Dual Space Gradient Descent for Online Learning

Trung Le, Tu Dinh Nguyen, Vu Nguyen, Dinh Phung
Centre for Pattern Recognition and Data Analytics
Deakin University, Australia
{trung.l, tu.nguyen, v.nguyen, dinh.phung}@deakin.edu.au

Abstract

One crucial goal in kernel online learning is to bound the model size. Common
approaches employ budget maintenance procedures to restrict the model sizes using
removal, projection, or merging strategies. Although projection and merging, in the
literature, are known to be the most effective strategies, they demand extensive com-
putation whilst removal strategy fails to retain information of the removed vectors.
An alternative way to address the model size problem is to apply random features
to approximate the kernel function. This allows the model to be maintained directly
in the random feature space, hence effectively resolve the curse of kernelization.
However, this approach still suffers from a serious shortcoming as it needs to use a
high dimensional random feature space to achieve a sufficiently accurate kernel
approximation. Consequently, it leads to a significant increase in the computational
cost. To address all of these aforementioned challenges, we present in this paper
the Dual Space Gradient Descent (DualSGD), a novel framework that utilizes
random features as an auxiliary space to maintain information from data points
removed during budget maintenance. Consequently, our approach permits the
budget to be maintained in a simple, direct and elegant way while simultaneously
mitigating the impact of the dimensionality issue on learning performance. We
further provide convergence analysis and extensively conduct experiments on five
real-world datasets to demonstrate the predictive performance and scalability of
our proposed method in comparison with the state-of-the-art baselines.

1 Introduction

Online learning represents a family of effective and scalable learning algorithms for incrementally
building a predictive model from a sequence of data samples [1]. Unlike the conventional learning
algorithms, which usually require a costly procedure to retrain the entire dataset when a new instance
arrives [2], the goal of online learning is to utilize new incoming instances to improve the model
given knowledge of the correct answers to previously processed data. The seminal line of work in
online learning, referred to as linear online learning [3| 4], aims to learn a linear predictor in the
input space. The key limitation of this approach lies in its oversimplified assumption in using a linear
hyperplane to represent data that could possibly possess nonlinear dependency as commonly seen
in many real-world applications. This inspires the work of kernel online learning [5, 6] that uses a
linear model in the feature space to capture the nonlinearity of input data.

However, the kernel online learning approach suffers from the so-called curse of kernelization [1,
that is, the model size linearly grows with the data size accumulated over time. A notable approach
to address this issue is to use a budget [8} 9, [7, 10} [11]]. The work in [7] leveraged the budgeted
approach with stochastic gradient descent (SGD) [12}|13]] wherein the learning procedure employed
SGD and a budget maintenance procedure (e.g., removal, projection, or merging) was employed to
maintain the model size. Although the projection and merging were shown to be effective [7]], their
associated computational costs render them impractical for large-scale datasets. An alternative way
to address the curse of kernelization is to use random features [14] to approximate a kernel function

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain
Acknowledgment: This work is partially supported by the Australian Research Council under the Discovery
Project DP160109394.

[15L [16]]. The work in [[16] proposed to transform data from the input space to the random-feature
space, and then performed SGD in the feature space. However, in order for this approach to achieve
good kernel approximation, excessive number of random features is required, hence could lead to
serious computational issue.

In this paper, we propose the Dual Space Gradient Descent (DualSGD) to address the computational
problem encountered in the projection and merging strategies in the budgeted approach [8, (9} 17} (7]
and the excessive number of random features in the random feature approach [15[16]]. In particular,
the proposed DualSGD utilizes the random-feature space as an auxiliary space to store the information
of the vectors that have been discarded during the budget maintenance process. More specifically, the
DualSGD uses a provision vector in the random-feature space to store the information of all vectors
being removed. This allows us to propose a novel budget maintenance strategy, named k-merging,
which unifies the removal, projection, and merging strategies.

30

56 —&— DualSGD
*\.—.———0 25 —e— FOGD

o
~

o
=}

Mistake rate (%)
(9]
N
Mistake rate (%)
o

—=— DualSGD 5
—e— BSGD-M

f

0
SN N N N N
o '\QQ {1/& @0 N S S \,19 \Q)Q
Budget size (B) Random feature dimension (D)

Figure 1: Comparison of DualSGD with BSGD-M and FOGD on the cod-rna dataset. Left: DualSGD
vs. BSGD-M when B is varied. Right: DualSGD vs. FOGD when D is varied.

