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Abstract

We study a general adversarial online learning problem, in which we are given a
decision set X in a reflexive Banach space X and a sequence of reward vectors
in the dual space of X . At each iteration, we choose an action from X , based on
the observed sequence of previous rewards. Our goal is to minimize regret. Using
results from infinite dimensional convex analysis, we generalize the method of
Dual Averaging to our setting and obtain upper bounds on the worst-case regret that
generalize many previous results. Under the assumption of uniformly continuous
rewards, we obtain explicit regret bounds in a setting where the decision set is the
set of probability distributions on a compact metric space S. Importantly, we make
no convexity assumptions on either S or the reward functions. We also prove a
general lower bound on the worst-case regret for any online algorithm. We then
apply these results to the problem of learning in repeated two-player zero-sum
games on compact metric spaces. In doing so, we first prove that if both players play
a Hannan-consistent strategy, then with probability 1 the empirical distributions
of play weakly converge to the set of Nash equilibria of the game. We then show
that, under mild assumptions, Dual Averaging on the (infinite-dimensional) space
of probability distributions indeed achieves Hannan-consistency.

1 Introduction

Regret analysis is a general technique for designing and analyzing algorithms for sequential decision
problems in adversarial or stochastic settings (Shalev-Shwartz, 2012; Bubeck and Cesa-Bianchi,
2012). Online learning algorithms have applications in machine learning (Xiao, 2010), portfolio
optimization (Cover, 1991), online convex optimization (Hazan et al., 2007) and other areas. Regret
analysis also plays an important role in the study of repeated play of finite games (Hart and Mas-
Colell, 2001). It is well known, for example, that in a two-player zero-sum finite game, if both
players play according to a Hannan-consistent strategy (Hannan, 1957), their (marginal) empirical
distributions of play almost surely converge to the set of Nash equilibria of the game (Cesa-Bianchi
and Lugosi, 2006). Moreover, it can be shown that playing a strategy that achieves sublinear regret
almost surely guarantees Hannan-consistency.

A natural question then is whether a similar result holds for games with infinite action sets. In this
article we provide a positive answer. In particular, we prove that in a continuous two-player zero sum
game over compact (not necessarily convex) metric spaces, if both players follow a Hannan-consistent
strategy, then with probability 1 their empirical distributions of play weakly converge to the set of
Nash equilibria of the game. This in turn raises another important question: Do algorithms that
ensure Hannan-consistency exist in such a setting? More generally, can one develop algorithms that
guarantee sub-linear growth of the worst-case regret? We answer these questions affirmatively as well.
To this end, we develop a general framework to study the Dual Averaging (or Follow the Regularized
Leader) method on reflexive Banach spaces. This framework generalizes a wide range of existing
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results in the literature, including algorithms for online learning on finite sets (Arora et al., 2012) and
finite-dimensional online convex optimization (Hazan et al., 2007).

Given a convex subset X of a reflexive Banach space X , the generalized Dual Averaging (DA)
method maximizes, at each iteration, the cumulative past rewards (which are elements of X∗, the dual
space of X) minus a regularization term h. We show that under certain conditions, the maximizer in
the DA update is the Fréchet gradient Dh∗ of the regularizer’s conjugate function. In doing so, we
develop a novel characterization of the duality between essential strong convexity of h and essential
Fréchet differentiability of h∗ in reflexive Banach spaces, which is of independent interest.

We apply these general results to the problem of minimizing regret when the rewards are uniformly
continuous functions over a compact metric space S. Importantly, we do not assume convexity of
either S or the rewards, and show that it is possible to achieve sublinear regret under a mild geometric
condition on S (namely, the existence of a locally Q-regular Borel measure). We provide explicit
bounds for a class of regularizers, which guarantee sublinear worst-case regret. We also prove a
general lower bound on the regret for any online algorithm and show that DA asymptotically achieves
this bound up to a

√
log t factor.

Our results are related to work by Lehrer (2003) and Sridharan and Tewari (2010); Srebro et al.
(2011). Lehrer (2003) gives necessary geometric conditions for Blackwell approachability in infinite-
dimensional spaces, but no implementable algorithm guaranteeing Hannan-consistency. Sridharan
and Tewari (2010) derive general regret bounds for Mirror Descent (MD) under the assumption that
the strategy set is uniformly bounded in the norm of the Banach space. We do not make such an
assumption here. In fact, this assumption does not hold in general for our applications in Section 3.

