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Abstract

We study the dynamic regret of multi-armed bandit and experts problem in non-
stationary stochastic environments. We introduce a new parameter Λ, which
measures the total statistical variance of the loss distributions over T rounds of the
process, and study how this amount affects the regret. We investigate the interaction
between Λ and Γ, which counts the number of times the distributions change, as
well as Λ and V , which measures how far the distributions deviates over time. One
striking result we find is that even when Γ, V , and Λ are all restricted to constant,
the regret lower bound in the bandit setting still grows with T . The other highlight
is that in the full-information setting, a constant regret becomes achievable with
constant Γ and Λ, as it can be made independent of T , while with constant V and
Λ, the regret still has a T 1/3 dependency. We not only propose algorithms with
upper bound guarantee, but prove their matching lower bounds as well.

1 Introduction

Many situations in our daily life require us to make repeated decisions which result in some losses
corresponding to our chosen actions. This can be abstracted as the well-known online decision
problem in machine learning [5]. Depending on how the loss vectors are generated, two different
worlds are usually considered. In the adversarial world, loss vectors are assumed to be deterministic
and controlled by an adversary, while in the stochastic world, loss vectors are assumed to be sampled
independently from some distributions. In both worlds, good online algorithms are known which
can achieve a regret of about

√
T over T time steps, where the regret is the difference between the

total loss of the online algorithm and that of the best offline one. Another distinction is about the
information the online algorithm can receive after each action. In the full-information setting, it gets
to know the whole loss vector of that step, while in the bandit setting, only the loss value of the
chosen action is received. Again, in both settings, a regret of about

√
T turns out to be achievable.

While the regret bounds remain in the same order in those general scenarios discussed above, things
become different when some natural conditions are considered. One well-known example is that in
the stochastic multi-armed bandit (MAB) problem, when the best arm (or action) is substantially
better than the second best, with a constant gap between their means, then a much lower regret, of the
order of log T , becomes possible. This motivates us to consider other possible conditions which can
have finer characterization of the problem in terms of the achievable regret.

In the stochastic world, most previous works focused on the stationary setting, in which the loss (or
reward) vectors are assumed to be sampled from the same distribution for all time steps. With this
assumption, although one needs to balance between exploration and exploitation in the beginning,
after some trials, one can be confident about which action is the best and rest assured that there are
no more surprises. On the other hand, the world around us may not be stationary, in which existing
learning algorithms for the stationary case may no longer work. In fact, in a non-stationary world, the
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dilemma between exploration and exploitation persists as the underlying distribution may drift as
time evolves. How does the non-stationarity affect the achievable regret? How does one measure the
degree of non-stationarity?

In this paper, we answer the above questions through the notion of dynamic regret, which measures
the algorithm’s performance against an offline algorithm allowed to select the best arm at every step.

Related Works. One way to measure the non-stationarity of a sequence of distributions is to count
the number of times the distribution at a time step differs from its previous one. Let Γ − 1 be
this number so that the whole time horizon can be partitioned into Γ intervals, with each interval
having a stationary distribution. In the bandit setting, a regret of about

√
ΓT is achieved by the

EXP3.S algorithm in [2], as well as the discounted UCB and sliding-window UCB algorithms in
[8]. The dependency on T can be refined in the full-information setting: AdaNormalHedge [10]
and Adapt-ML-Prod [7] can both achieve regret in the form of

√
ΓC, where C is the total first-order

and second-order excess loss respectively, which is upper-bounded by T . From a slightly different
Online Mirror Descent approach, [9] can also achieve a regret of about

√
ΓD, where D is the sum of

differences between consecutive loss vectors.