Our proposed DualSGD advances the existing works in the budgeted and random-feature approaches
in twofold. Firstly, since the goal of using random features is to approximate the original feature
space as much as possible, the proposed k-merging of DualSGD can preserve the information of
the removed vectors more effectively than the existing budget maintenance strategies. For example
comparing with the budgeted SGD using merging strategy (BSGD-M) [[7]], as shown in Fig. (1| (Ieft),
the DualSGD with a small budget size (B = 5) can gain a significant better mistake rate than that of
BSGD-M with a 80-fold larger budget size (B = 400). Secondly, since the core part of the model
(i.e., the vectors in the support set) is stored in the feature space and the auxiliary part (i.e., the
removed vectors) is stored in the random-feature space, our DualSGD can significantly reduce the
influence of the number of random features to the learning performance. For example comparing
with the Fourier Online Gradient Descent (FOGD) [16], as shown in Fig. E] (right), the DualSGD
with a small number of random features (D = 20) can achieve a comparable mistake rate to that of
FOGD with a 40-fold larger number of random features (D = 800) and the DualSGD with a medium
value of number of random features (D = 100) achieves a predictive performance that would not
be reached by FOGD (the detail of comparison in computational complexities of our DualSGD and
FOGD can be found in Section 3 in the supplementary material).

To provide theoretical foundation for DualSGD, we develop an extensive convergence analysis for a
wide spectrum of loss functions including Hinge, Logistic, and smooth Hinge [[18] for classification
task and /1, e-insensitive for regression. We conduct extensive experiments on five real-world datasets
to compare the proposed method with the state-of-the-art online learning methods. The experimental
results show that our proposed DualSGD achieves the most optimal predictive results in almost all
cases, whilst its execution time is much faster than the baselines.

2 Dual Space Gradient Descent for Online Learning

2.1 Problem Setting
We propose to solve the following optimization problem: min 7 (w) whose objective function is

defined for online setting as follows:

| >~

T (W) = SIWI" + Eyymprey [L(W,2,9)] (M

where € RM is the data vector, y the label, px y denotes the joint distribution over X x) with
the data domain X and label domain Y, | (w, x,y) is a convex loss function with parameters w,
and A > 0 is a regularization parameter. A kernelization of the loss function introduces a nonlinear
function ® that maps « from the input space to a feature space. A classic example is the Hinge loss:
l(w,z,y) =max (0,1 —yw ' ®(x)).

2.2 The Key Ideas of the Proposed DualSGD

Our key motivations come from the shortcomings of three current budget maintenance strategies:
removal, projection and merging. The removal strategy fails to retain information of the removed
vectors. Although the projection strategy can overcome this problem, it requires a costly procedure
to compute the inverse of an B x B matrix wherein B is the budget size, typically in the cubic
complexity of B. On the other hand, the merging strategy needs to estimate the preimage of a vector
in the feature space, leading to a significant information loss and requiring extensive computation.
Our aim is to find an approach to simultaneously retain the information of the removed vectors
accurately, and perform budget maintenance efficiently.

To this end, we introduce the k-merging, a new budget maintenance approach that unifies three
aforementioned budget maintenance strategies under the following interpretation. For k = 1, the
proposed k-merging can be seen as a hybrid strategy of removal and projection. For k = 2, it
can be regarded as the standard merging. Moreover, our proposed k-merging strategy enables an
arbitrary number of vectors to be conveniently merged. Technically, we employ a vector in the
random-feature space [14], called provision vector w, to retain the information of all removed vectors.
When k-merging is invoked, the most redundant % vectors are sorted out, e.g., ;,, ..., Z;, and we
increment w as w = w + Zle Qi Z (:L'ij) where «;; is the coefficient of support vector associated
with z;;, and z (a:l]) denotes the mapping function from the input space to the random feature space.
The advantage of using the random-feature space as an auxiliary space is twofold: 1) the information
loss is negligible since the random-feature space is designed to approximate the original feature space,
and 2) the operations in budget maintenance strategy are direct and economic.