The paper is organized as follows: In Section 2 we introduce and provide a general analysis of Dual
Averaging in reflexive Banach spaces. In Section 3 we apply these results to obtain explicit regret
bounds on compact metric spaces with uniformly continuous reward functions. We use these results
in Section 4 in the context of learning Nash equilibria in continuous two-player zero sum games, and
provide a numerical example in Section 4. All proofs are given in the supplementary material.

2 Regret Minimization on Reflexive Banach Spaces

Consider a sequential decision problem in which we are to choose a sequence (x1, x2, . . . ) of actions
from some feasible subset X of a reflexive Banach space X , and seek to maximize a sequence
(u1(x1), u2(x2), . . . ) of rewards, where the uτ : X → R are elements of a given subset U ⊂ X∗,
with X∗ the dual space of X . We assume that xt, the action chosen at time t, may only depend
on the sequence of previously observed reward vectors (u1, . . . , ut−1). We call any such algorithm
an online algorithm. We consider the adversarial setting, i.e., we do not make any distributional
assumptions on the rewards. In particular, they could be picked maliciously by some adversary.

The notion of regret is a standard measure of performance for such a sequential decision problem. For
a sequence (u1, . . . , ut) of reward vectors, and a sequence of decisions (x1, . . . , xt) produced by an
algorithm, the regret of the algorithm w.r.t. a (fixed) decision x ∈ X is the gap between the realized
reward and the reward under x, i.e., Rt(x) :=

∑t
τ=1 uτ (x)−∑t

τ=1 uτ (xτ ). The regret is defined
asRt := supx∈X Rt(x). An algorithm is said to have sublinear regret if for any sequence (ut)t≥1
in the set of admissible reward functions U , the regret grows sublinearly, i.e. lim suptRt/t ≤ 0.

Example 1. Consider a finite action set S = {1, . . . , n}, let X = X∗ = Rn, and let X = ∆n−1,
the probability simplex in Rn. A reward function can be identified with a vector u ∈ Rn, such that
the i-th element ui is the reward of action i. A choice x ∈ X corresponds to a randomization over
the n actions in S. This is the classic setting of many regret-minimizing algorithms in the literature.

Example 2. Suppose S is a compact metric space with µ a finite measure on S. Consider X =
X∗ = L2(S, µ) and let X = {x ∈ X : x ≥ 0 a.e., ‖x‖1 = 1}. A reward function is an L2-
integrable function on S, and each choice x ∈ X corresponds to a probability distribution (absolutely
continuous w.r.t. µ) over S. We will explore a more general variant of this problem in Section 3.

In this Section, we prove a general bound on the worst-case regret for DA. DA was introduced
by Nesterov (2009) for (finite dimensional) convex optimization, and has also been applied to online
learning, e.g. by Xiao (2010). In the finite dimensional case, the method solves, at each iteration, the
optimization problem xt+1 = arg maxx∈X

〈
ηt
∑t
τ=1 uτ , x

〉
− h(x), where h is a strongly convex
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regularizer defined on X ⊂ Rn and (ηt)t≥0 is a sequence of learning rates. The regret analysis of
the method relies on the duality between strong convexity and smoothness (Nesterov, 2009, Lemma
1). In order to generalize DA to our Banach space setting, we develop an analogous duality result in
Theorem 1. In particular, we show that the correct notion of strong convexity is (uniform) essential
strong convexity. Equipped with this duality result, we analyze the regret of the Dual Averaging
method and derive a general bound in Theorem 2.

