empirical performance. In
particular, we show (for many suitable divergences f ) that if `

i

is L-Lipschitz and X has radius
bounded by R, then our procedure requires at most O(

R

2
L

2
+⇢

✏

2 ) iterations to achieve an ✏-accurate
solution to problem (1), which is comparable to the number of iterations required by SGD [23]. Our
solution strategy builds off of similar algorithms due to Nemirovski et al. [23, Sec. 3] and Ben-Tal et al.
[4], and more directly procedures developed by Clarkson et al. [10] for solving two-player convex
games. Most directly relevant to our approach is that of Shalev-Shwartz and Wexler [26], which
solves problem (1) under the assumption that P

⇢,n

= {p 2 Rn

+

: pT = 1} and that there is some
x with perfect loss performance, that is,

P

n

i=1

`
i

(x) = 0. We generalize these approaches to more
challenging f -divergence-constrained problems, and, for the �2 divergence with f(t) = 1

2

(t� 1)

2,

2



develop efficient data structures that give a total run-time for solving problem (1) to ✏-accuracy
scaling as O((Cost(grad) + log n)R

2
L

2
+⇢

✏

2 ). Here Cost(grad) is the cost to compute the gradient of
a single term r`

i

(x) and perform a mirror descent step with x. Using SGD to solve the empirical
minimization problem to ✏-accuracy has run-time O(Cost(grad)

R

2
L

2

✏

2 ), so we see that we can achieve
the guarantees (3)–(4) offered by the robust formulation (1) at little additional computational cost.

The remainder of the paper is organized as follows. We present our abstract algorithm in Section 2
and give guarantees on its performance in Section 3. In Section 4, we give efficient computational
schemes for the case that f(t) = 1

2

(t� 1)

2, presenting experiments in Section 5.

2 A bandit mirror descent algorithm for the minimax problem

Under the conditions that ` is convex and X is compact, standard results [7] show that there exists a
saddle point (x?, p?) 2 X ⇥ P

⇢,n

for the robust problem (1) satisfying

sup

�

p>`(x?) | p 2 P
⇢,n

 

 p?>`(x?)  inf

�

p?>`(x) | x 2 X
 

.

We now describe a procedure for finding this saddle point by alternating a linear bandit-convex
optimization procedure [8] for p and a stochastic mirror descent procedure for x. Our approach builds
off of Nemirovski et al.’s [23] development of mirror descent for two-player stochastic games.

To describe our algorithm, we require a few standard tools. Let k·k
x

denote a norm on the space
X with dual norm kyk

x,⇤ = sup{hx, yi : kxk  1}, and let  
x

be a differentiable strongly convex
function on X , meaning  

x

(x+�) �  
x

(x)+r 
x

(x)>�+

1

2

k�k2
x

for all �. Let  
p

a differentiable
strictly convex function on P

⇢,n

. For a differentiable convex function h, we define the Bregman
divergence B

h

(x, y) = h(x)� h(y)� hrh(y), x� yi 0. The Fenchel conjugate  ⇤
p

of  
p

is
 ⇤
p

(s) := sup

p

{hs, pi �  
p

(p)} and r ⇤
p

(s) = argmax

p

{hs, pi �  
p

(p)} .

( ⇤
p

is differentiable because  
p

is strongly convex [20, Chapter X].) We let g
i

(x) 2 @`
i

(x) be a
particular subgradient selection.

With this notation in place, we now give our algorithm, which alternates between gradient ascent
steps on p and subgradient descent steps on x. Roughly, we would like to alternate gradient ascent
steps for p, p

t+1

 p
t

+↵
p

`(x
t

), and descent steps x
t+1

 x
t

�↵
x

g
i

(x
t

) for x, where i is a random
index drawn according to p

t

. This procedure is inefficient—requiring time of order nCost(grad) in
each iteration—so that we use stochastic estimates of the loss vector `(x

t

) developed in the linear
bandit literature [8] and variants of mirror descent to implement our algorithm.