Another measure of non-stationarity, denoted by V , is to compute the difference between the means
of consecutive distributions and sum them up. Note that this allows the possibility for the best arm to
change frequently, with a very large Γ, while still having similar distributions with a small V . For
such a measure V , [3] provided a bandit algorithm which achieves a regret of about V 1/3T 2/3. This
regret upper bound is unimprovable in general even in the full-information setting, as a matching
lower bound was shown in [4]. Again, [9] refined the upper bound in the full-information setting
through the introduction of D, achieving the regret of about

3
√
Ṽ DT , for a parameter Ṽ different but

related to V : Ṽ calculates the sum of differences between consecutive realized loss vectors, while V
measures that between mean loss vectors. This makes the results of [3] and [9] incomparable. The
problem stems from the fact that [9] considers the traditional adversarial setting, while [3] studies the
non-stationary stochastic setting. In this paper, we will provide a framework that bridges these two
seemingly disparate worlds.

Our Results. We base ourselves in the stochastic world with non-stationary distributions, charac-
terized by the parameters Γ and V . In addition, we introduce a new parameter Λ, which measures
the total statistical variance of the distributions. Note that traditional adversarial setting corresponds
to the case with Λ = 0 and Γ ≈ V ≈ T , while the traditional stochastic setting has Λ ≈ T and
Γ = V = 1. Clearly, with a smaller Λ, the learning problem becomes easier, and we would like to
understand the tradeoff between Λ and other parameters, including Γ, V , and T . In particular, we
would like to know how the bounds described in the related works would be changed. Would all the
dependency on T be replaced by Λ, or would only some partial dependency on T be shifted to Λ?

First, we consider the effect of the variance Λ with respect to the parameter Γ. We show that in
the full-information setting, a regret of about

√
ΓΛ + Γ can be achieved, which is independent of

T . On the other hand, we show a sharp contrast that in the bandit setting, the dependency on T is
unavoidable, and a lower bound of the order of

√
ΓT exists. That is, even when there is no variance in

distributions, with Λ = 0, and the distributions only change once, with Γ = 2, any bandit algorithm
cannot avoid a regret of about

√
T , while a full-information algorithm can achieve a constant regret

independent of T .

Next, we study the tradeoff between Λ and V . We show that in the bandit setting, a regret of about
3
√

ΛV T +
√
V T is achievable. Note that this recovers the V 1/3T 2/3 regret bound of [3] as Λ is at

most of the order of T , but our bound becomes better when Λ is much smaller than T . Again, one
may notice the dependency on T and wonder if this can also be removed in the full-information
setting. We show that in the full-information setting, the regret upper bound and lower bound are
both about 3

√
ΛV T + V . Our upper bound is incomparable to the

3
√
Ṽ DT bound of [9], since their

adversarial setting corresponds to Λ = 0 and their D can be as large as T in our setting. Moreover,
we see that while the full-information regret bound is slightly better than that in the bandit setting,
there is still an unavoidable T 1/3 dependency.
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Our results provide a big picture of the regret landscape in terms of the parameters Λ,Γ, V , and T ,
in both full-information and bandit settings. A table summarizing our bounds as well as previous
ones is given in Appendix A in the supplementary material. Finally, let us remark that our effort
mostly focuses on characterizing the achievable (minimax) regrets, and most of our upper bounds are
achieved by algorithms which need the knowledge of the related parameters and may not be practical.
To complement this, we also propose a parameter-free algorithm, which still achieve a good regret
bound and may have independent interest of its own.

2 Preliminaries

Let us first introduce some notations. For an integer K > 0, let [K] denote the set {1, . . . ,K}. For
a vector ` ∈ RK , let `i denote its i’th component. When we need to refer to a time-indexed vector
`t ∈ RK , we will write `t,i to denote its i’th component. We will use the indicator function 1C for a
condition C, which gives the value 1 if C holds and 0 otherwise. For a vector `, we let ‖`‖b denote its
Lb-norm. While standard notation O(·) is used to hide constant factors, we will use the notation Õ(·)
to hide logarithmic factors.

