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Abstract

Statistical methods for network data often parameterize the edge-probability by
attributing latent traits such as block structure to the vertices and assume ex-
changeability in the sense of the Aldous-Hoover representation theorem. These
assumptions are however incompatible with traits found in real-world networks
such as a power-law degree-distribution. Recently, Caron & Fox (2014) proposed
the use of a different notion of exchangeability after Kallenberg (2005) and ob-
tained a network model which permits edge-inhomogeneity, such as a power-law
degree-distribution whilst retaining desirable statistical properties. However, this
model does not capture latent vertex traits such as block-structure. In this work we
re-introduce the use of block-structure for network models obeying Kallenberg’s
notion of exchangeability and thereby obtain a collapsed model which both admits
the inference of block-structure and edge inhomogeneity. We derive a simple
expression for the likelihood and an efficient sampling method. The obtained
model is not significantly more difficult to implement than existing approaches to
block-modelling and performs well on real network datasets.

1 Introduction

Two phenomena are generally considered important for modelling complex networks. The first is
community or block structure, where the vertices are partitioned into non-overlapping blocks (denoted
by ` = 1, . . . ,K in the following) and the probability two vertices i, j are connected depends on
their assignment to blocks:

P
(
Edge between vertex i and j

)
= ξ`m

where ξ`m ∈ [0, 1] is a number only depending on the blocks `,m to which i, j respectively belongs.
Stochastic block models (SBMs) were first proposed by White et al. (1976) and today form the basic
starting point for many important link-prediction methods such as the infinite relational model (Xu
et al., 2006; Kemp et al., 2006).

While block-structure is important for link prediction, the degree distribution of edges in complex
networks is often found to follow a power-law (Newman et al., 2001; Strogatz, 2001). This realization
has led to many important models of network growth, such as the preferential attachment (PA) model
of Barabási (1999).

Models such as the IRM and the PA model have different goals. The PA model attempts to explain
how network structure, such as the degree distribution, follows from simple rules of network growth
and is not suitable for link prediction. In contrast, the IRM aims to discover latent block-structure
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and predict edges — tasks for which the PA model is unsuitable. In the following, network model
will refer to a model with the same aims as the IRM, most notably prediction of missing edges.

1.1 Exchangeability

Invariance is an important theme in Bayesian approaches to network modelling. For network data, the
invariance which has received most attention is infinite exchangeability of random arrays. Suppose
we represent the network as a subset of an infinite matrix A = (Aij)ij≥1 such that Aij is the number
of edges between vertex i and j (we will allow multi and self-edges in the following). Infinite
exchangeability of the random array (Aij)ij≥1 is the requirement that (Hoover, 1979; Aldous, 1981)

(Aij)ij≥1
d
= (Aσ(i)σ(j))ij≥1 for all finite permutations σ of N. The distribution of a finite network is

then obtained by marginalization. According to the Aldous-Hoover theorem (Hoover, 1979; Aldous,
1981), an infinite exchangeable network has a representation in terms of a random function, and
furthermore, the number of edges in the network must either scale as the square of the number
of vertices or (with probability 1) be zero (Orbanz & Roy, 2015). Neither of these options are
compatible with a power-law degree distribution and one is faced with the dilemma of giving up
either the power-law distribution or exchangeability. It is the first horn of this dilemma which has
been pursued by much work on Bayesian network modelling (Orbanz & Roy, 2015).

It is, however, possible to substitute the notation of infinite exchangeability in the above sense with
a different definition due to Kallenberg (2005, chapter 9). The new notion retains many important
characteristics of the former, including a powerful representation theorem parallelling the Aldous-
Hoover theorem but expressed in terms of a random set. Important progress in exploring network
models based on this representation has recently been made by Caron & Fox (2014), who demonstrate
the ability to model power-law behaviour of the degree distribution and construct an efficient sampler
for parameter inference. The reader is encouraged to consult this reference for more details.

In this paper, we will apply the ideas of Caron & Fox (2014) to block-structured network data,
thereby obtaining a model based on the same structural invariance, yet able to capture both block-
structure and degree heterogeneity. The contribution of this work is fourfold: (i) we propose general
extension of sparse networks to allow latent structure, (ii) using this construction we implement a
block-structured network model which obey Kallenbergs notion of exchangeability, (iii) we derive a
collapsed expression of the posterior distribution which allows efficient sampling, (iv) demonstrate
that the resulting model offers superior link prediction compared to both standard block-modelling
and the model of Caron & Fox (2014).