Algorithm 1 The learning of Dual Space Gradient Descent.
Input: Kernel K, regularization parameter A, budget B, random feature dimension D.
I:wi=0;, wWi=0; b=0; [=0
2: for t=1,...,7T do

33 (me,y1) ~pay

4 Wi = Elwy W = Ewy

5. if V,l (yt,oﬁ) # 0 then

6: It = It,1U {t}

7: wt-&-l = VAVt_,_l — %Vol (yt,O?) P (ﬂ?t)
8: if |I;| > B then

9: invokes k-merging(l;, Wiy, Wit1)
10: end if

11: endif

12: end for

Cwh ~
Output: wp, | = Wry1 O Wy .

2.3 The Proposed Algorithm

In our proposed DualSGD, the model is distributed into two spaces: the feature and random-feature
spaces with a ybrid vector w! defined as: w) = W; @ W,. Here we note that the kernel part W; and
the provision part w; lie in two different spaces, thus for convenience we define an abstract operator
@ to allow the addition between them, which implies that the decision function crucially depends on
both kernel and provision parts

(Wi, @) & ((We ® W), @) 2 W) @ () + W, 2 (@)

We employ one vector w; in the random-feature space to preserve the information of the discarded vec-
tors, that are outside ; — the set of indices of all support vectors in w;. When an instance arrives and
the model size exceeds the budget B, the budget maintenance procedure k-merging(I;, W11, Wii1)
is invoked to adjust Wy and w1, accordingly. Our proposed DualSGD is summarized in Algo-
rithm |1| where we note that, [(y, o) is another representation of convex loss function w.r.t the variable

o (e.g., the Hinge loss given by [(y,0) = max (0,1 — yo)), and o} = W] ® (z) + W, z (z) (i.e.,
hybrid objective value).

2.4 k-merging Budget Maintenance Strategy

Crucial to our proposed DualSGD in Algorithm [Ifis the k-merging routine to allow efficient merging
of k arbitrary vectors. We summarize the key steps for k-merging in Algorithm[2] In particular, we
first select k support vectors whose corresponding coefficients (o, , @,, ..., @;,) have the smallest
absolute values (cf. line 1). We then approximate them by z (x;,), ..., 2 (x;,) and merge them by

updating the provision vector as W1 = Wy 41 + Zle o,z (x;,) (cf. line 2). Finally, we remove
the chosen vectors from the kernel part w;, ;1 (cf. line 2).

2.5 Convergence Analysis

In this section, we present the convergence analysis for our proposed algorithm. We first prove that
with a high probability f (x) (i.e., hybrid decision function and cf. [3) is a good approximation of
f¢ (x) for all and ¢ (cf Theorem|1)). Let w* be the optimal solution of the optlmlzatlon problem
defined in Eq ' wh = argmmj w). We then prove that if {w,},~, is constructed as in Eq '

this sequence rapidly converges to w* or f; (x) = w, ® () rapidly approaches the optimal decision
function (cf. Theorems . Therefore, the decision function f* () also rapidly approaches the
optimal decision function. Our analysis can be generalized for the general k-merging strategy, but for
comprehensibility we present the analysis for the 1-merging case (i.e., k = 1).

We assume that the loss function used in the analysis satisfies the condition |V, (y,0)| < A, Vy, o,
where A is a positive constant. A wide spectrum of loss functions including Hinge, logistic, smooth
Hinge [18]}, /1, and e-insensitive satisfy this condition and hence are appropriate for this convergence
analysis. We further assume that ||® (z)|| = K (:137.%)1/2 = 1, Va. Let j3; be a binary random
variable which indicates whether the budget maintenance procedure is performed at the iteration ¢
(i.e., the event V! (yt, ot) # 0). We assume that if 3; = 1, the vector ¢ (wzt) is selected to move to
the random-feature space. Without loss of generality, we assume that ¢; = ¢ since we can arrange the
data instances so as to realize it. We define

gl = Aw, + V,l (ye, f (m,)) @ (-’Dt) and Wy = W — 19,)

fi(z) = ZO‘J (z), @

fth(w)ZWth’(wt)JrWtTZ(wt)=Zaj(1—ﬂj) (), @ +Za757 (zj,2) ()
=1

where K (x,2') = z (z) ' z (@) is the approximated kernel induced by the random-feature space,

and the learning rate n; = 3.