2.1 Preliminaries

Let (X, ‖ · ‖) be a reflexive Banach space, and denote by 〈 · , · 〉 : X × X∗ → R the canonical
pairing between X and its dual space X∗, so that 〈x, ξ〉 := ξ(x) for all x ∈ X, ξ ∈ X∗. By
the effective domain of an extended real-valued function f : X → [−∞,+∞] we mean the set
dom f = {x ∈ X : f(x) < +∞}. A function f is proper if f > −∞ and dom f is non-empty.
The conjugate or Legendre-Fenchel transform of f is the function f∗ : X∗ → [−∞,+∞] given by

f∗(ξ) = sup
x∈X
〈x, ξ〉 − f(x) (1)

for all ξ ∈ X∗. If f is proper, lower semicontinuous and convex, its subdifferential ∂f is the
set-valued mapping ∂f(x) =

{
ξ ∈ X∗ : f(y) ≥ f(x) + 〈y − x, ξ〉 for all y ∈ X

}
. We define

dom ∂f := {x ∈ X : ∂f(x) 6= ∅}. Let Γ denote the set of all convex, lower semicontinuous
functions γ : [0,∞)→ [0,∞] such that γ(0) = 0, and let

ΓU :=
{
γ ∈ Γ : ∀r > 0, γ(r) > 0

}
ΓL :=

{
γ ∈ Γ : γ(r)/r → 0, as r → 0

}
(2)

We now introduce some definitions. Additional results are reviewed in the supplementary material.
Definition 1 (Strömberg, 2011). A proper convex lower semicontinuous function f : X → (−∞,∞]
is essentially strongly convex if

(i) f is strictly convex on every convex subset of dom ∂f

(ii) (∂f)−1 is locally bounded on its domain

(iii) for every x0 ∈ dom ∂f there exists ξ0 ∈ X∗ and γ ∈ ΓU such that
f(x) ≥ f(x0) + 〈x− x0, ξ0〉+ γ(‖x− x0‖), ∀x ∈ X. (3)

If (3) holds with γ independent of x0, f is uniformly essentially strongly convex with modulus γ.
Definition 2 (Strömberg, 2011). A proper convex lower semicontinuous function f : X → (−∞,∞]
is essentially Fréchet differentiable if int dom f 6= ∅, f is Fréchet differentiable on int dom f with
Fréchet derivative Df , and ‖Df(xj)‖∗ → ∞ for any sequence (xj)j in int dom f converging to
some boundary point of dom f .
Definition 3. A proper Fréchet differentiable function f : X → (−∞,∞] is essentially strongly
smooth if ∀x0 ∈ dom ∂f, ∃ ξ0 ∈ X∗, κ ∈ ΓL such that

f(x) ≤ f(x0) + 〈ξ0, x− x0〉+ κ(‖x− x0‖), ∀x ∈ X. (4)
If (4) holds with κ independent of x0, f is uniformly essentially strongly smooth with modulus κ.

With this we are now ready to give our main duality result:
Theorem 1. Let f : X → (−∞,+∞] be proper, lower semicontinuous and uniformly essentially
strongly convex with modulus γ ∈ ΓU . Then

(i) f∗ is proper and essentially Fréchet differentiable with Fréchet derivative
Df∗(ξ) = arg max

x∈X
〈x, ξ〉 − f(x). (5)

If, in addition, γ̃(r) := γ(r)/r is strictly increasing, then

‖Df∗(ξ1)−Df∗(ξ2)‖ ≤ γ̃−1
(
‖ξ1 − ξ2‖∗/2

)
. (6)

In other words, Df∗ is uniformly continuous with modulus of continuity χ(r) = γ̃−1(r/2).

(ii) f∗ is uniformly essentially smooth with modulus γ∗.

Corollary 1. If γ(r) ≥ C r1+κ, ∀ r ≥ 0 then ‖Df∗(ξ1) − Df∗(ξ2)‖ ≤ (2C)−1/κ‖ξ1 − ξ2‖1/κ∗ .
In particular, with γ(r) = K

2 r
2, Definition 1 becomes the classic definition of K-strong convexity,

and (6) yields the result familiar from the finite-dimensional case that the gradient Df∗ is 1/K
Lipschitz with respect to the dual norm (Nesterov, 2009, Lemma 1).
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2.2 Dual Averaging in Reflexive Banach Spaces

We call a proper convex function h : X → (−∞,+∞] a regularizer function on a set X ⊂ X if
h is essentially strongly convex and domh = X . We emphasize that we do not assume h to be
Fréchet-differentiable. Definition 1 in conjunction with Lemma S.1 (supplemental material) implies
that for any regularizer h, the supremum of any function of the form 〈 · , ξ〉 − h( · ) over X , where
ξ ∈ X∗, will be attained at a unique element of X , namely Dh∗(ξ), the Fréchet gradient of h∗ at ξ.