It should be noted that independently of this manuscript, Veitch & Roy (2015) introduced a construc-
tion similar to our eq. (4) but focusing on the statistical properties of this type of random process,
whereas this manuscript focuses on the practical implementation of network models based on the
construction.

2 Methods

Before introducing the full method we will describe the construction informally, omitting details
relating to completely random measures.

2.1 A simple approach to sparse networks

Suppose the vertices in the network are labelled by real numbers in R+. An edge e (edges are
considered directed and we allow for self-edges) then consists of two numbers (xe1, xe2) ∈ R2

+
denoted the edge endpoint. A network X of L edges (possibly L =∞) is simply the collection of
points X = ((xe1, xe2))Le=1 ⊂ R2

+. We adopt the convention that multi-edges implies duplicates in
the list of edges. Suppose X is generated by a Poisson process with base measure ξ on R2

+

X ∼ PP
(
ξ
)
. (1)

A finite network Xα can then be obtained by considering the restriction of X to [0, α]2: Xα =
X ∩ [0, α]2. As an illustration, suppose ξ is the Lebesgue measure. The number of edges is then
L ∼ Poisson(α2) and the edge-endpoints xe1, xe2 are i.i.d. on [0, α] simply corresponding to
selecting L random points in [0, α]2. The edges are indicated by the gray squares in figure 1a and the
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Figure 1: (Left:) A network is generated by randomly selecting points from [0, α]2 ⊂ R2
+ corre-

sponding to edges (squares) and identifying the unique coordinates with vertices (circles), giving
the maximally disconnected graph. (Middle:) The edges are restricted to lie at the intersection of
randomly generated gray lines at θi, each with a mass/sociability parameter wi. The probability of
selecting an intersection is proportional to wiwj , giving a non-trivial network structure. (Right:) Each
vertex is assigned a latent trait zi (the assignment to blocks as indicated by the colors) that modulates
the edge probability with a parameter η`m ≥ 0, thus allowing block-structured networks.

vertices as circles. Notice the vertices will be distinct with probability 1 and the procedure therefore
gives rise to the degenerate but sparse network of 2L vertices and L edges, shown in figure 1a.

To generate non-trivial networks, the edge-endpoints must coincide with nonzero probability. Similar
to Caron & Fox (2014), suppose the coordinates are restricted to only take a countable number of
potential values, θ1, θ2, · · · ∈ R+ and each value has an associated sociability (or mass) parameter
w1, w2, · · · ∈ [0,∞[ (we use the shorthand (θi)i = (θi)

∞
i=1 for a series). If we define the measure

µ =
∑
i≥1 wiδθi and let ξ = µ × µ, then generating Xα according to the procedure of eqn. (1)

the number of edges L is Poisson
(
T 2
)
, T = µ([0, α]) =

∑∞
i=1 wi distributed. The position of

the edges remains identically distributed, but with probability proportional to wiwj of selecting
coordinate (θi, θj). Since the edge-endpoints coincide with non-zero probability this procedure
allows the generation of a non-trivial associative network structure, see figure 1b. With proper
choice of (wi, θi)i≥1 these networks exhibit many desirable properties, such as a power-law degree
distribution and sparsity (Caron & Fox, 2014).

This process can be intuitively extended to block-structured networks, as illustrated in figure 1c.
There, each vertex is assigned a latent trait (i.e. a block assignment), here highlighted by the colors.
We use the symbol zi ∈ {1, . . . ,K} to indicate the assignment of vertex i to one of the K blocks.
We can then consider a measure of the form

ξ =
∑
i,j≥1

ηzizjwiwjδ(θi,θj) =

K∑
`,m=1

η`mµ` × µm, (2)

where we have introduced µ` =
∑
i:zi=`

wiδθi . Defined in this manner, ξ is a measure on [0, α]2

and η`m parameterizes the interaction strength between community ` and m. Notice the number
of edges L`m between block ` and m is, by basic properties of the Poisson process, distributed as
L`m ∼ Poisson(η`mT`Tm), where T` = µ`([0, α]). In figure 1c the locations θi of the vertices have
been artificially ordered according to color for easy visualization. The following section will show
the connection between the above construction of eq. (2) and the exchangeable representation due to
Kallenberg (2005). However, for greater generality, we will let the latent trait be a general continuous
parameter ui ∈ [0, 1] and later show that block-structured models can be obtained as a special case.