TheoremE]establishes that f}* (.) is a good approximation of f; (x) with a high probability, followed
by Theorem [2] which establishes the bound on the regret.

Algorithm 2 k-merging Budget Maintenance Procedure.

procedure k-merging (I, W11, Wii1)
// Assume that Wyy1 = . p o @ ()

1o (i1,...,1) =k-argmin |oj); I = I\ {i1, ..., ik}
JEIt
20 Wi = Wipg + Z Qi Z (wij); Wil = Wig1 — Z§:1 a;; (fBzJ)
endprod

Theorem 1. With a probability at least 1 — 6 = 1 — 28 (%) exp (—%) where M is

the dimension of input space, D is the dimension of random feature space,dx denotes the diameter of
the compact set X, and the constant o, is defined as in [14|], we have

l)’ft (=)’<€f0rallt>0andac€/'\f

ii)EHft (x) — [l (@)]] <A™ 1)\82] 1E[a2]1/2,u;/2 where 1; = p (8; = 1).

4

Theorem 1| shows that with a high probability f/* (z) can approximate f; (x) with an e-precision.
It also indicates that to decrease the gap] fi () — fI' (x)|, when performing budget maintenance,
we should choose the vectors whose coefficients have smallest absolute values to move to the
random-feature space.

Theorem 2. The following statement guarantees for all T

8A2% (logT + 1)

ElJ (wr)] =T (w") <E < T

T
1 1/2
+ W D E[M]]

t=1

1 T
72T (W) =T (W)

where W = % 23:1 wi, My = Vol (y, ft (21)) — Vol (yt, I (fﬂt)) and W = 24 (1 + \/5) AL

If a smooth loss function is used, we can quantify the gap in more detail and with a high probability,
the gap is negligible and this is shown in Theorem 3]

Theorem 3. Assume that [(y, o) is a y-strongly smooth loss function. With a probability at least

1—98 ("H:\‘%) exp (7%), we have

E[J(Wr)]-T(w") <E

1/2
8A2(logT +1) 1 (Y
< == Vo o)y — ==
< T + TW’YE ; .

1 <& .
T 2T (W) =T (W)

< 8A? (logT + 1)
- AT

+ Wre

3 Experiments

In this section, we conduct comprehensive experiments to quantitatively evaluate the performance
of our proposed Dual Space Gradient Descent (DualSGD) on binary classification, multiclass clas-
sification and regression tasks under online settings. Our main goal is to examine the scalability,
classification and regression capabilities of DualSGDs by directly comparing them with those of
several recent state-of-the-art online learning approaches using a number of real-world datasets with
a wide range of sizes. In what follows, we present the data statistics, experimental setup, results and
our observations.

3.1 Data Statistics and Experimental Setup

We use 5 datasets which are ijcnnl, cod-rna, poker, year, and airlines. The datasets where purposely
are selected with various sizes in order to clearly expose the differences among scalable capabilities
of the models. Three of which are large-scale datasets with hundreds of thousands and millions of
data points (year: 515, 345; poker: 1,025, 010; and airlines: 5,929, 413), whilst the rest are medium
size databases (ijcnnl: 141,691 and cod-rna: 331,152). These datasets can be downloaded from
LIBSVM[H and UC]E] websites, except the airlines which was obtained from American Statistical
Association (AS. For the airlines dataset, our aim is to predict whether a flight will be delayed or
not under binary classification setting, and how long (in minutes) the flight will be delayed in terms
of departure time under regression setting. A flight is considered delayed if its delay time is above
15 minutes, and non-delayed otherwise. Following the procedure in [19], we extract 8 features for
flights in the year of 2008, and then normalize them into the range [0,1].