DA with regularizer h and a sequence of learning rates (ηt)t≥1 generates a sequence of decisions
using the simple update rule xt+1 = Dh∗(ηtUt), where Ut =

∑t
τ=1 uτ and U0 := 0.

Theorem 2. Let h be a uniformly essentially strongly convex regularizer on X with modulus γ and
let (ηt)t≥1 be a positive non-increasing sequence of learning rates. Then, for any sequence of payoff
functions (ut)t≥1 in X∗ for which there exists M <∞ such that supx∈X |〈ut, x〉| ≤M for all t, the
sequence of plays (xt)t≥0 given by

xt+1 = Dh∗
(
ηt
∑t
τ=1 uτ

)
(7)

ensures that

Rt(x) :=

t∑
τ=1

〈uτ , x〉 −
t∑

τ=1

〈uτ , xτ 〉 ≤
h(x)− h

ηt
+

t∑
τ=1

‖uτ‖∗ γ̃−1
(ητ−1

2
‖uτ‖∗

)
(8)

where h = infx∈X h(x), γ̃(r) := γ(r)/r and η0 := η1.

It is possible to obtain a regret bound similar to (8) also in a continuous-time setting. In fact,
following Kwon and Mertikopoulos (2014), we derive the bound (8) by first proving a bound on
a suitably defined notion of continuous-time regret, and then bounding the difference between the
continuous-time and discrete-time regrets. This analysis is detailed in the supplementary material.
Note that the condition that supx∈X |〈ut, x〉| ≤M in Theorem 2 is weaker than the one in Sridharan
and Tewari (2010), as it does not imply a uniformly bounded strategy set (e.g., if X = L2(R) and X
is the set of distributions on X , then X is unbounded in L2, but the condition may still hold).

Theorem 2 provides a regret bound for a particular choice x ∈ X . Recall thatRt := supx∈X Rt(x).
In Example 1 the set X is compact, so any continuous regularizer h will be bounded, and hence
taking the supremum over x in (8) poses no issue. However, this is not the case in our general
setting, as the regularizer may be unbounded on X . For instance, consider Example 2 with the
entropy regularizer h(x) =

∫
S
x(s) log(x(s))ds, which is easily seen to be unbounded on X . As a

consequence, obtaining a worst-case bound will in general require additional assumptions on the
reward functions and the decision set X . This will be investigated in detail in Section 3.
Corollary 2. Suppose that γ(r) ≥ C r1+κ, ∀ r ≥ 0 for some C > 0 and κ > 0. Then

Rt(x) ≤ h(x)− h
ηt

+ (2C)−1/κ
t∑

τ=1

η
1/κ
τ−1‖uτ‖

1+1/κ
∗ . (9)

In particular, if ‖ut‖∗ ≤M for all t and ηt = η t−β , then

Rt(x) ≤ h(x)− h
η

tβ +
κ

κ− β
( η

2C

)1/κ
M1+1/κ t1−β/κ. (10)

Assuming h is bounded, optimizing over β yields a rate of Rt(x) = O(t
κ

1+κ ). In particular, if
γ(r) = K

2 r
2, which corresponds to the classic definition of strong convexity, then Rt(x) = O(

√
t).

For non-vanishing uτ we will need that ηt ↘ 0 for the sum in (9) to converge. Thus we could get
potentially tighter control over the rate of this term for κ < 1, at the expense of larger constants.

3 Online Optimization on Compact Metric Spaces

We now apply the above results to the problem minimizing regret on compact metric spaces under
the additional assumption of uniformly continuous reward functions. We make no assumptions on
convexity of either the feasible set or the rewards. Essentially, we lift the non-convex problem of
minimizing a sequence of functions over the (possibly non-convex) set S to the convex (albeit infinite-
dimensional) problem of minimizing a sequence of linear functionals over a set X of probability
measures (a convex subset of the vector space of measures on S).
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3.1 An Upper Bound on the Worst-Case Regret