2.2 Exchangeability and point-process network models

Since the networks in the point-set representation are determined by the properties of the measure
ξ, invariance (i.e. exchangeability) of random point-set networks is defined as invariance of this
random measure. Recall infinite exchangeability for infinite matrices requires that the distribution
of the random matrix to be unchanged by permutation of the rows/columns in the network. For
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∑
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Figure 2: (Step 1:) The potential vertex locations, θi, latent traits ui and sociability parameters
wi are generated using a generalized gamma process (Step 2:) The interaction of the latent traits
f : [0, 1]2 → R+, the graphon, is chosen to be a piece-wise constant function (Step 3:) Together,
these determine the random measure ξ which is used to generate the network from a Poisson process

a random measure on R2
+, the corresponding requirement is that it should be possible to partition

R+ into intervals I1, I2, I3, . . . , permute the intervals, and have the random measure be invariant to
this permutation. Formally, a random measure ξ on R2

+ is then said to be jointly exchangeable if

ξ ◦ (ϕ⊗ ϕ)−1
d
= ξ for all measure-preserving transformations ϕ of R+. According to Kallenberg

(2005, theorem 9.24), this is ensured provided the measure has a representation of the form:

ξ =
∑
i,j≥1

h(ζ, xi, xj)δ(θi,θj), (3)

where h is a measurable function, ζ is a random variable and {(xi, θi)}i≥1 is a unit rate Poisson
process on R2

+ (the converse involves five additional terms (Kallenberg, 2005)). In this representation,
the locations (θi)i and the parameters (xi)i are decoupled, however we are free to select the random
parameters (xi)i≥1 to lie in a more general space than R+. Specifically, we define

xi = (ui, vi) ∈ [0, 1]× R+,

with the interpretation that each vi corresponds to a random mass wi through a transformation
wi = g(vi), and each ui ∈ [0, 1] is a general latent trait of the vertex. (In figure 1 this parameter
corresponded to the assignment to blocks). We then consider the following choice:

h(ζ, xi, xj) = f(ui, uj)gzi(vi)gzj (vj) (4)

where f : [0, 1]2 → R+ is a measurable function playing a similar role as the graphon in the Aldous-
Hoover representation, and {(ui, vi, θi)}i≥1 follows a unit-rate Poisson process on [0, 1]× R2

+.

To see the connection with the block-structured model, suppose the function f is a piece-wise constant
function

f(u, u′) =

K∑
`,m=1

η`m1J`(u)1Jm(u′),

where J` =
[∑`−1

m=1 βm,
∑`
m=1 βm

[
,
∑K
`=1 β` = 1, β` > 0 and zi = ` denotes the event 1J`(ui) =

1. Notice this choice for f is exactly equivalent to the graphon for the block-structured network
model in the Aldous-Hoover representation (Orbanz & Roy, 2015). The procedure is illustrated
in figure 2. Realizations of networks generated by this process using different values of K can be
obtained using the simulation methods of Caron & Fox (2014) and can be seen in figure 3. Notice the
K = 1, η11 = 1 case corresponds to their method.

To fully define the method we must first introduce the relevant prior for the measure µ =∑
i≥1 wiδ(θi,ui). As a prior we will use the Generalized Gamma-process (GGP) (Hougaard, 1986).

In the following section, we will briefly review properties of completely random measures and use
these to derive a simple expression of the posterior.
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2.3 Random measures
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Figure 3: (Top:) Example of four randomly gen-
erated networks for K = 1, 2, 3 and 4 using the
choice of random measure discussed in section 2.3.
The other parameters were fixed at α = 20K, τ =
1, σ = 0.5 and λa = λb = 1. Vertices have been
sorted according to their assignment to blocks and
sociability parameters.(Bottom:) The same net-
works as above but applying a random permutation
to the edges within each tile. A standard SBM
assumes a network structure of this form.

As a prior for µ we will use completely random
measures (CRMs) and the reader is referred to
(Kallenberg, 2005; Kingman, 1967) for a com-
prehensive account. Recall first the definition
of a CRM. Assume S is a separable complete
metric space with the Borel σ-field B(S) (for
our purpose S = [0, α]). A random measure
µ is a random variable whose values are mea-
sures on S. For each measurable set A ∈ B(S),
the random measure induces a random variable
µ(A), and the random measure µ will be said
to be completely random if for any finite collec-
tion A1, . . . , An of disjoint measurable sets the
random variables µ(A1), . . . , µ(An) are inde-
pendent. It was shown by Kingman (1967) that
the non-trivial part of any random measure µ is
discrete almost certainly with a representation

µ =

∞∑
i=1

wiδθi , (5)

where the sequence of masses and locations
(wi, θi)i (also known as the atoms) is a Pois-
son random measure on R+ × S, with mean
measure ν known as the Lévy intensity measure.
We will consider homogeneous CRMs, where
locations are independent, ν(dw, dθ) = ρ(dw)κα(dθ), and assume κα is the Lebesgue measure on
[0, α].

