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Abstract

Most existing approaches to distributed sparse regression assume the data is par-
titioned by samples. However, for high-dimensional data (D � N ), it is more
natural to partition the data by features. We propose an algorithm to distributed
sparse regression when the data is partitioned by features rather than samples.
Our approach allows the user to tailor our general method to various distributed
computing platforms by trading-off the total amount of data (in bits) sent over the
communication network and the number of rounds of communication. We show
that an implementation of our approach is capable of solving `1-regularized `2
regression problems with millions of features in minutes.

1 Introduction

Explosive growth in the size of modern datasets has fueled the recent interest in distributed statistical
learning. For examples, we refer to [2, 20, 9] and the references therein. The main computational
bottleneck in distributed statistical learning is usually the movement of data between compute notes,
so the overarching goal of algorithm design is the minimization of such communication costs.

Most work on distributed statistical learning assume the data is partitioned by samples. However, for
high-dimensional datasets, it is more natural to partition the data by features. Unfortunately, methods
that are suited to such feature-distributed problems are scarce. A possible explanation for the paucity
of methods is feature-distributed problems are harder than their sample-distributed counterparts. If
the data is distributed by samples, each machine has a complete view of the problem (albeit a partial
view of the dataset). Given only its local data, each machine can fit the full model. On the other hand,
if the data is distributed by features, each machine no longer has a complete view of the problem.
It can only fit a (generally mis-specified) submodel. Thus communication among the machines is
necessary to solve feature-distributed problems. In this paper, our goal is to develop algorithms that
minimize the amount of data (in bits) sent over the network across all rounds for feature-distributed
sparse linear regression.

The sparse linear model is
y = Xβ∗ + ε, (1)

where X ∈ RN×D are features, y ∈ RN are responses, β∗ ∈ RD are (unknown) regression
coefficients, and ε ∈ RN are unobserved errors. The model is sparse because β∗ is s-sparse; i.e., the
cardinality of S := supp(β∗) is at most s. Although it is an idealized model, the sparse linear model
has proven itself useful in a wide variety of applications.

A popular way to fit a sparse linear model is the lasso [15, 3]:

β̂ ← arg min‖β‖1≤1
1

2N ‖y −Xβ‖22,
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where we assumed the problem is scaled so that ‖β∗‖1 = 1. There is a well-developed theory of the
lasso that ensures the lasso estimator β̂ is nearly as close to β∗ as an oracle estimatorX†Sy, where
S ⊂ [D] is the support of β∗ [11]. Formally, under some conditions on the Gram matrix 1

NX
TX ,

the (in-sample) prediction error of the lasso is roughly s logD
N . Since the prediction error of the oracle

estimator is (roughly) s
N , the lasso estimator is almost as good as the oracle estimator. We refer to [8]

for the details.

We propose an approach to feature distributed sparse regression that attains the convergence rate of
the lasso estimator. Our approach, which we call SCREENANDCLEAN, consists of two stages: a
screening stage where we reduce the dimensionality of the problem by discarding irrelevant features;
and a cleaning stage where we fit a sparse linear model to a sketched problem. The key features of
the proposed approach are:

• We reduce the best-known communication cost (in bits) of feature-distributed sparse re-
gression from O(mN2) to O(Nms) bits, where N is the sample size, m is the number of
machines, and s is the sparsity. To our knowledge, the proposed approach is the only one
that exploits sparsity to reduce communication cost.

• As a corollary, we show that constrained Newton-type methods converge linearly (up to a
statistical tolerance) on high-dimensional problems that are not strongly convex. Also, the
convergence rate is only weakly dependent on the condition number of the problem.

• Another benefit of our approach is it allows users to trade-off the amount of data (in bits)
sent over the network and the number of rounds of communication. At one extreme, it
is possible to reduce the amount of bits sent over the network to Õ(mNs) (at the cost of
log
(

N
s logD

)
rounds of communication). At the other extreme, it is possible to reduce the

total number of iterations to a constant at the cost of sending Õ(mN2) bits over the network.

Related work. DECO [17] is a recently proposed method that addresses the same problem we
address. At a high level, DECO is based on the observation that if the features on separate machines
are uncorrelated, the sparse regression problem decouples across machines. To ensures the features
on separate machines are uncorrelated, DECO first decorrelates the features by a decorrelation step.
The method is communication efficient in that it only requires a single round of communication,
where O(mN2) bits of data are sent over the network. We refer to [17] for the details of DECO.