Next, let us describe the problem we study in this paper. Imagine that a learner is given the choice
of a total of K actions, and has to play iteratively for a total of T steps. At step t, the learner
needs to choose an action at ∈ [K], and then suffers a corresponding loss `t,i ∈ [0, 1], which is
independently drawn from a non-stationary distribution with expected loss E[`t,i] = µt,i, which
may drift over time. After that, the learner receives some feedback from the environment. In the
full-information setting, the feedback gives the whole loss vector `t = (`t,1, ..., `t,K), while in
the bandit setting, only the loss `t,at of the chosen action is revealed. A standard way to evaluate
the learner’s performance is to measure her (or his) regret, which is the difference between the
total loss she suffers and that of an offline algorithm. While most prior works consider offline
algorithms which can only play a fixed action for all the steps, we consider stronger offline algorithms
which can take different actions in different steps. Our consideration is natural for non-stationary
distributions, although this would make the regret large when compared to such stronger offline
algorithms. Formally, we measure the learner’s performance by its expected dynamic pseudo-regret,
defined as

∑T
t=1 E

[
`t,at − `t,u∗

t

]
=
∑T
t=1

(
µt,at − µt,u∗

t

)
, where u∗t = arg mini µt,i is the best

action at step t. For convenience, we will simply refer it as the regret of the learner later in our paper.

We will consider the following parameters characterizing different aspects of the environments:

Γ = 1 +

T∑
t=2

1µt 6=µt−1
, V =

T∑
t=1

‖µt − µt−1‖∞, and Λ =

T∑
t=1

E
[
‖`t − µt‖22

]
, (1)

where we let µ0 be the all-zero vector. Here, Γ− 1 is the number of times the distributions switch,
V measures the distance the distributions deviate, and Λ is the total statistical variance of these T
distributions. We will call distributions with a small Γ switching distributions, while we will call
distributions with a small V drifting distributions and call V the total drift of the distributions.

Finally, we will need the following large deviation bound, known as empirical Bernstein inequality.
Theorem 2.1. [11] Let X = (X1, ..., Xn) be a vector of independent random variables taking
values in [0, 1], and let ΛX =

∑
1≤i<j≤n(Xi −Xj)

2/(n(n− 1)). Then for any δ > 0, we have

Pr

[∣∣∣∣∣
n∑
i=1

E [Xi]−Xi

n

∣∣∣∣∣ > ρ(n,ΛX , δ)

]
≤ δ, for ρ(n,Λ, δ) =

√
2Λ log 2

δ

n
+

7 log 2
δ

3(n− 1)
.

3 Algorithms

We would like to characterize the achievable regret bounds for both switching and drifting distribu-
tions, in both full-information and bandit settings. In particular, we would like to understand the
interplay among the parameters Γ, V,Λ, and T , defined in (1). The only known upper bound which is
good enough for our purpose is that by [8] for switching distributions in the bandit setting, which is
close to the lower bound in our Theorem 4.1. In subsection 3.1, we provide a bandit algorithm for
drifting distributions which achieves an almost optimal regret upper bound, when given the parameters
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Algorithm 1 Rerun-UCB-V
Initialization: Set B according to (2) and δ = 1/(KT ).
for m = 1, . . . , T/B do

for t = (m− 1)B + 1, . . . ,mB do
Choose arm at := argmini(µ̂t,i − λt,i), with µ̂t,i and λt,i computed according to (3).

end for
end for

V,Λ, T . In subsection 3.2, we provide a full-information algorithm which works for both switching
and drifting distributions. The regret bounds it achieves are also close to optimal, but it again needs
the knowledge of the related parameters. To complement this, we provide a full-information algorithm
in subsection 3.3, which does not need to know the parameters but achieves slightly larger regret
bounds.

3.1 Parameter-Dependent Bandit Algorithm

In this subsection, we consider drifting distributions parameterized by V and Λ. Our main result is a
bandit algorithm which achieves a regret of about 3

√
ΛV T +

√
V T . As we aim to achieve smaller

regrets for distributions with smaller statistical variances, we adopt a variant of the UCB algorithm
developed by [1], called UCB-V, which takes variances into account when building its confidence
interval.