For each dataset, we perform 10 runs on each algorithm with different random permutations of the
training data samples. In each run, the model is trained in a single pass through the data. Its prediction
result and time spent are then reported by taking the average together with the standard deviation over
all runs. For comparison, we employ 11 state-of-the-art online kernel learning methods: perceptron
[5]], online gradient descent (OGD) [6], randomized budget perceptron (RBP) [9], forgetron [§]
projectron, projectron++ [20], budgeted passive-aggressive simple (BPAS) [17]], budgeted SGD using
merging strategy (BSGD-M) [7], bounded OGD (BOGD) [21], Fourier OGD (FOGD) and Nystrom
OGD (NOGD) [16]. Their implementations are published as a part of LIBSVM, BudgetedSVME] and
LSOKIf|toolboxes. We use a Windows machine with 3.46GHz Xeon processor and 96GB RAM to
conduct our experiments.

"https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
Zhttps://archive.ics.uci.edu/ml/datasets.html
3http://stat-computing.org/dataexpo/2009/.
*http://www.dabi.temple.edu/budgetedsvm/index.html
>http://Isokl.stevenhoi.com/

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://archive.ics.uci.edu/ml/datasets.html
http://stat-computing.org/dataexpo/2009/
http://www.dabi.temple.edu/budgetedsvm/index.html
http://lsokl.stevenhoi.com/

3.2 Model Evaluation on the Effect of Hyperparameters

In the first experiment, we investigate the effect of hyperparameters, i.e., budget size B, merging
size k and random feature dimension D (cf. Section[2)) on the performance behavior of DualSGD.
Particularly, we conduct an initial analysis to quantitatively evaluate the sensitivity of these hyperpa-
rameters and their impact on the predictive accuracy and wall-clock time. This analysis provides an
approach to find the best setting of hyperparameters. Here the DualSGD with Hinge loss is trained
on the cod-rna dataset under the online classification setting.

D
100 200 400 800

—+— DSGD-Mistake-rate
-4~ DSGD-Running-time

//

34.79 45.71

38.96 49.91

|
k-merging size

Figure 2: The effect of k-merging size on the mistake rate and running time (left). The effect of
budget size B and random feature dimension D on the mistake rate (middle) and running time (right).

First we set B = 200, D = 100, and vary k in the range of 1,2, 10, 20, 50, 100, 150. For each
setting, we run our models and record the average mistake rates and running time as shown in Fig. 2]
(left). There is a pattern that the classification error increases for larger k£ whilst the wall-clock
time decreases. This represents the trade-off between model discriminative performance and model
computational complexity via the number of merging vectors. In this analysis, we can choose k = 20
to balance the performance and computational cost.

Fixing k£ = 20, we vary B and D in 4 values doubly increasing from 50 to 400 and from 100 to 800,
respectively, to evaluate the prediction performance and execution time. Fig. 2]depicts the average
mistake rates (middle) and running time in seconds (right) as a heat map of these values. These
visualizations indicate that the higher B and D produce better classification results, but hurt the
training speed of the model. We found that increasing the dimension of random feature space from
100 to 800 at B = 50 significantly reduces the mistake rates by 25%, at the same time increases the
wall-clock time by 76%. The same pattern with less effect is observed when increasing the budget
size B from 50 to 400 at D = 100 (mistake rate decreases by 1.5%, time increases by 54%). For a
good trade-off between classification performance and computational cost, we select B = 100 and
D = 200 which achieves fairly comparable classification result and running time.

3.3 Online Classification

We now examine the performances of DualSGDs in the online classification task. We use four
datasets: cod-rna, ijcnnl, poker and airlines (delayed and non-delayed labels). We create two
versions of our approach: DualSGD with Hinge loss (DualSGD-Hinge) and DualSGD with Logistic
loss (DualSGD-Logit). It is worth mentioning that the Hinge loss is not a smooth function with
undefined gradient at the point that the classification confidence yf (x) = 1. Following the sub-
gradient definition, in our experiment, we compute the gradient given the condition that y f (z) < 1,
and set it to O otherwise.

Hyperparameters setting. There are a number of different hyperparameters for all methods. Each
method requires a different set of hyperparameters, e.g., the regularization parameters (A in DualSGD),
the learning rates (n in FOGD and NOGD), and the RBF kernel width (v in all methods). Thus, for a
fair comparison, these hyperparameters are specified using cross-validation on a subset of data.