As we shall see, in the cleaning stage of our approach, we utilize the sub-Gaussian sketches. In fact,
other sketches, e.g., sketches based on Hadamard transform [16] and sparse sketches [4] may also be
used. An overview of various sketching techniques can be found in [19].

The cleaning stage of our approach is operationally very similar to the iterative Hessian sketch
(IHS) by Pilanci and Wainwright for constrained least squares problems [12]. Similar Newton-type
methods that relied on sub-sampling rather than sketching were also studied by [14]. However, they
are chiefly concerned with the convergence of the iterates to the (stochastic) minimizer of the least
squares problem, while we are chiefly concerned with the convergence of the iterates to the unknown
regression coefficients β∗. Further, their assumptions on the sketching matrix are stated in terms of
the transformed tangent cone at the minimizer of the least squares problem, while our assumptions
are stated in terms of the tangent cone at β∗.

Finally, we wish to point out that our results are similar in spirit to those on the fast convergence
of first order methods [1, 10] on high-dimensional problems in the presence of restricted strong
convexity. However, those results are also chiefly concerned with the convergence of the iterates to
the (stochastic) minimizer of the least squares problem. Further, those results concern first-order,
rather than second-order methods.

2 A screen-and-clean approach
Our approach SCREENANDCLEAN consists of two stages:

1. Screening Stage: reduce the dimension of the problem from D to d = O(N) by discarding
irrelevant features.

2. Cleaning Stage: fit a sparse linear model to the O(N) selected features.

We note that it is possible to avoid communication in the screening stage by using a method based on
the marginal correlations between the features and the response. Further, by exploiting sparsity, it is
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possible to reduce the amount of communication to O(mNs) bits (ignoring polylogarithmic factors).
To the authors’ knowledge, all existing one-shot approaches to feature-distributed sparse regression
that involve only a single round of communication require sending O(mN2) bits over the network.

In the first stage of SCREENANDCLEAN, the k-th machine selects a subset Ŝk of potentially relevant
features, where |Ŝk| = dk . N . To avoid discarding any relevant features, we use a screening
method that has the sure screening property:

P
(
supp(β∗k) ⊂ ∪k∈[m]Ŝk

)
→ 1, (2)

where β∗k is the k-th block of β∗. We remark that we do not require the selection procedure to be
variable selection consistent. That is, we do not require the selection procedure to only selected
relevant features. In fact, we permit the possibility that most of the selected features are irrelevant.

There are many existing methods that, under some conditions on the strength of the signal, has the
sure screening property. A prominent example is sure independence screening (SIS) [6]:

ŜSIS ← {i ∈ [D] : 1
N

∣∣xTi y
∣∣ is among the bτNc largest entries of 1

NX
Ty}. (3)

SIS requires no communication among the machines, making it particularly amenable to distributed
implementation. Other methods include HOLP [18].

In the second stage of SCREENANDCLEAN, which is presented as Algorithm 1, we solve the reduced
sparse regression problem in an iterative manner. At a high level, our approach is a constrained
quasi-Newton method. At the beginning of the second stage, each machine sketches the features that
are stored locally:

X̃k ← 1√
nT

SXk,Ŝk
,

where S ⊂ RnT×N is a sketching matrix andXk,Ŝk
∈ Rn×dk comprises the features stored on the

k-th machine that were selected by the screening stage. For notational convenience later, we divide
X̃k row-wise into T blocks:

X̃k =

X̃k,1

...
X̃k,T

 ,
where each block is a n× dk block. We emphasize that the sketching matrix is identical on all the
machines. To ensure the sketching matrix is identical, it is necessary to synchronize the random
number generators on the machines.

We restrict our attention to sub-Gaussian sketches; i.e., the rows of Sk are i.i.d. sub-Gaussian random
vectors. Formally, a random vector x ∈ Rd is 1-sub-Gaussian if

P(θTx ≥ ε) ≤ e− ε
2

2 for any θ ∈ Sd−1, ε > 0.

Two examples of sub-Gaussian sketches are the standard Gaussian sketch: Si,j
i.i.d.∼ N (0, 1), and

the Rademacher sketch: Si,j are i.i.d. Rademacher random variables.