Our algorithm divides the time steps into T/B intervals I1, . . . , IT/B , each having B steps,1 with

B = 3
√
K2ΛT/V 2 if KΛ2 ≥ TV and B =

√
KT/V otherwise. (2)

For each interval, our algorithm clears all the information from previous intervals, and starts a fresh
run of UCB-V. More precisely, before step t in an interval I , it maintains for each arm i its empirical
mean µ̂t,i, empirical variance Λ̂t,i, and size of confidence interval λt,i, defined as

µ̂t,i =
∑
s∈St,i

`s,i
|St,i|

, Λ̂t,i =
∑

r,s∈St,i

(`r,i − `s,i)2

|St,i|(|St,i| − 1)
, and λt,i = ρ(|St,i|, Λ̂t,i, δ), (3)

where St,i denotes the set of steps before t in I that arm i was played, and ρ is the function given in
Theorem 2.1. Here we use the convention that µ̂t,i = 0 if |St,i| = 0, while Λ̂t,i = 0 and λt,i = 1 if
|St,i| ≤ 1. Then at step t, our algorithm selects the optimistic arm

at := argmin
i

(µ̂t,i − λt,i),

receives the corresponding loss, and updates the statistics.

Our algorithm is summarized in Algorithm 1, and its regret is guaranteed by the following, which we
prove in Appendix B in the supplementary material.

Theorem 3.1. The expected regret of Algorithm 1 is at most Õ(
3
√
K2ΛV T +

√
KV T ).

3.2 Parameter-Dependent Full-Information Algorithms

In this subsection, we provide full-information algorithms for switching and drifting distributions. In
fact, they are based on an existing algorithm from [6], which is known to work in a different setting:
the loss vectors are deterministic and adversarial, and the offline comparator cannot switch arms. In
that setting, one of their algorithms, based on gradient-descent (GD), can achieve a regret of O(

√
D)

where D =
∑
t ‖`t − `t−1‖22, which is small when the loss vectors have small deviation. Our first

observation is that their algorithm in fact can work against a dynamic offline comparator which
switches arms less than N times, given any N , with its regret becoming O(

√
ND). Our second

observation is that when Λ is small, each observed loss vector `t is likely to be close to its true mean
1For simplicity of presentation, let us assume here and later in the paper that taking divisions and roots to

produce blocks of time steps all yield integers. It is easy to modify our analysis to the general case without
affecting the order of our regret bound.
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Algorithm 2 Full-information GD-based algorithm
Initialization: Let x1 = x̂1 = (1/K, . . . , 1/K)>.
for t = 1, 2, . . . , T do

Play x̂t = arg minx̂∈X (〈`t−1, x̂〉+ 1
ηt
‖x̂− xt‖22), and then receive loss vector `t.

Update xt+1 = arg minx∈X (〈`t, x〉+ 1
ηt
‖x− xt‖22).

end for

µt, and when V is small, `t is likely to be close to `t−1. These two observations make possible for us
to adopt their algorithm to our setting.

We show the first algorithm in Algorithm 2, with the feasible set X being the probability simplex.
The idea is to use `t−1 as an estimate for `t to move x̂t further in a possibly beneficial direction. Its
regret is guaranteed by the following, which we prove in Appendix C in the supplementary material.
Theorem 3.2. For switching distributions parameterized by Γ and Λ, the regret of Algorithm 2 with
ηt = η =

√
Γ/(Λ +KΓ), is at most O(

√
ΓΛ +

√
KΓ).

Note that for switching distributions, the regret of Algorithm 2 does not depend on T , which means
that it can achieve a constant regret for constant Γ and Λ. Let us remark that although using a variant
based on multiplicative updates could result in a better dependency on K, an additional factor of
log T would then emerge when using existing techniques for dealing with dynamic comparators.