Algorithm 1 Two-player Bandit Mirror Descent

1: Input: Stepsize ↵
x

,↵
p

> 0, initialize: x
1

2 X , p
1

= /n
2: for t = 1, 2, . . . , T do
3: Sample I

t

⇠ p
t

, that is, set I
t

= i with probability p
t,i

4: Compute estimated loss for i 2 [n]: b`
t,i

(x) = `i(x)

pi,t
1 {I

t

= i}
5: Update p: w

t+1

 r ⇤
p

(r 
p

(p
t

) + ↵
p

b`
t

(x
t

)), p
t+1

 argmin

p2P⇢,n
B
 

p

(p, w
t+1

)

6: Update x: y
t+1

 r ⇤
x

( 
x

(x
t

)� ↵
x

g
It(xt

)), x
t+1

 argmin

x2X B
 

x

(x, y
t+1

)

7: end for

We specialize this general algorithm for specific choices of the divergence f and the functions  
x

and
 
p

presently, first briefly discussing the algorithm. Note that in Step 5, the updates for p depend only
on a single index I

t

2 {1, . . . , n} (the vector b`(x
t

) is 1-sparse), which, as long as the updates for p
are efficiently computable, can yield substantial performance benefits.

3 Regret bounds

With our algorithm described, we now describe its convergence properties, specializing later to
specific families of f -divergences. We begin with the following result on pseudo-regret, which (with
minor modifications) is known [23, 10, 26]. We provide a proof for completeness in Appendix A.1.
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Lemma 1. Let the sequences x
t

and p
t

be generated by Algorithm 1. Define bx
T

:=

1

T

P

T

t=1

x
t

and
bp
T

:=

1

T

P

T

t=1

p
t

. Then for the saddle point (x?, p?) we have

TE[p?>`(bx
T

)� bp>
T

`(x?)]  1

↵
x

B
 

x

(x?, x
1

) +

↵
x

2

T

X

t=1

E[kg
It(xt

)k2
x,⇤]

| {z }

T1: ERM regret

+

T

X

t=1

E[b`
t

(x
t

)

>
(p? � p

t

)]

| {z }

T2: robust regret

where the expectation is taken over the random draws I
t

⇠ p
t

. Moreover, E[b`
t

(x
t

)

>
(p � p

t

)] =

E[`(x
t

)

>
(p� p

t

)] for any vector p.

In the lemma, T
1

is the standard regret when applying mirror descent to the ERM problem. In
particular, if B

 

x

(x?, x
1

)  R2 and `
i

(x) is L-Lipschitz, then choosing ↵
x

=

R

L

p

2/T yields
T
1

 RL
p
T . Because it is (relatively) easy to bound the term T

1

, the remainder of our arguments
focus on bounding the the second term T

2

, which is the regret that comes as a consequence of the
random sampling for the loss vector b`

t

. This regret depends strongly on the distance-generating
function  

p

. To the end of bounding T
2

, we use the following bound for the pseudo-regret of p, which
is standard [9, Chapter 11], [8, Thm 5.3]. For completeness we outline the proof in Appendix A.2.
Lemma 2. For any p 2 P

⇢,n

, Algorithm 1 satisfies
T

X

t=1

b`
t

(x
t

)

>
(p� p

t

) 
B
 

p

(p, p
1

)

↵
p

+

1

↵
p

T

X

t=1

B
 

⇤
p

⇣

r 
p

(p
t

) + ↵
p

b`
t

(x
t

),r 
p

(p
t

)

⌘

. (6)

Lemma 2 shows that controlling the Bregman divergences B
 

p

and B
 

⇤
p

is sufficient to bound T
2

in
the basic regret bound of Lemma 1.