Let (S, d) be a compact metric space, and let µ be a Borel measure on S. Suppose that the reward
vectors uτ are given by elements in Lq(S, µ), where q > 1. Let X = Lp(S, µ), where p and q are
Hölder conjugates, i.e., 1

p + 1
q = 1. Consider X = {x ∈ X : x ≥ 0 a.e., ‖x‖1 = 1}, the set of

probability measures on S that are absolutely continuous w.r.t. µ with p-integrable Radon-Nikodym
derivatives. Moreover, denote by Z the class of non-decreasing χ : [0,∞) → [0,∞] such that
limr→0 χ(r) = χ(0) = 0. The following assumption will be made throughout this section:
Assumption 1. The reward vectors ut have modulus of continuity χ on S, uniformly in t. That is,
there exists χ ∈ Z such that |ut(s)− ut(s′)| ≤ χ(d(s, s′)) for all t and for all s, s′ ∈ S.

Let B(s, r) = {s′ ∈ S : d(s, s′) < r} and denote by B(s, δ) ⊂ X the elements of X with support
contained in B(s, δ). Furthermore, let DS := sups,s′∈S d(s, s′). Then we have the following:
Theorem 3. Let (S, d) be compact, and suppose that Assumption 1 holds. Let h be a uniformly
essentially strongly convex regularizer on X with modulus γ, and let (ηt)t≥1 be a positive non-
increasing sequence of learning rates. Then, under (7), for any positive sequence (ϑt)t≥1,

Rt ≤
sups∈S infx∈B(s,ϑt) h(x)− h

ηt
+ t χ(ϑt) +

t∑
τ=1

‖uτ‖∗ γ̃−1
(ητ−1

2
‖uτ‖∗

)
. (11)

Remark 1. The sequence (ϑt)t≥1 in Theorem 3 is not a parameter of the algorithm, but rather a
parameter in the regret bound. In particular, (11) holds true for any such sequence, and we will use
this fact later on to obtain explicit bounds by instantiating (11) with a particular choice of (ϑt)t≥1.

It is important to realize that the infimum over B(s, ϑt) in (11) may be infinite, in which case the
bound is meaningless. This happens for example if s is an isolated point of some S ⊂ Rn and µ is the
Lebesgue measure, in which case B(s, ϑt) = ∅. However, under an additional regularity assumption
on the measure µ we can avoid such degenerate situations.
Definition 4 (Heinonen. et al., 2015). A Borel measure µ on a metric space (S, d) is (Ahlfors)
Q-regular if there exist 0 < c0 ≤ C0 <∞ such that for any open ball B(s, r)

c0r
Q ≤ µ(B(s, r)) ≤ C0r

Q. (12)
We say that µ is r0-locally Q-regular if (12) holds for all 0 < r ≤ r0.
Intuitively, under an r0-locally Q-regular measure, the mass in the neighborhood of any point of S is
uniformly bounded from above and below. This will allow, at each iteration t, to assign sufficient
probability mass around the maximizer(s) of the cumulative reward function.
Example 3. The canonical example for a Q-regular measure is the Lebesgue measure λ on Rn. If d
is the metric induced by the Euclidean norm, then Q = n and the bound (12) is tight with c0 = C0,
a dimensional constant. However, for general sets S ⊂ Rn, λ need not be locally Q-regular. A
sufficient condition for local regularity of λ is that S is v-uniformly fat (Krichene et al., 2015).
Assumption 2. The measure µ is r0-locally Q-regular on (S, d).

Under Assumption 2, B(s, ϑt) 6= ∅ for all s ∈ S and ϑt > 0, hence we may hope for a bound on
infx∈B(s,ϑt) h(x) uniform in s. To obtain explicit convergence rates, we have to consider a more
specific class of regularizers.

3.2 Explicit Rates for f -Divergences on Lp(S)

We consider a particular class of regularizers called f -divergences or Csiszár divergences (Csiszár,
1967). Following Audibert et al. (2014), we define ω-potentials and the associated f -divergence.
Definition 5. Let ω ≤ 0 and a ∈ (−∞,+∞]. A continuous increasing diffeomorphism
φ : (−∞, a) → (ω,∞), is an ω-potential if limz→−∞ φ(z) = ω, limz→a φ(z) = +∞ and
φ(0) ≤ 1. Associated to φ is the convex function fφ : [0,∞)→ R defined by fφ(x) =

∫ x
1
φ−1(z) dz

and the fφ-divergence, defined by hφ(x) =
∫
S
fφ
(
x(s)

)
dµ(s) + ιX (x), where ιX is the indicator

function of X (i.e. ιX (x) = 0 if x ∈ X and ιX (x) = +∞ if x /∈ X ).