For drifting distributions, one can show that Algorithm 2 still works and has a good regret bound.
However, a slightly better bound can be achieved as we describe next. The idea is to divide the time
steps into T/B intervals of size B, with B = 3

√
ΛT/V 2 if ΛT > V 2 and B = 1 otherwise, and

re-run Algorithm 2 in each interval with an adaptive learning rate. One way to have an adaptive
learning rate can be found in [9], which works well when there is only one interval. A natural way to
adopt it here is to reset the learning rate at the start of each interval, but this does not lead to a good
enough regret bound as it results in some constant regret at the start of every interval. To avoid this,
some careful changes are needed. Specifically, in an interval [t1, t2], we run Algorithm 2 with the
learning rate reset as

ηt = 1/

√√√√4

t−1∑
τ=t1

‖`τ − `τ−1‖22

for t > t1, with ηt1 =∞ initially for every interval. This has the benefit of having small or even no
regret at the start of an interval when the loss vectors across the boundary have small or no deviation.
The regret of this new algorithm is guaranteed by the following, which we prove in Appendix D in
the supplementary material.
Theorem 3.3. For drifting distributions parameterized by V and Λ, the regret of this new algorithm
is at most O( 3

√
V ΛT +

√
KV ).

3.3 Parameter-Free Full-Information Algorithm

The reason that our algorithm for Theorem 3.3 needs the related parameters is to set its learning rate
properly. To have a parameter-free algorithm, we would like to adjust the learning rate dynamically
in a data-driven way. One way for doing this can be found in [7], which is based on the multiplicative
updates variant of the mirror-descent algorithm. It achieves a static regret of about

√∑
t r

2
t,k against

any expert k, where rt,k = 〈pt, `t〉 − `t,k is its instantaneous regret for playing pt at step t. However,
in order to work in our setting, we would like the regret bound to depend on `t − `t−1 as seen
previously. This suggests us to modify the Adapt-ML-Prod algorithm of [7] using the idea of [6],
which takes `t−1 as an estimate of `t to move pt further in an optimistic direction.

Recall that the algorithm of [7] maintains a separate learning rate ηt,k for each arm k at time t, and it
updates the weight wt,k as well as ηt,k using the instantaneous regret rt,k. To modify the algorithm
using the idea of [6], we would like to have an estimate mt,k for rt,k in order to move pt,k further
using mt,k and update the learning rate accordingly. More precisely, at step t, we now play pt, with

pt,k = ηt−1,kw̃t−1,k/〈ηt−1, w̃t−1〉 where w̃t−1,k = wt−1,k exp(ηt−1,kmt,k), (4)
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Algorithm 3 Optimistic-Adapt-ML-Prod
Initialization: Let w0,k = 1/K and `0,k = 0 for every k ∈ [K].
for t = 1, 2, . . . , T do

Play pt according to (4), and then receive loss vector `t.
Update each weight wt,k according to (5) and each learning rate ηt,k according to (6).

end for

which uses the estimate mt,k to move further from wt−1,k. Then after receiving the loss vector `t,
we update each weight

wt,k =
(
wt−1,k exp

(
ηt−1,krt,k − η2t−1,k(rt,k −mt,k)2

))ηt,k/ηt−1,k (5)

as well as each learning rate

ηt,k = min

{
1/4,

√
(lnK)/

(
1 +

∑
s∈[t]

(rs,k −ms,k)2
)}

. (6)

Our algorithm is summarized in Algorithm 3, and we will show that it achieves a regret of about√∑
t(rt,k −mt,k)2 against arm k. It remains to choose an appropriate estimate mt,k. One attempt

is to have mt,k = rt−1,k, but rt,k − rt−1,k = (〈pt, `t〉 − `t,k)− (〈pt−1, `t−1〉 − `t−1,k), which does
not lead to a desirable bound. The other possibility is to set mt,k = 〈pt, `t−1〉 − `t−1,k, which can
be shown to have (rt,k −mt,k)2 ≤ (2‖`t − `t−1‖∞)2. However, it is not clear how to compute
such mt,k because it depends on pt,k which in turns depends on mt,k itself. Fortunately, we can
approximate it efficiently in the following way.