Now, we narrow our focus slightly to a specialized—but broad—family of divergences for which we
can give more explicit results. For k 2 R, the Cressie-Read divergence [12] of order k is

f
k

(t) =
tk � kt+ k � 1

k(k � 1)

, (7)

where f
k

(t) = 1 for t < 0, and for k 2 {0, 1} we define f
k

by its limits as k ! 0 or 1 (we have
f
1

(t) = t log t� t+ 1 and f
0

(t) = � log t+ t� 1). Inspecting expression (6), we might hope that
careful choices of  

p

could yield regret bounds that grow slowly with T and have small dependence
on the sample size n. Indeed, this is the case, as we show in the sequel: for each divergence f

k

, we
may carefully choose  

p

to achieve small regret. To prove our bounds, however, it is crucial that
the importance sampling estimator b`

t

has small variance, which in turn necessitates that p
t,i

is not
too small. Generally, this means that in the update (Alg. 1, Line 5) to construct p

t+1

, we choose
 (p) to grow quickly as p

i

! 0 (e.g. | @
@pi

 
p

(p)|!1), but there is a tradeoff in that this may cause
large Bregman divergence terms (6). In the coming sections, we explore this tradeoff for various k,
providing regret bounds for each of the Cressie-Read divergences (7).

To control the B
 

⇤
p

terms in the bound (6), we use the curvature of  
p

(dually, smoothness of  ⇤
p

)
to show that B

 

⇤
p

(u, v) ⇡
P

(u
i

� v
i

)

2. For this approximation to hold, we shift our loss functions
based on the f -divergence. When k � 2, we assume that `(x) 2 [0, 1]n. If k < 2, we instead apply
Algorithm 1 with shifted losses `0(x) = `(x)� , so that `0(x) 2 [�1, 0]n. We call the method with
`0 Algorithm 1’, noting that b`

t,i

(x
t

) =

`i(xt)�1

pt,i
1 {I

t

= i} in this case.

3.1 Power divergences when k 62 {0, 1}

For our first results, we prove a generic regret bound for Algorithm 1 when k 62 {0, 1} by taking the
distance-generating function  

p

(p) = 1

k(k�1)

P

n

i=1

pk
i

, which is differentiable and strictly convex on
Rn

+

. Before proceeding further, we first note that for p 2 P
⇢,n

and p
1

=

1

n

, we have

B
 

p

(p, p
1

) =  
p

(p)�  
p

(p
1

)�r 
p

(p
1

)

>
(p� p

1

)

=

n�k

k(k � 1)

n

X

i=1

�

(np
i

)

k � knp
i

+ k � 1

 

= n�kD
f

(p|| /n)  n�k⇢ (8)
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bounding the first term in expression (6). From Lemma 2, it remains to bound the Bregman divergence
terms B

 

⇤
p

. Using smoothness of  ⇤
p

in the positive orthant, we obtain the following bound.

Theorem 1. Assume that `(x) 2 [0, 1]n. For any real-valued k � 2 and any p 2 P
⇢,n

, Algorithm 1
satisfies

T

X

t=1

E[`(x
t

)

>
(p� p

t

)] =

T

X

t=1

E[b`
t

(x
t

)

>
(p� p

t

)]  n�k⇢

↵
p

+

↵
p

2

T

X

t=1

E

2

4

X

i:pt,i>0

p1�k

t,i

3

5 . (9)

For k  2 with k 62 {0, 1}, an identical bound holds for Algorithm 1’ with `0(x) = `(x)� .

See Appendix A.3 for the proof. We now use Theorem 1 to obtain concrete convergence guarantees for
Cressie-Read divergences with parameter k < 1, giving sublinear (in T ) regret bounds independent
of n. In the corollary, whose proof we provide in Appendix A.4, we let C

k,⇢

=

(1�k)(1�k⇢)

�k

, which
is positive for k < 0.

Corollary 1. For k 2 (�1, 0) and ↵
p

= C
k�1
2

k,⇢

n�k

p

2⇢/T Algorithm 1’ with `0(x) = `(x)� 2
[�1, 0]n acheives the regret bound

T

X

t=1

E[`(x
t

)

>
(p� p

t

)] =

T

X

t=1

E[b`
t

(x
t

)

>
(p� p

t

)] 
q

2C1�k

k,⇢

⇢T .