A remarkable fact is that for regularizers based on ω potentials, the DA update (7) can be computed
efficiently. More precisely, it can be shown (see Proposition 3 in Krichene (2015)) that the maximizer
in this case has a simple expression in terms of the dual problem, and the problem of computing
xt+1 = Dh∗(ηt

∑t
τ=1 uτ ) reduces to computing a scalar dual variable ν∗t .
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Proposition 1. Suppose that µ(S) = 1, and that Assumption 2 holds with constants r0 > 0 and
0 < c0 ≤ C0 <∞. Under the Assumptions of Theorem 3, with h = hφ the regularizer associated to
an ω-potential φ, we have that, for any positive sequence (ϑt)t≥1 with ϑt ≤ r0,

Rt
t
≤ min(C0ϑ

Q
t , µ(S))

t ηt
fφ
(
c−10 ϑ−Qt

)
+ χ(ϑt) +

1

t

t∑
τ=1

‖uτ‖∗ γ̃−1
(ητ−1

2
‖uτ‖∗

)
. (13)

For particular choices of the sequences (ηt)t≥1 and (ϑt)t≥1, we can derive explicit regret rates.

3.3 Analysis for Entropy Dual Averaging (The Generalized Hedge Algorithm)

Taking φ(z) = ez−1, we have that fφ(x) =
∫ x
1
φ−1(z)dz = x log x, and hence the regularizer is

hφ(x) =
∫
S
x(s) log x(s)dµ(s). Then Dh∗(ξ)(s) = exp ξ(s)

‖ exp ξ(s)‖1 . This corresponds to a generalized
Hedge algorithm (Arora et al., 2012; Krichene et al., 2015) or the entropic barrier of Bubeck and
Eldan (2014) for Euclidean spaces. The regularizer hφ can be shown to be essentially strongly convex
with modulus γ(r) = 1

2r
2.

Corollary 3. Suppose that µ(S) = 1, that µ is r0-locally Q-regular with constants c0, C0, that
‖ut‖∗ ≤ M for all t, and that χ(r) = Cαr

α for 0 < α ≤ 1 (that is, the rewards are
α-Hölder continuous). Then, under Entropy Dual Averaging, choosing ηt = η

√
log t/t with

η = 1
M

(
C0Q
2c0

log(c−10 ϑ−Q/α) + Q
2α

)1/2
and ϑ > 0, we have that

Rt
t
≤
(

2M

√
2C0

c0

(
log(c−10 ϑ−Q/α) +

Q

2α

)
+ Cαϑ

)√
log t

t
(14)

whenever
√

log t/t < rα0 ϑ
−1.

One can now further optimize over the choice of ϑ to obtain the best constant in the bound. Note also
that the case α = 1 corresponds to Lipschitz continuity.

3.4 A General Lower Bound

Theorem 4. Let (S, d) be compact, suppose that Assumption 2 holds, and let w : R → R be any
function with modulus of continuity χ ∈ Z such that ‖w(d( · , s′))‖q ≤M for some s′ ∈ S for which
there exists s ∈ S with d(s, s′) = DS . Then for any online algorithm, there exist a sequence (uτ )tτ=1
of reward vectors uτ ∈ X∗ with ‖uτ‖∗ ≤M and modulus of continuity χτ < χ such that

Rt ≥
w(DS)

2
√

2

√
t, (15)

Maximizing the constant in (15) is of interest in order to benchmark the bound against the upper
bounds obtained in the previous sections. This problem is however quite challenging, and we will
defer this analysis to future work. For Hölder-continuous functions, we have the following result:
Proposition 2. In the setting of Theorem 4, suppose that µ(S) = 1 and that χ(r) = Cαr

α for some
0 < α ≤ 1. Then

Rt ≥
min

(
C

1/α
α Dα

S , M
)

2
√

2

√
t. (16)

Observe that, up to a
√

log t factor, the asymptotic rate of this general lower bound for any online
algorithm matches that of the upper bound (14) of Entropy Dual Averaging.