In particular, we further partition the training set into 80% for learning and 20% for valida-
tion. For large-scale databases, we use only 1% of dataset, so that the searching can fin-
ish within an acceptable time budget. The hyperparameters are varied in certain ranges and
selected for the best performance on the validation set. The ranges are given as follows:
C ef{27°,273 .., 219}, A €{27"/n, 277N, .., 2'0/N),y €{278, 274, 27220 22 24 98} and
n €{274,273 ...,271 21 22 2%} where N is the number of data points. The budget size B,
merging size k and random feature dimension D of DualSGD are selected following the approach

described in Section For the budget size B in NOGD and Pegasos algorithm, and the feature
dimension D in FOGD for each dataset, we use identical values to those used in Section 7.1.1 of [16].

Table 1: Mistake rate (%) and execution time (seconds). The notation [k; B; D; B ; D] denotes the
merging size k, the budget sizes B and B of DualSGD-based models and other budgeted algorithms,
and the number of random features D and D of DualSGD and FOGD, respectively.

Dataset cod-rna jjennl
[k\B|D\B\D] 20 | 100 | 200 | 400 | 1,600] | [20] 100 | 200 | 1,000 | 4,000]
Algorithm Mistake Rate Time | Mistake Rate Time
Perceptron 9.79+0.04 1,393.56 12.85+0.09 727.90
OGD 7.81£0.03 2,804.01 10.39+0.06 960.44
RBP 26.02+0.39 85.84 15.54+0.21 54.29
Forgetron 28.56+2.22 102.64 16.17+0.26 60.54
Projectron 11.16£3.61 97.38 12.98+0.23 59.37
Projectron++ 17.97+15.60 1,799.93 9.97+0.09 749.70
BPAS 11.9740.09 92.08 10.68+0.05 55.44
BSGD-M 5.33£0.04 184.58 9.14+£0.18 1,562.61
BOGD 38.13+0.11 104.60 10.87+0.18 55.99
FOGD 7.15£0.03 53.45 9.41£0.03 25.93
NOGD 7.83+0.06 105.18 10.43+0.08 59.36
DualSGD-Hinge 4.92+0.25 28.29 8.351+0.20 12.12
DualSGD-Logit 4.83+0.21 31.96 8.82+0.24 13.30

Dataset [S] poker airlines
[k\B|D\B\f)] [20 | 100 | 200 | 1,000 | 4,000] | [20 | 100 | 200 | 1,000 | 4,000]
Algorithm Mistake Rate Time | Mistake Rate Time
FOGD 52.28+0.04 928.89 20.98+0.01 1,270.75
NOGD 44.90+0.16 4,920.33 25.56+0.01 3,553.50
DualSGD-Hinge 46.73+0.22 139.87 19.28+0.00 472.21
DualSGD-Logit 46.65+0.14 133.50 19.284-0.00 523.23

Results. Table[I|reports the average classification results and execution time after the methods see
all data samples. Note that for two biggest datasets (poker, airlines) that consist of millions of data
points, we only include the fast algorithms FOGD, NOGD and DualSGDs. The other methods would
exceed the time limit, which we set to two hours, when running on such data as they suffer from
serious computation issue. From these results, we can draw key observations below.

The budgeted online approaches show their effectiveness with substantially faster computation than
the ones without budgets. More specifically, the execution time of our proposed models is several
orders of magnitude (100 times) lower than that of regular online algorithms (e.g., 28.29 seconds
compared with 2, 804 seconds for cod-rna dataset). Moreover, our models are twice as fast as the
recent fast algorithm FOGD for cod-rna and ijcnnl datasets, and approximately eight and three times
for vast-sized data poker and airlines. This is because the DualSGDs maintain a sparse budget of
support vectors and a low random feature space, whose size and dimensionality are 10 times and 20
times smaller than those of other methods.