After each machine sketches the features that are stored locally, it sends the sketched features X̃k

and the correlation of the screened features with the response γ̂k := 1
NX

T
k,Ŝk

y to a central machine,
which solves a sequence of T regularized quadratic programs (QP) to estimate β∗:

β̃t ← arg minβ∈Bd1
1
2β

T Γ̃tβ − (γ̂ − Γ̂β̃t−1 + Γ̃tβ̃t−1)Tβ,

where γ̂ =
[
γ̂T1 . . . γ̂m

]T
are the correlations of the screened features with the response,

Γ̂ = 1
NX

T
Ŝ
XŜ is the Gram matrix of the features selected by the screening stage, and

Γ̃t :=
[
X̃1,t . . . X̃m,t

]T [
X̃1,t . . . X̃m,t

]
.

As we shall see, despite the absence of strong convexity, the sequence {β̃t}∞t=1 converges q-linearly
to β∗ up to the statistical precision.
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Algorithm 1 Cleaning Stage

Sketching
1: Each machine computes sketches 1√

nT
StXk,Ŝk

and sufficient statistics 1
NXk,Ŝk

y, t ∈ [T ]

2: A central machine collects the sketches and sufficient statistics and forms:

Γ̃t ← 1
nT


...(

StXk,Ŝk

)T
...

 [. . . StXk,Ŝk
. . .
]
, γ̂ ←


...

1
NX

T
k,Ŝk

y

...

.

Optimization
3: for t ∈ [T ] do
4: The cluster computes Γ̂β̃t−1 in a distributed fashion:

ŷt−1 ←
∑
k∈[m]Xk,Ŝk

β̃t−1,k, Γ̂β̃t−1 ←


...

1
NX

T
k,Ŝk

ŷt−1
...

.

5: β̃t ← arg minβ∈Bd1
1
2β

T Γ̃tβ − (γ̂ − Γ̂β̃t−1 + Γ̃tβ̃t−1)Tβ

6: end for
7: The central machine pads β̃T with zeros to obtain an estimator of β∗

The cleaning stage involves 2T + 1 rounds of communication: step 2 involve a single round of
communication, and step 4 involves two rounds of communication. We remark that T is a small
integer in practice. Consequently, the number of rounds of communication is a small integer.

In terms of the amount of data (in bits) sent over the network, the communication cost of the cleaning
stage grows as O(dnmT ), where d is the number of features selected by the screening stage and n is
the sketch size. The communication cost of step 2 is O(dmnT + d), while that of step 4 is O(d+N).
Thus the dominant term is O(dnmT ) incurred by machines sending sketches to the central machine.

3 Theoretical properties of the screen-and-clean approach
In this section, we will establish our main theoretical result regarding our SCREENANDCLEAN
approach, given as Theorem 3.5. Recall that a key element of our approach is to prove the first stage
of SCREENANDCLEAN establishes the sure screening property, i.e., (2). To this end, we begin by
stating a result by Fan and Lv that establishes sufficient conditions for SIS, i.e., (3) to possess the
sure screening property.
Theorem 3.1 (Fan and Lv (2008)). Let Σ be the covariance of the predictors and Z = XΣ−1/2 be
the whitened predictors. We assume Z satisfies the concentration property: there are c, c1 > 1 and
C1 > 0 such that

P
(
λmax

(
d̃−1Z̃Z̃T

)
> c1 and λmin

(
d̃−1Z̃Z̃T

)
< c−11

)
≤ e−C1n

for any N × d̃ submatrix Z̃ of Z. Further,

1. the rows of Z are spherically symmetric, and εi
i.i.d.∼ N (0, σ2) for some σ > 0;

2. var(y) . 1 and minj∈S
∣∣β∗j ∣∣ ≥ c2

Nκ and minj∈S |cov(y,xj)| ≥ c3
βj

for some κ > 0 and
c2, c3 > 0;

3. there is c4 > 0 such that λmax(Σ) ≤ c4.

As long as κ < 1
2 , there is some θ < 1− 2κ such that if τ = cN−θ for some c > 0, we have

P(S ⊂ ŜSIS) = 1− C2 exp
(
−CN

1−2κ

logN

)
for some C, C2 > 0, where ŜSIS is given by (3).