For k 2 (0, 1) and ↵
p

= n�k

p

2⇢/T , Algorithm 1’ with `0(x) = `(x)� 2 [�1, 0]n acheives the
regret bound

T

X

t=1

E[`(x
t

)

>
(p� p

t

)] =

T

X

t=1

E[b`
t

(x
t

)

>
(p� p

t

)] 
p

2⇢T .

It is worth noting that despite the robustification, the above regret is independent of n. In the special
case that k 2 (0, 1), Theorem 1 is the regret bound for the implicitly normalized forecaster of
Audibert and Bubeck [1] (cf. [8, Ch 5.4]).

3.2 Regret bounds using the KL divergences (k = 1 and k = 0)

The choice f
1

(t) = t log t � t + 1 yields D
f

(P ||Q) = D
kl

(P ||Q), and in this case, we take
 
p

(p) =
P

n

i=1

p
i

log p
i

, which means that Algorithm 1 performs entropic gradient ascent. To control
the divergence B

 

⇤
p

, we use the rescaled losses `0(x) = `(x)� (as we have k < 2). Then we have
the following bound, whose proof we provide in Appendix A.5.
Theorem 2. Algorithm 1’ with loss `0(x) = `(x)� yields

T

X

t=1

E[`(x
t

)

>
(p� p

t

)] =

T

X

t=1

E[b`
t

(x
t

)

>
(p� p

t

)]  ⇢

n↵
p

+

↵
p

2

nT. (10)

In particular, when ↵
p

=

1

n

q

2⇢

T

, we have
P

T

t=1

E[`(x
t

)

>
(p� p

t

)] 
p
2⇢T .

Using k = 0, so that f
0

(t) = � log t + t � 1, we obtain D
f

(P ||Q) = D
kl

(Q||P ), which results
in a robustification technique identical to Owen’s original empirical likelihood [24]. We again use
the rescaled losses `0(x) = `(x) � , but in this scenario we use the proximal function  

p

(p) =

�
P

n

i=1

log p
i

in Algorithm 1’. Then we have the following regret bound (see Appendix A.6).
Theorem 3. Algorithm 1’ with loss `0(x) = `(x)� yields

T

X

t=1

E[`(x
t

)

>
(p� p

t

)] =

T

X

t=1

E[b`
t

(x
t

)

>
(p� p

t

)]  ⇢

↵
p

+

↵
p

2

T.

In particular, when ↵
p

=

q

2⇢

T

, we have
P

T

t=1

E[`(x
t

)

>
(p� p

t

)] 
p
2⇢T .

In both of these cases, the expected pseudo-regret of our robust gradient procedure is independent of
n and grows as

p
T , which is essentially identical to that achieved by pure online gradient methods.
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3.3 Power divergences (k > 1)

Corollary 1 provides convergence guarantees for power divergences f
k

with k < 1, but says nothing
about the case that k > 1; the choice  

p

(p) = 1

k(k�1)

P

n

i=1

pk
i

allows the individual probabilities

p
t,i

to be too small, which can cause excess variance of b`. To remedy this, we regularize the robust
problem (1) by re-defining our robust empirical distributions set, taking

P
⇢,n,�

:=

n

p 2 Rn

+

| p � �

n
,

n

X

i=1

f(np
i

)  ⇢
o

,

where we no longer constrain the weights p to satisfy >p = 1. Nonetheless, it is still possible to
show that the guarantees (2) and (3) hold with P

⇢,n,�

replacing P
⇢,n

. Indeed, we may give bounds for
the pseudo-regret of the regularized problem with P

⇢,n,�

, where we apply Algorithm 1 with a slightly
modified sampling strategy, drawing indices i according to the normalized distribution p

t

/
P

n

i=1

p
t,i

and appropriately normalizing the loss estimate via

b`
t,i

(x
t

) =

 

n

X

i=1

p
t,i

!

`
i

(x
t

)

p
t,i

1 {I
t

= i} .