Second, in terms of classification, the DualSGD-Hinge and DualSGD-Logit outperform other meth-
ods for almost all datasets except the poker data. In particular, the DualSGD-based methods achieve
the best mistake rates 4.831+0.21, 8.35+0.20, 19.2840.00 for the cod-rna, ijcnnl and airlines data,
that are, respectively, 32.4%, 11.3%, 8.8% lower than the error rates of the second best models —
two recent approaches FOGD and NOGD. For poker dataset, our methods obtain fairly comparable
results with that of the NOGD, but still surpass the FOGD with a large margin. The reason is that the
DualSGD uses a dual space: a kernel space containing core support vectors and a random feature
space keeping the projections of the core vectors that are removed from the budget in kernel space.
This would minimize the information loss when the model performs budget maintenance.

Finally, two versions of DualSGDs demonstrate similar discriminative performances and computa-
tional complexities wherein the DualSGD-Logit is slightly slower due to the additional exponential
operators. All of these observations validate the effectiveness and efficiency of our proposed tech-
nique. Thus, we believe that our approximation machine is a promising technique for building
scalable online kernel learning algorithms for large-scale classification tasks.

3.4 Online Regression

The last experiment addresses the online regression problem to evaluate the capabilities of our
approach with two proposed loss functions: ¢; and e-insensitive losses. Incorporating these loss
functions creates two versions: DualSGD-g, DualSGD-/;. We use two datasets: year and airlines
(delay minutes), and six baselines: RBP, Forgetron, Projectron, BOGD, FOGD and NOGD.

Table 2: Root mean squared error (RMSE) and execution time (seconds) of 6 baselines and 2 versions
of our DualSGDs. The notation [k; B; D; B; D] denotes the same meaning as those in Table

Dataset year airlines
[k|B\D\B|ﬁ] [20 | 100 | 200 | 400 | 1,600] | [20 | 100 | 200 | 1,000 | 2, 000]
Algorithm RMSE Time RMSE Time
RBP 0.19+0.00 605.42 | 36.51£0.00 3,418.89
Forgetron 0.194+0.00 904.09 | 36.51+0.00 5,774.47
Projectron 0.1440.00 605.19 | 36.14+0.00 3,834.19
BOGD 0.20+0.00 596.10 | 35.73+0.00 3,058.96
FOGD 0.1610.00 76.70 | 53.16+0.01 646.15
NOGD 0.1440.00 607.37 | 34.74+0.00 3,324.38
DualSGD-e 0.13£0.00 48.01 | 36.20+0.01 457.30
DualSGD-/; 0.1210.00 47.29 | 36.20+0.01 443.39

Hyperparameters setting. We adopt the same hyperparameter searchmg procedure for online
classification task as in Section E 3l Furthermore, for the budget size B and the feature dimension

D in FOGD, we follow the same strategy used in Section 7.1.1 of [16]. More specifically, these
hyperparameters are separately set for different datasets as reported in Table [2] They are chosen
such that they are roughly proportional to the number of support vectors produced by the batch SVM
algorithm in LIBSVM running on a small subset. The aim is to achieve competitive accuracy using a
relatively larger budget size for tackling more challenging regression tasks.

Results. Table 2]reports the average regression errors and computation costs after the methods see
all data samples. From these results, we can draw some observations below.

Our proposed models enjoy a significant advantage in computational efficacy whilst achieve better
(for year dataset) or competitive regression results (for airlines dataset) with other methods. The
DualSGD, again, secures the best performance in terms of model sparsity. Among the baselines, the
FOGD is the fastest, that is, its time costs can be considered to compare with those of our methods,
but its regression performances are worse. The remaining algorithms usually obtain better results, but
is paid by the sacrifice of scalability.

Finally, comparing the capability of two DualSGD’s variants, both models demonstrate similar
regression capabilities and computational complexities wherein the DualSGD-/; is slightly faster due
to its simpler operator in computing the gradient. Besides, its regression scores are also lower or equal
to those of DualSGD-¢. These observations, once again, verifies the effectiveness and efficiency of
our proposed techniques. Therefore the DualSGD is also a promising machine to perform online
regression task for large-scale datasets.

4 Conclusion

In this paper, we have proposed Dual Space Gradient Descent (DualSGD) that overcomes the
computational problem in the projection and merging strategies in Budgeted SGD (BSGD) and the
excessive number of random features in Fourier Online Gradient Descent (FOGD). More specifically,
we have employed the random features to form an auxiliary space for storing the vectors being
removed during the budget maintenance process. This makes the operations in budget maintenance
simple and convenient. We have further presented the convergence analysis that is appropriate for a
wide spectrum of loss functions. Finally, we have conducted the extensive experiments on several
benchmark datasets to prove the efficiency and accuracy of the proposed method.