The assumptions of Theorem 3.1 are discussed at length in [6], Section 5. We remark that the most
stringent assumption is the third assumption, which is an assumption on the signal-to-noise ratio
(SNR). It rules out the possibility a relevant variable is (marginally) uncorrelated with the response.
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We continue our analysis by studying the convergence rate of our approach. We begin by describing
three structural conditions we impose on the problem. In the rest of the section, let

K(S) := {β ∈ Rd : ‖βSc‖1 ≤ ‖βS‖1}.
Condition 3.2 (RE condition). There is α2 > 0 s.t. ‖β‖2

Γ̂
≥ α1‖β‖22 for any β ∈ K(S).

Condition 3.3. There is α2 > 0 s.t. ‖β‖2
Γ̂t
≥ α2‖β‖2Γ̂ for any β ∈ K(S).

Condition 3.4. There is α3 > 0 s.t. |βT1 (Γ̂t − Γ̂)β2| ≤ α3‖β1‖Γ̂‖β2‖Γ̂ for any β ∈ K(S).

The preceding conditions deserve elaboration. The cone K(S) is an object that appears in the study
of the statistical properties of constrained M-estimators: it is the set the error of the constrained lasso
β̂−β∗ belongs to. Its image underXŜ is the transformed tangent cone which contains the prediction
errorXŜ(β̂T − β̂∗). Condition 3.2 is a common assumption in the literature on high-dimensional
statistics. It is a specialization of the notion of restricted strong convextiy that plays a crucial part in
the study of constrained M-estimators. Conditions 3.3 and 3.4 are conditions on the sketch. At a high
level, Conditions 3.3 and 3.4 state that the action of the sketched Gram matrix Γ̂t on K(S) is similar
to that of Γ̂ on K(S). As we shall see, they are satisfied with high probability by sub-Gaussian
sketches. The following theorem is our main result regarding the SCREENANDCLEAN method.

Theorem 3.5. Under Conditions 3.2, 3.3, and 3.4, for any T > 0 such that ‖β̃t − β∗‖Γ̂ ≥
√
L√
s
‖β̂ −

β∗‖1 for all t ≤ T , we have

‖β̃t − β∗‖Γ̂ ≤ γ
t−1‖β̃1 − β∗‖Γ̂ +

εst(N,D)

1− γ
,

where γ =
cγα3

α2
is the contraction factor (cγ > 0 is an absolute constant) and

εst(N,D) =
2(1 + 12α3)λmax(Γ̂)1/2

α2
√
s

‖β̂ − β∗‖1 +
24
√
s

α2
√
α1
‖Γ̂β∗ − γ̂‖∞.

To interpret Theorem 3.5, recall

‖β̂ − β∗‖2 .P
√
s‖Γ̂β∗ − γ̂‖∞, ‖β̂ − β∗‖1 .P s‖Γ̂β∗ − γ̂‖∞,

where β̂ is the lasso estimator. Further, the prediction error of the lasso estimator is (up to a constant)√
L√
s
‖β̂ − β∗‖1, which (up to a constant) is exactly statistical precision εst(N,D). Theorem 3.5 states

that the prediction error of β̃t decreases q-linearly to that of the lasso estimator. We emphasize that
the convergence rate is linear despite the absence of strong convexity, which is usually the case
when N < D. A direct consequence is that only logarithmically many iterations ensures a desired
suboptimality, which stated in the following corollary.
Corollary 3.6. Under the conditions of Theorem 3.5,

T =
log
(
ε− εst(N,D)

1−γ
)−1 − log 1

ε1

log 1
γ

≈ log 1
ε

iterations of the constrained quasi-Newton method, where ε1 = ‖β̂1 − β∗‖Γ̂, is enough to produce
an iterate whose prediction error is smaller than

ε > max
{
λmax(Γ̂)1/2√

s
‖β̂ − β∗‖1, εst(N,D)

1−γ

}
≈ ‖β̂ − β∗‖Γ̂.

Theorem 3.5 is vacuous if the contraction factor γ =
cγα3

α2
is not smaller than 1. To ensure γ < 1, it

is enough to choose the sketch size n so that α3

α2
< c−1γ . Consider the “good event”

E(δ) :=
{
α2 ≥ 1− δ, α3 ≤ δ

2

}
. (4)

If the rows of St are sub-Gaussian, to ensure E(δ) occurs with high probability, Pilanci and Wain-
wright show it is enough to choose

n > cs
δ2W

(
XŜ(K(S) ∩ Sd−1)

)2
, (5)

where cs > 0 is an absolute constant andW(S) is the Gaussian-width of the set S ⊂ Rd [13].