This vector is still unbiased for `(x
t

). Define the constant C
k

:= max {t : f
k

(t)  t} _ ⇢

n

<1 (so
C

2

= 2 +

p
3). With our choice  

p

(p) = 1

k(k�1)

P

n

i=1

pk
i

and for � > 0, we obtain the following
result, whose proof we provide in Appendix A.7.
Theorem 4. For k 2 [2,1), any p 2 P

⇢,n,�

, Algorithm 1 with ↵
p

= n�k

p

⇢�k�1/ (4C3

k

T ) yields
T

X

t=1

E[`(x
t

)

>
(p� p

t

)] =

T

X

t=1

E[b`
t

(x
t

)

>
(p� p

t

)]  2C
k

p

⇢C
k

�1�kT

For k 2 (1, 2), assume that `(x) 2 [�1, 0]n. Then, Algorithm 1 gives identical bounds.

4 Efficient updates when k = 2

The previous section shows that Algorithm 1 with careful choice of  
p

yields sublinear regret bounds.
The projection step p

t+1

= argmin

p2P⇢,n,�
B
 

p

(p, w
t+1

), however, can still take time linear in n

despite the sparsity of b`(x
t

) (see Appendix B for concrete updates for each of our cases). In this
section, we show how to compute the bandit mirror descent update in Alg. 1, line 5, in time O(log n)
time for f

2

(t) =

1

2

(t � 1)

2 and  
p

(p) =

1

2

P

n

i=1

p2
i

. Building off of Duchi et al. [14], we use
carefully designed balanced binary search trees (BSTs) to this end.

The Lagrangian for the update p
t+1

= argmin

p2P⇢,n,�
B
 

p

(p, w
t+1

) (suppressing t) is

L(p,�, ✓) = B
 

p

(p, w)� �

n2

 

⇢�
n

X

i=1

f
2

(np
i

)

!

� ✓>
✓

p� �

n

◆

where � � 0, ✓ 2 Rn

+

. The KKT conditions imply (1+�)p = w+

�

n

+✓, and strict complementarity
yields

p(�) =

✓

1

1 + �
w +

�

1 + �

1

n
� �

n

◆

+

+

�

n
, (11)

where p(�) = argmin

p2P⇢,n,�
inf

✓2Rn
+
L(p,�, ✓). Substituting this into the Lagrangian, we obtain

the concave dual objective

g(�) := sup

✓

inf

p2P⇢,n,�

L(p,�, ✓) = B
 

p

(p(�), w)� �
 

⇢�
n

X

i=1

f
k

(np
i

(�))

!

.

We can run a bisection search on the nondecreasing function g0(�) to find � such that g0(�) = 0.
After algebraic manipulations, we have that

@

@�
g(�) = g

1

(�)
X

i2I(�)

w2

i

+ g
2

(�)
X

i2I(�)

w
i

+ g
3

(�)|I(�)|+ (1� �)2

2n
� ⇢

n2

,
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where I(�) := {1  i  n : w
i

� �

n

+ (

�

n

� 1)�} and (see expression (18) in Appendix B.4)

g
1

(�) =
1

(1 + �)2
, g

2

(�) =
�2

n(1 + �)2
, g

3

(�) =
1

n2

(1 + �)2
� (1� �)2

2n
.

To see that we can solve for �⇤ that acheives |g0(�⇤)|  ✏ in O(log n + log

1

✏

) time, it suffices to
evaluate

P

i2I(�)

wq

i

for q = 0, 1, 2 in time O(log n). To this end, we store the w’s in a balanced
search tree (e.g., red-black tree) keyed on the weights up to a multiplicative and an additive constant.
A key ingredient in our implementation is that the BST stores in each node the sum of the appropriate
powers of values in the left and right subtree [14]. See Appendix C for detailed pseudocode for all
operations required in Algorithm 1: each subroutine (sampling I

t

⇠ p
t

, updating w, computing �⇤,
and updating p(�⇤)) require time O(log n) using standard BST operations.