Since the construction as outlined in figure 1c depends on sampling the edge start and end-points at
random from the locations (θi)i, with probability proportional to wi, the normalized form of eqn. (5)
will be of particular interest. Specifically, the chance of selecting a particular location from a random
draw is governed by

P =
µ

T
=

∞∑
i=1

piδθi , pi =
wi
T
, T = µ(S) =

∞∑
i=1

wi, (6)

which is known as the normalized random measure (NRM) and T is the total mass of the CRM
µ (Kingman, 1967). A random draw from a Poisson process based on the CRM can thus be realized by
first sampling the number of generated points, L ∼ Poisson(T ), and then drawing their locations in a
i.i.d. manner from the NRM of eqn. (6). The reader is referred to James (2002) for a comprehensive
treatment on NRMs.

With the notation in place, we can provide the final form of the generative process for a network Xα.
Suppose the CRM µ (restricted to the region [0, α]) has been generated. Assume zi = ` iff. ui ∈ J`
and define the K thinned measures on [0, α] as:

µ` =
∑
i:zi=`

wiδθi

each with total mass T` = µ`([0, α]). By basic properties of CRMs, the thinned measures are also
CRMs (Pitman, 2006). The number of points in each tile L`m is then Poisson(η`mT`Tm) distributed,
and given L`m the edge-endpoints (xe1`, xe2m) between atoms in measure ` and m can then be
drawn from the corresponding NRM. The generative process is then simply:

(β`)
K
`=1 ∼ Dirichlet

(
β0/K, . . . , β0/K

)
µ

iid∼ CRM(ρ, U[0,1] × UR+
)

η`k
iid∼ Gamma(λa, λb) L`m

iid∼ Poisson(η`mT`Tm)

for e=1, . . . , L`m: xe1`
iid∼ Categorical

(
(wi/T`)zi=`

)
xe2m

iid∼ Categorical
(
wj/Tm)zj=m

)
.
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In the following we will use the generalized gamma process (GGP) as the choice of Lévy intensity
measure (James, 2002). The GGP is parameterized with two parameters σ, τ and has the functional
form

ρσ,τ (dw) =
1

Γ(1− σ)
w−1−σe−τwdw.

The parameters (σ, τ) will be restricted to lie in the region ]0, 1[×[0,∞[ as in (Caron & Fox, 2014).
In conjunction with α we thus obtain three parameters (α, σ, τ) which fully describe the CRM and
the induced partition structure.

2.4 Posterior distribution

In order to define a sampling procedure of the CRMSBM we must first characterize the posterior
distribution. In Caron & Fox (2014) this was calculated using a specially tailored version of Palm’s
formula. In this work we will use a counting argument inspired by Pitman (2003, eqn. (32)) and
a reparameterization to collapse the weight-parameter (wi)i≥1 to obtain a fairly simple analytical
expression which is amenable to standard sampling procedures. The full derivation is, however,
somewhat lengthy and is included in the supplementary material.

First notice the distribution of the total mass T` of each of the thinned random measures µ` is a
tilted σ-stable random variable (Pitman, 2006). If we introduce α` ≡ β`α, its density gα`,σ,τ may be
written as

gα,σ,τ (t) = θ−
1
σ fσ(tθ−

1
σ )φλ(tθ−

1
σ )

where φλ(t) = eλ
σ−λt, λ = τθ

1
σ , θ = α

σ and fσ is the density of a σ-stable random variable. See
Devroye & James (2014) for more details. According to Zolotarev’s integral representation, the
function fσ has the following form (Zolotarev, 1964)

fσ(x) =
σx

−1
1−σ

π(1− σ)

∫ π

0

du A(σ, u)e
−A(σ,u)

xσ/(1−σ) , A(σ, u) = sin((1−σ)u)

[
sin(σu)σ

sin(u)

] 1
1−σ

. (7)

Since not all potential vertices (i.e. terms wiδθi in µ) will have edges attached to them, it is
useful to introduce a variable which encapsulates this distinction. We therefore define the variable
z̃i = 0, 1, . . . ,K with the definition:

z̃i =

{
zi if there exists (x, y) ∈ Xα s.t. θi ∈ {x, y},
0 otherwise.