Note that the key quantity is 〈pt, `t−1〉. Given its value α, w̃t−1,k and pt,k can be seen as func-
tions of α, defined according to (5) as w̃t−1,k(α) = wt−1,k exp(ηt,k(α − `t−1,k)) and pt,k(α) =
ηt−1,kw̃t−1,k(α)/

∑
i ηt−1,iw̃t−1,i(α). Then we would like to show the existence of α such that

〈pt(α), `t−1〉 = α and to find it efficiently. For this, consider the function f(α) = 〈pt(α), `t−1〉,
with pt(α) defined above. It is easy to check that f is a continuous function bounded in [0, 1], which
implies the existence of some fixed point α ∈ [0, 1] with f(α) = α. Using a binary search, such an α
can be approximated within error 1/T in log T iterations. As such a small error does not affect the
order of the regret, we will ignore it for simplicity of presentation, and assume that we indeed have
〈pt, `t−1〉 and hence mt,k = 〈pt, `t−1〉 − `t−1,k without error.

Then we have the following regret bound (c.f. [7, Corollary 4]), which we prove in Appendix E in
the supplementary material.
Theorem 3.4. The static regret of Algorithm 3 w.r.t. any arm (or expert) k ∈ [K] is at most

Ô
(√∑

t∈[T ]
(rt,k −mt,k)2 lnK + lnK

)
≤ Ô

(√∑
t∈[T ]
‖`t − `t−1‖2∞ lnK + lnK

)
,

where the notation Ô(·) hides a ln lnT factor.

The regret in the theorem above is measured against a fixed arm. To achieve a dynamic regret against
an offline algorithm which can switch arms, one can use a generic reduction to the so-called sleeping
experts problem. In particular, we can use the idea in [7] by creating K̃ = KT sleeping experts, and
run our Algorithm 3 on these K̃ experts (instead of on the K arms). More precisely, each sleeping
expert is indexed by some pair (s, k), and it is asleep for steps before s and becomes awake for steps
t ≥ s. At step t, it calls Algorithm 3 for the distribution p̃t over the K̃ experts, and computes its own
distribution pt over K arms, with pt,k proportional to

∑t
s=1 p̃t,(s,k). Then it plays pt, receives loss

vector `t, and feeds some modified loss vector ˜̀
t and estimate vector m̃t to Algorithm 3 for update.

Here, we set ˜̀
t,(s,k) to its expected loss 〈pt, `t〉 if expert (s, k) is asleep and to `t,k otherwise, while

we set m̃t,(s,k) to 0 if expert (s, k) is asleep and to mt,k = 〈pt, `t−1〉− `t−1,k otherwise. This choice
allows us to relate the regret of Algorithm 3 to that of the new algorithm, which can be seen in the
proof of the following theorem, given in Appendix F in the supplementary material.

Theorem 3.5. The dynamic expected regret of the new algorithm is Õ(
√

ΓΛ lnK + Γ lnK) for
switching distributions and Õ( 3

√
V ΛT lnK +

√
V T lnK) for drifting distributions.
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4 Lower Bounds

We study regret lower bounds in this section. In subsection 4.1, we show that for switching distribu-
tions with Γ− 1 ≥ 1 switches, there is an Ω(

√
ΓT ) lower bound for bandit algorithms, even when

there is no variance (Λ = 0) and there are constant loss gaps between the optimal and suboptimal arms.
We also show a full-information lower bound, which almost matches our upper bound in Theorem 3.2.
In subsection 4.2, we show that for drifting distributions, our upper bounds in Theorem 3.1 and
Theorem 3.2 are almost tight. In particular, we show that now even for full-information algorithms,
a large 3

√
T dependency in the regret turns out to be unavoidable, even for small V and Λ. This

provides a sharp contrast to the upper bound of our Theorem 3.2, which shows that a constant regret
is in fact achievable by a full-information algorithm for switching distributions with constant Γ and
Λ. For simplicity of presentation, we will only discuss the case with K = 2 actions, as it is not hard
to extend our proofs to the general case.