5 Experiments

In this section, we present experimental results demonstrating the efficiency of our algorithm. We first
compare our method with existing algorithms for solving the robust problem (1) on a synthetic dataset,
then investigating the robust formulation on real datasets to show how the calibrated confidence
guarantees behave in practice, especially in comparison to the ERM. We experiment on natural high
dimensional datasets as well as those with many training examples.

Our implementation uses the efficient updates outlined in Section 4. Throughout our experiments,
we use the best tuned step sizes for all methods. For the first two experiments, we set ⇢ = �2

1,.9

so that the resulting robust objective (1) will be a calibrated 95% upper confidence bound on the
optimal population risk. For our last experiment, the asymptotic regime (3) fails to hold due to the
high dimensional nature of the problem, so we choose ⇢ = 50 (somewhat arbitrarily, but other ⇢ give
similar behavior). We take X =

�

x 2 Rd

: kxk
2

 R
 

for our experiments.

For the experiment with synthetic data, we compare our algorithm against two benchmark methods
for solving the robust problem (1). The first is the interior point method for the dual reformulation (5)
using the Gurobi solver [17]. The second is using gradient descent, viewing the robust formulation (1)
as a minimization problem with the objective x 7! sup

p2P⇢,n,�
p>`(x). To efficiently compute the

gradient, we bisect over the dual form (5) with respect to � � 0, ⌘. We use the best step sizes for
both our proposed bandit-based algorithm and gradient descent.

To generate the data, we choose a true classifier x⇤ 2 Rd and sample the feature vectors a
i

iid⇠ N(0, I)
for i 2 [n]. We set the labels to be b

i

= sign(a>
i

x⇤
) and flip them with probability 10%. We use

the hinge loss `
i

(x) =

�

1� b
i

a>
i

x
�

+

with n = 2000, d = 500 and R = 10 in our experiment.
In Figure 1a, we plot the log optimality ratio (log of current objective value over optimal value)
with respect to the runtime for the three algorithms. While the interior point method (IPM) obtains
accurate solutions, it scales relatively poorly in n and d (the initial flat region in the plot is due to
pre-computations for factorizing within the solver). Gradient descent performs quite well in this
moderate sized example although each iteration takes time ⌦(n).

We also perform experiments on two datasets with larger n: the Adult dataset [22] and the Reuters
RCV1 Corpus [21]. The Adult dataset has n = 32,561 training and 16,281 test examples with
123-dimensional features. We use binary logistic loss `

i

(x) = log(1 + exp(�b
i

a>
i

x)) to classify
whether the income level is greater than $5K. For the Reuters RCV1 Corpus, our task is to classify
whether a document belongs to the Corporate category. With d = 47,236 features, we randomly
split the 804,410 examples into 723,969 training (90% of data) and 80,441 (10% of data) test
examples. We use the hinge loss and solve the binary classification problem for the document type.
To test the efficiency of our method in large scale settings, we plot the log ratio log

Rn(x)

Rn(x
?
)

, where
R

n

(x) = sup

p2P⇢,n,�
p>`(x), versus CPU time for our algorithm and gradient descent in Figure 1b.

As is somewhat typical of stochastic gradient-based methods, our bandit-based optimization algorithm
quickly obtains a solution with small optimality gap (about 2% relative error), while the gradient
descent method eventually achieves better loss.

In Figures 2a–2d, we plot the loss value and the classification error compared with applying pure
stochastic gradient descent to the standard empirical loss, plotting the confidence bound for the robust
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(a) Synthetic Data (n = 2000, d = 500) (b) Reuters Corpus (n = 7.2 · 105, d ⇡ 5 · 104)

Figure 1: Comparison of Solvers

(a) Adult: Logistic Loss (b) Adult: Classification Error

(c) Reuters: Hinge Loss (d) Reuters: Classification Error
Figure 2: Comparison with ERM

method as well. As the theory suggests [15, 13], the robust objective provides upper confidence
bounds on the true risk (approximated by the average loss on the test sample).
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