References

[1] F. Rosenblatt. The perceptron: A probabilistic model for information storage and organization
in the brain. Psychological Review, 65(6):386—408, 1958.

[2] C.-C. Chang and C.-J. Lin. Libsvm: A library for support vector machines. ACM Trans. Intell.
Syst. Technol., 2(3):27:1-27:27, May 2011.

[3] K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and Y. Singer. Online passive-aggressive
algorithms. J. Mach. Learn. Res., 7:551-585, 2006.

[4] M. Dredze, K. Crammer, and F. Pereira. Confidence-weighted linear classification. In Interna-
tional Conference on Machine Learning 2008, pages 264-271, 2008.

[5] Y. Freund and R. E. Schapire. Large margin classification using the perceptron algorithm. Mach.
Learn., 37(3):277-296, December 1999.

[6] J.Kivinen, A. J. Smola, and R. C. Williamson. Online Learning with Kernels. IEEE Transactions
on Signal Processing, 52:2165-2176, August 2004.

[7] Z. Wang, K. Crammer, and S. Vucetic. Breaking the curse of kernelization: Budgeted stochastic
gradient descent for large-scale svm training. J. Mach. Learn. Res., 13(1):3103-3131, 2012.

[8] O. Dekel, S. Shalev-Shwartz, and Y. Singer. The forgetron: A kernel-based perceptron on a
fixed budget. In Advances in Neural Information Processing Systems, pages 259-266, 2005.

[9] G. Cavallanti, N. Cesa-Bianchi, and C. Gentile. Tracking the best hyperplane with a simple
budget perceptron. Machine Learning, 69(2-3):143-167, 2007.

[10] T. Le, V. Nguyen, T. D. Nguyen, and Dinh Phung. Nonparametric budgeted stochastic gradient
descent. In The 19th International Conference on Artificial Intelligence and Statistics, May
2016.

[11] T. Le, P. Duong, M. Dinh, T. D. Nguyen, V. Nguyen, and D. Phung. Budgeted semi-supervised
support vector machine. In The 32th Conference on Uncertainty in Artificial Intelligence, June
2016.

[12] H. Robbins and S. Monro. A stochastic approximation method. Annals of Mathematical
Statistics, 22:400-407, 1951.

[13] S. Shalev-shwartz, Y. Singer, and N. Srebro. Pegasos: Primal estimated sub-gradient solver for
svm. In ICML 2007, pages 807-814, 2007.

[14] A. Rahimi and B. Recht. Random features for large-scale kernel machines. In Advances in
Neural Infomration Processing Systems, 2007.

[15] L. Ming, W. Shifeng, and Z. Changshui. On the sample complexity of random fourier features
for online learning: How many random fourier features do we need? ACM Trans. Knowl.
Discov. Data, 8(3):13:1-13:19, June 2014.

[16] J. Lu, S. C.H. Hoi, J. Wang, P. Zhao, and Z.-Y. Liu. Large scale online kernel learning. J. Mach.
Learn. Res., 2015.

[17] Z. Wang and S. Vucetic. Online passive-aggressive algorithms on a budget. In AISTATS,
volume 9, pages 908-915, 2010.

[18] S. Shalev-Shwartz and T. Zhang. Stochastic dual coordinate ascent methods for regularized
loss. Journal of Machine Learning Research, 14(1):567-599, 2013.

[19] J. Hensman, N. Fusi, and N. D Lawrence. Gaussian processes for big data. In Uncertainty in
Artificial Intelligence, pages 282-290, 2013.

[20] F. Orabona, J. Keshet, and B. Caputo. Bounded kernel-based online learning. J. Mach. Learn.
Res., 10:2643-2666, December 2009.

[21] P. Zhao, J. Wang, P. Wu, R. Jin, and S. C. H. Hoi. Fast bounded online gradient descent
algorithms for scalable kernel-based online learning. CoRR, 2012.