4.1 Switching Distributions

In contrast to the full-information setting, the existence of switches presents a dilemma with lose-lose
situation for a bandit algorithm: in order to detect any possible switch early enough, it must explore
aggressively, but this has the consequence of playing suboptimal arms too often. To fool any bandit
algorithm, we will switch between two deterministic distributions, with no variance, which have
mean vectors `(1) = (1/2, 1)> and `(2) = (1/2, 0)>, respectively. Our result is the following.

Theorem 4.1. The worst-case expected regret of any bandit algorithm is Ω(
√

ΓT ), for Γ ≥ 2.

Proof. Consider any bandit algorithm A, and let us partition the T steps into Γ/2 intervals, each
consisting of B = 2T/Γ steps. Our goal is to make A suffer in each interval an expected regret
of Ω(

√
B) by switching the loss vectors at most once. As mentioned before, we will only switch

between two different deterministic distributions with mean vectors: `(1) and `(2). Note that we can
see these two distributions simply as two loss vectors, with `(i) having arm i as the optimal arm.

In what follows, we focus on one of the intervals, and assume that we have chosen the distributions in
all previous intervals. We would like to start the interval with the loss vector `(1). Let N2 denote the
expected number of steps A plays the suboptimal arm 2 in this interval if `(1) is used for the whole
interval. If N2 ≥

√
B/2, we can actually use `(1) for the whole interval with no switch, which makes

A suffer an expected regret of at least (1/2) ·
√
B/2 =

√
B/4 in this interval. Thus, it remains to

consider the case with N2 <
√
B/2. In this case, A does not explore arm 2 often enough, and we

let it pay by choosing an appropriate step to switch to the other loss vector `(2) = (1/2, 0)>, which
has arm 2 as the optimal one. For this, let us divide the B steps of the interval into

√
B blocks, each

consisting of
√
B steps. As N2 <

√
B/2, there must be a block in which the expected number of

steps that A plays arm 2 is at most N2/
√
B < 1/2. By a Markov inequality, the probability that A

ever plays arm 2 in this block is less than 1/2. This implies that when given the loss vector `(1) for
all the steps till the end of this block, A never plays arm 2 in the block with probability more than
1/2. Therefore, if we make the switch to the loss vector `(2) = (1/2, 0)> at the beginning of the
block, then A with probability more than 1/2 still never plays arm 2 and never notices the switch in
this block. As arm 2 is the optimal one with respect to `(2), the expected regret of A in this block is
more than (1/2) · (1/2) ·

√
B =

√
B/4.

Now if we choose distributions in each interval as described above, then there are at most Γ/2 · 2 = Γ
periods of stationary distribution in the whole horizon, and the total expected regret ofA can be made
at least Γ/2 ·

√
B/4 = Γ/2 ·

√
2T/Γ/4 = Ω(

√
ΓT ), which proves the theorem.

For full-information algorithms, we have the following lower bound, which almost matches our upper
bound in Theorem 3.2. We provide the proof in Appendix G in the supplementary material.

Theorem 4.2. The worst-case expected regret of any full-information algorithm is Ω(
√

ΓΛ + Γ).
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4.2 Drifting Distributions

In this subsection, we show that the regret upper bounds achieved by our bandit algorithm and
full-information algorithm are close to optimal by showing almost matching lower bounds. More
precisely, we have the following.
Theorem 4.3. The worst-case expected regret of any full-information algorithm is Ω( 3

√
ΛV T + V ),

while that of any bandit algorithm is Ω( 3
√

ΛV T +
√
V T ).

Proof. Let us first consider the full-information case. When ΛT ≤ 32KV 2, we immediately have
from Theorem 4.2 the regret lower bound of Ω(Γ) ≥ Ω(V ) ≥ Ω( 3

√
ΛV T + V ).