4 Learning in Continuous Two-Player Zero-Sum Games

Consider a two-player zero sum game G = (S1, S2, u), in which the strategy spaces S1 and S2 of
player 1 and 2, respectively, are Hausdorff spaces, and u : S1 × S2 → R is the payoff function of
player 1 (as G is zero-sum, the payoff function of player 2 is −u). For each i, denote by Pi := P(Si)
the set of Borel probability measures on Si. Denote S := S1 × S2 and P := P1 × P2. For a
(joint) mixed strategy x ∈ P , we define the natural extension ū : P → R by ū(x) := Ex[u] =∫
S
u(s1, s2) dx(s1, s2), which is the expected payoff of player 1 under x.
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A continuous zero-sum game G is said to have value V if
sup
x1∈P1

inf
x2∈P2

ū(x1, x2) = inf
x2∈P2

sup
x1∈P1

ū(x1, x2) = V. (17)

The elements x1 × x2 ∈ P at which (17) holds are the (mixed) Nash Equilibria of G. We denote the
set of Nash equilibria of G byN (G). In the case of finite games, it is well known that every two-player
zero-sum game has a value. This is not true in general for continuous games, and additional conditions
on strategy sets and payoffs are required, see e.g. (Glicksberg, 1950).

4.1 Repeated Play

We consider repeated play of the continuous two-player zero-sum game. Given a game G and a
sequence of plays (s1t )t≥1 and (s2t )t≥1, we say that player i has sublinear (realized) regret if

lim sup
t→∞

1

t

(
sup
si∈Si

t∑
τ=1

ui(s
i, s−iτ )−

t∑
τ=1

ui(s
i
τ , s
−i
τ )

)
≤ 0 (18)

where we use −i to denote the other player.

A strategy σi for player i is, loosely speaking, a (possibly random) mapping from past observations
to its actions. Of primary interest to us are Hannan-consistent strategies:
Definition 6 (Hannan, 1957). A strategy σi of player i is Hannan consistent if, for any sequence
(st−i)t≥1, the sequence of plays (sti)t≥1 generated by σi has sublinear regret almost surely.

Note that the almost sure statement in Definition 6 is with respect to the randomness in the strategy σi.
The following result is a generalization of its counterpart for discrete games (e.g. Corollary 7.1 in
(Cesa-Bianchi and Lugosi, 2006)):
Proposition 3. Suppose G has value V and consider a sequence of plays (s1t )t≥1, (s2t )t≥1 and
assume that both players have sublinear realized regret. Then limt→∞

1
t

∑t
τ=1 u(s1τ , s

2
τ ) = V .

As in the discrete case (Cesa-Bianchi and Lugosi, 2006), we can also say something about convergence
of the empirical distributions of play to the set of Nash Equilibria. Since these distributions have
finite support for every t, we can at best hope for convergence in the weak sense as follows:
Theorem 5. Suppose that in a repeated two-player zero sum game G that has a value both players
follow a Hannan-consistent strategy, and denote by x̂it = 1

t

∑t
τ=1 δsiτ the marginal empirical

distribution of play of player i at iteration t. Let x̂t := (x̂1t , x̂
2
t ). Then x̂t ⇀ N (G) almost surely,

that is, with probability 1 the sequence (x̂t)t≥1 weakly converges to the set of Nash equilibria of G.
Corollary 4. If G has a unique Nash equilibrium x∗, then with probability 1, x̂t ⇀ x∗.

4.2 Hannan-Consistent Strategies

By Theorem 5, if each player follows a Hannan-consistent strategy, then the empirical distributions
of play weakly converge to the set of Nash equilibria of the game. But do such strategies exist?
Regret minimizing strategies are intuitive candidates, and the intimate connection between regret
minimization and learning in games is well studied in many cases, e.g. for finite games (Cesa-
Bianchi and Lugosi, 2006) or potential games (Monderer and Shapley, 1996). Using our results from
Section 3, we will show that, under the appropriate assumption on the information revealed to the
player, no-regret learning based on Dual Averaging leads to Hannan consistency in our setting.