In addition, suppose for each measure µ`, the end-points of the edges associated with this measure
selects k` = |{i : z̃i = `}| unique atoms and k =

∑K
`=1 k` is the total number of vertices in the

network. Next, we consider a specific network (Aij)
k
i,j=1 and assume it is labelled such that atom

(wi, θi) corresponds to a particular vertex i in the network. We also define ni =
∑
j(Aij +Aji) as

the number of edge-endpoints that selects atom i, n` =
∑
i:z̃i=`

ni as the aggregated edge-endpoints
that select measure µ` and n`m =

∑
z̃i=`,z̃m=j Aij as the edges between measure µ` and µm. The

posterior distribution is then

P (A, (zi)i, σ, τ, (α`, s`, t`)`) =
Γ(β0)

∏K
`=1 α

β0
K −1
` E`

Γ(β0

K )Kαβ0
∏
ij Aij !

∏
`m

G(λa+n`m, λb+T`Tm)

G(λa, λb)
, (8)

where we have introduced:

E` =
αk`sn`−k`σ−1`

Γ(n` − k`σ)eτs`
gα`,τ,σ(T`−s`)

∏
z̃i=`

(1− σ)ni

and s` =
∑
i:z̃i=`

wi is the mass of the "occupied" atoms in the measure µ`. The posterior distribution
can be seen as the product of K partition functions corresponding to the GGP, multiplied by the K2

interaction factors involving the function G(a, b) = Γ(a)b−a, and corresponding to the interaction
between the measures according to the block structure assumption.

Note that the η = 1 case, corresponding to a collapsed version of Caron & Fox (2014), can be
obtained by taking the limit λa = λb →∞, in which case G(λa+n,λb+T )

G(λa,λb)
→ e−T . When discussing

the K = 1 case, we will assume this limit has been taken.
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2.5 Inference

Sampling the expression eqn. (8) requires three types of sampling updates: (i) the sequence of
block-assignments (zi)i must be updated, (ii) in the simulations we will consider binary networks
and we will therefore need to both impute the integer valued counts (if Aij > 0), as well as missing
values in the network, and (iii) both the parameters associated with the random measure, σ and τ , as
well as the remaining variables associated with each expression E` must be updated.

All terms, except the densities gα,σ,τ , are amenable to standard sampling techniques. We opted for
the approach of Lomelí et al. (2014), in which u in Zolotarev’s integral representation (eqn. 7) is
considered an auxiliary parameter. The full inference procedure can be found in the supplementary
material, however, the main steps are: 1

Update of (zi)i: For each `, impute (wi)z̃i=` once per sweep (see supplementary for details), and
then iterate over i and update each zi using a Gibbs sweep from the likelihood. The Gibbs
sweep is no more costly than that of a standard SBM.

Update of A: Impute (η`m)`m and (wi)i once per sweep (see supplementary for details), and then
for each (ij) such that the edge is either unobserved or must be imputed (Aij ≥ 1), generate
a candidate a ∼ Poisson(η`mwiwj). Then, if the edge is unobserved, simply set Aij = a,
otherwise if the edge is observed and a = 0, reject the update.

Update of σ, τ : For ` = 1, . . . ,K, introduce u` corresponding to u in Zolotarev’s integral represen-
tation (eqn. 7) and let t` = T` − s`. Update the four variables in Φ` = (α`, u`, s`, t`) and
σ, τ using random-walk Metropolis Hastings updates.

In terms of computational cost, the inference procedure is of the same order as the SBM albeit
with higher constants due to the overall complexity of the likelihood and because the parameters
(α`, u`, s`, t`) must be sampled for each CRM. In Caron & Fox (2014), the parameters (wi)i≥1 were
sampled using Hamiltonian Monte Carlo, whereas herein they are collapsed and re-imputed.

The parameters Φ` and σ, τ are important for determining the sparsity and power-law properties
of the network model (Caron & Fox, 2014). To investigate convergence of the sampler for these
parameters, we generated a single network problem using α = 25, σ = 0.5, τ = 2 and evaluated 12
samplers with K = 1 on the problem. Autocorrelation plots (mean and standard deviation computed
over 12 restarts) can be seen in figure 4a. All parameters mix, however the different parameters
have different mixing times with u in particular being affected by excursions. This indicates many
sampling updates of Φ` are required to explore the state space sufficiently and we therefore applied
50 updates of Φ` for each update of (zi)i and Aij . Additional validation of the sampling procedure
can be found in the supplementary material.