Thus, let us focus on the case with ΛT ≥ 32KV 2. In this case, V ≤ O( 3
√

ΛV T ), so it suffices to
prove a lower bound of Ω( 3

√
ΛV T ). Fix any full-information algorithm A, and we will show the

existence of a sequence of loss distributions for A to suffer such an expected regret. Following [3],
we divide the time steps into T/B intervals of length B, and we set B = 3

√
ΛT/(32KV 2) ≥ 1.

For each interval, we will pick some arm i as the optimal one, and give it some loss distribution
P , while other arms are sub-optimal and all have some loss distribution Q. We need P and Q to
satisfy the following three conditions: (a) P’s mean is smaller thanQ’s by ε, (b) their variances are at
most σ2, and (c) their KL divergence satisfies (ln 2)KL(Q,P) ≤ ε2/σ2, for some ε, σ ∈ (0, 1) to be
specified later. Their existence is guaranteed by the following, which we prove in Appendix H in the
supplementary material.

Lemma 4.4. For any 0 ≤ σ ≤ 1/2 and 0 ≤ ε ≤ σ/
√

2, there exist distributions P and Q satisfying
the three conditions above.

Let Di denote the joint distribution of such K distributions, with arm i being the optimal one, and we
will use the same Di for all the steps in an interval. We will show that for any interval, there is some
i such that using Di this way can make algorithm A suffer a large expected regret in the interval,
conditioned on the distributions chosen for previous intervals. Before showing that, note that when
we choose distributions in this way, their total variance is at most TKσ2 while their total drift is at
most (T/B)ε. To have them bounded by Λ and V respectively, we choose σ =

√
Λ/(4KT ) and

ε = V B/T , which satisfy the condition of Lemma 4.4, with our choice of B.

To find the distributions, we deal with the intervals one by one. Consider any interval, and assume
that the distributions for previous intervals have been chosen. Let Ni denote the number of steps A
plays arm i in this interval, and let Ei[Ni] denote its expectation when Di is used for every step of
the interval, conditioned on the distributions of previous intervals. One can bound this conditional
expectation in terms of a related one, denoted as Eunif[Ni], when every arm has the distribution Q for
every step of the interval, again conditioned on the distributions of previous intervals. Specifically,
using an almost identical argument to that in [2, proof of Theorem A.2.], one can show that

Ei [Ni] ≤ Eunif [Ni] +
B

2

√
B(2 ln 2) ·KL(Q,P).2 (7)

According to Lemma 4.4 and our choice of parameters, we have B(2 ln 2) · KL(Q,P) ≤ 2B ·
(ε2/σ2) ≤ 1/4. Summing both sides of (7) over arm i, and using the fact that

∑
i Eunif [Ni] = B,

we get
∑
i Ei [Ni] ≤ B + BK/4, which implies the existence of some i such that Ei [Ni] ≤

B/K +B/4 ≤ (3/4)B. Therefore, if we choose this distribution Di, the conditional expected regret
of algorithm A in this interval is at least ε(B − Ei[Ni]) ≥ εB/4.
By choosing distributions inductively in this way, we can make A suffer a total expected regret of at
least (T/B) · (εB/4) ≥ Ω( 3

√
ΛV T ). This completes the proof for the full-information case.

Next, let us consider the bandit case. From Theorem 4.1, we immediately have a lower bound of
Ω(
√

ΓT ) ≥ Ω(
√
V T ), which implies the required bound when

√
V T ≥ 3

√
ΛV T . When

√
V T ≤

3
√

ΛV T , we have V ≤ Λ2/T which implies that V ≤ 3
√

ΛV T , and we can then use the full-
information bound of Ω( 3

√
ΛV T ) just proved before. This completes the proof of the theorem.

2Note that inside the square root, we use B instead of Eunif[Ni] as in [2]. This is because in their bandit
setting, Ni is the number of steps when arm i is sampled and has its information revealed to the learner, while in
our full-information case, information about arm i is revealed in every step and there are at most B steps.
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