Specifically, suppose that after each iteration t, each player i observes a partial payoff function
ũit : Si → R describing their payoff as a function of only their own action, si, holding the action
played by the other player fixed. That is, ũ1t (s

1) := u(s1, s2t ) and ũ2t (s
2) := −u(s1t , s

2).
Remark 2. Note that we do not assume that the players have knowledge of the joint utility function u.
However, we do assume that the player has full information feedback, in the sense that they observe
partial reward functions u( · , s−iτ ) on their entire action set, as opposed to only observing the reward
u(s1τ , s

2
τ ) of the action played (the latter corresponds to the bandit setting).

We denote by Ũ it = (ũiτ )tτ=1 the sequence of partial payoff functions observed by player i. We use
U it to denote the set of all possible such histories, and define U i0 := ∅. A strategy σi of player i is a
collection (σit)

∞
t=1 of (possibly random) mappings σit : U it−1 → Si, such that at iteration t, player i

plays sit = σit(U
i
t−1). We make the following assumption on the payoff function:
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Assumption 3. The payoff function u is uniformly continuous in si with modulus of continuity
independent of s−i for i = 1, 2. That is, for each i there exists χi ∈ Z such that |u(s, s−i) −
u(s′, s−i)| ≤ χi(di(s, s′)) for all s−i ∈ S−i.

It is easy to see that Assumption 3 implies that the game has a value (see supplementary material).
It also makes our setting compatible with that of Section 3. Suppose now that each player random-
izes their play according to the sequence of probability distributions on Si generated by DA with
regularizer hi. That is, suppose that each σit is a random variable with the following distribution:

σit ∼ Dh∗i
(
ηt−1

∑t−1
τ=1 ũ

i
τ

)
. (19)

Theorem 6. Suppose that player i uses strategy σi according to (19), and that the DA algorithm
ensures sublinear regret (i.e. lim suptRt/t ≤ 0). Then σi is Hannan-consistent.
Corollary 5. If both players use strategies according to (19) with the respective Dual Averaging en-
suring that lim suptRt/t ≤ 0, then with probability 1 the sequence (x̂t)t≥1 of empirical distributions
of play weakly converges to the set of Nash equilibria of G.

Example Consider a zero-sum game G1 between two players on the unit interval with payoff func-
tion u(s1, s2) = s1s2−a1s1−a2s2, where a1 = e−2

e−1 and a2 = 1
e−1 . It is easy to verify that the pair(

x1, x2
)

=
( exp(s)
e−1 , exp(1−s)e−1

)
is a mixed-strategy Nash equilibrium of G1. For sequences (s1τ )tτ=1

and (s2τ )tτ=1, the cumulative payoff functions for fixed action s ∈ [0, 1] are given, respectively, by

U1
t (s1) =

(
Σtτ=1s

2
τ − a1t

)
s1 − a2Σtτ=1s

2
τ U2

t (s2) =
(
a2t− Σtτ=1s

1
τ

)
s2 − a1Σtτ=1s

1
τ

If each player i uses the Generalized Hedge Algorithm with learning rates (ητ )tτ=1, their strategy in
period t is to sample from the distribution xit(s) ∝ exp(αits), where α1

t = ηt(Σ
t
τ=1s

2
τ − a1t) and

α2
t = ηt(a

2t−Σtτ=1s
1
τ ). Interestingly, in this case the sum of the opponent’s past plays is a sufficient

statistic, in the sense that it completely determines the mixed strategy at time t.
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Figure 1: Normalized histograms of the empirical distributions of play in G (100 bins)

Figure 1 shows normalized histograms of the empirical distributions of play at different iterations t.
As t grows the histograms approach the equilibrium densities x1 and x2, respectively. However, this
does not mean that the individual strategies xit converge. Indeed, Figure 2 shows the αit oscillating
around the equilibrium parameters 1 and −1, respectively, even for very large t. We do, however,
observe that the time-averaged parameters ᾱit converge to the equilibrium values 1 and −1.

100 101 102 103 104 105 106

−1

0

1

2 α1
t

ᾱ1
t

α2
t

ᾱ2
t

Figure 2: Evolution of parameters αit and ᾱit := 1
t

∑t
τ=1 α

i
τ in G1

In the supplementary material we provide additional numerical examples, including one that illustrates
how our algorithms can be utilized as a tool to compute approximate Nash equilibria in continuous
zero-sum games on non-convex domains.
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