3 Experiments

The proposed method was evaluated on 11 network datasets (a description of how the datasets were
obtained and prepared can be found in the supplementary material) using K = 200 in the truncated
stick-breaking representation. As a criteria of evaluation we choose AUC score on held-out edges, i.e.
predicting the presence or absence of unobserved edges using the imputation method described in
the previous section. All networks were initially processed by thresholds at 0, and vertices with zero
edges were removed. A fraction of 5% of the edges were removed and considered as held-out data.

To examine the effect of using blocks, we compared the method against the method of Caron &
Fox (2014) (CRM) (corresponding to η`m = 1 and K = 1), a standard block-structured model with
Poisson observations (pIRM) (Kemp et al., 2006), and the degree-corrected stochastic block model
(DCSBM) Herlau et al. (2014). The later allows both block-structure and degree-heterogeneity but it
is not exchangeable. More details on the simulations and methods are found in the supplementary
material.

The pIRM was selected since it is the closest block-structured model to the CRMSBM without
degree-correction. This allows us to determine the relative benefit of inferring the degree-distribution
compared to only the block-structure. For the priors we selected uniform priors for σ, τ, α and a
Gamma(2, 1) prior for β0, λa, λb. Similar choices were made for the other models.

1Code available at http://people.compute.dtu.dk/tuhe/crmsbm.
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Figure 4: (Left:) Autocorrelation plots of the parameters α, σ, τ, s, t and u for a K = 1 network
drawn from the prior distribution using α = 25, σ = 0.5 and τ = 2. The plots were obtained
by evaluating the proposed sampling procedure for 106 iterations and the shaded region indicates
standard deviation obtained over 12 re-runs. The simulation indicates reasonable mixing for all
parameters, with u being the most affected by excursions. (Right:) AUC score on held-out edges
for the selected methods (averaged over 4 restarts) on 11 network datasets. For the same number of
blocks, the CRMSBM offers good link-prediction performance compared to the method of Caron
& Fox (2014) (CRM), a SBM with Poisson observations (pIRM) and the degree-corrected SBM
(DCSBM) (Herlau et al., 2014). Additional information is found in the supplementary material.

All methods were evaluated for T = 2 000 iterations, and the latter half of the chains was used for
link prediction. We used 4 random selections of held-out edges per network to obtain the results
seen in figure 4b (same sets of held-out edges were used for all methods). It is evident that block-
structure is crucial to obtain good link prediction performance. For the block-structured methods,
the results indicate additional benefits from using models which permits degree-heterogenity upon
most networks, except the Hagmann brain connectivity graph. This result is possibly explained by
the Hagmann graph having little edge-inhomogeneity. Comparing the CRMSBM and the DCSBM,
these models perform either on par with or with a slight advantage to the CRMSBM.

4 Discussion and Conclusion

Models of networks based on the CRM representation of Kallenberg (2005) offer one of the most
important new ideas in statistical modelling of networks in recent years. To our knowledge Caron
and Fox (2014) were the first to realize the benefits of this modelling approach, describe its statistical
properties and provide an efficient sampling procedure.

The degree distribution of a network is only one of several important characteristics of a complex
network. In this work we have examined how the ideas presented in Caron and Fox (2014) can be
applied for a simple block-structured network model to obtain a model which admits block structure
and degree correction. Our approach is a fairly straightforward generalization of the methods of
Caron and Fox (2014). However, we have opted to explicitly represent the density of the total mass
gα`,σ,τ and integrate out the sociability parameters (wi)i, thereby reducing the number of parameters
associated with the CRM from the order of vertices to the order of blocks.

The resulting model has the increased flexibility of being able to control the degree distribution within
each block. In practice, results of the model on 11 real-world datasets indicate that this flexibility
offers benefits over purely block-structured approaches to link prediction for most networks, as well as
potential benefits over alternative approaches to modelling block-structure and degree-heterogeneity.
The results strongly indicate that structural assumptions (such as block-structure) are important to
obtain reasonable link prediction.

Block-structured network modelling is in turn the simplest structural assumption for block-modelling.
The extension of the method of Caron and Fox (2014) to overlapping blocks, possibly using the de-
pendent random measures of Chen et al. (2013), appears fairly straightforward and should potentially
offer a generalization of overlapping block models.
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