5



Lemma 3.7 (Pilanci and Wainwright (2014)). For any sketching matrix whose rows are independent
1-sub-Gaussian vectors, as long as the sketch size n satisfies (5),

P
(
E(δ)

)
≥ 1− c5 exp

(
−c6nδ2

)
,

where c5, c6 are absolute constants.

As a result, when the sketch size n satisfies (5), Theorem 3.5 is non-trivial.

Tradeoffs depending on sketch size. We remark that the contraction coefficient in Theorem 3.5
depends on the sketch size. As the sketch size n increases, the contraction coefficient decays and
vice versa. Thus the sketch size allows practitioner to trade-off the total rounds of communication
with the total amount of data (in bits) sent over the network. A larger sketch size results in fewer
rounds of communication, but more bits per round of communication and vice versa. Recall [5] the
communication cost of an algorithm is

rounds× overhead + bits× bandwidth−1.
By tweaking the sketch size, users can trade-off rounds and bits, thereby minimizing the communca-
tion cost of our approach on various distributed computing platforms. For example, the user of
a cluster comprising commodity machines is more concerned with overhead than the user of a
purpose-built high performance cluster [7]. In the following, we study the two extremes of the
trade-off.

At one extreme, users are solely concerned by the total amount of data sent over the network. On
such platforms, users should use smaller sketches to reduce the total amount of data sent over the
network at the expense of performing a few extra iterations (rounds of communication).
Corollary 3.8. Under the conditions of Theorem 3 and Lemma 3.7, selecting d := bτNc features by
SIS, where τ = cN−θ for some c > 0 and θ < 1− 2κ and letting

n >
cs(cγ + 2)2

4
W
(
XŜ(K(S) ∩ Sd−1)

)2
, T =

log 1
εst(N,D) − log 1

ε1

log 2

in Algorithm 1 ensures ‖β̃T − β∗‖Γ̂ ≤ 3εst(N,D) with probability at least

1− c4T exp
(
−c2nδ2

)
− C2 exp

(
−CN

1−2κ

logN

)
,

where c, cγ , cs, c2, c4, C, C2 are absolute constants.

We state the corrollary in terms of the statistical precision εst(N,D) and the Gaussian width to keep
the expressions concise. It is known that the Gausssian width of the transformed tangent cone that
appears in Corollary 3.8 is O(s log d)1/2 [13]. Thus it is possible to keep the sketch size n on the
order of s log d. Recalling d = bτNc, where τ is specified in the statement of Theorem 3.1, and

εst(N,D) ≤
(
s logD
N

) 1
2 , we deduce the communication cost of the approach is

O(dnmT ) = O
(
N(s log d)m log

(
N

s logD

))
= Õ(mns),

where Õ ignores polylogarithmic terms. The takeaway is it is possible to obtain anO(εst(N,D)) accu-
rate solution by sending Õ(mNs) bits over the network. Compared to the O(mN2) communication
cost of DECO, we see that our approach exploits sparsity to reduce communication cost.

At the other extreme, there is a line of work in statistics that studies estimators whose evaluation only
requires a single round of communication. DECO is such a method. In our approach, it is possible to
obtain an εst(N,D) accurate solution in a single iteration by choosing the sketch size large enough to
ensure the contraction factor γ is on the order of εst(N,D).
Corollary 3.9. Under the conditions of Theorem 3 and Lemma 3.7, selecting d := bτNc features by
SIS, where τ = cN−θ for some c > 0 and θ < 1− 2κ and letting

n >
cs(cγεst(N,D)−1 + 2)2

4
W
(
XŜ(K(S) ∩ Sd−1)

)2
and T = 1 in Algorithm 1 ensures ‖β̃T − β∗‖Γ̂ ≤ 3εst(N,D) with probability at least

1− c4T exp
(
−c2nδ2

)
− C2 exp

(
−CN

1−2κ

logN

)
,

where c, cγ , cs, c2, c4, C, C2 are absolute constants.

6



2 4 6 8 10

Iterations

10
-2

10
-1

10
0

10
1

P
re

d
ic

ti
o

n
 e

rr
o

r

m = 231

m = 277

m = 369

m = 553

m = 922

Lasso

(a) xi
i.i.d.∼ N (0, ID)

2 4 6 8 10

Iterations

10
-2

10
-1

10
0

10
1

P
re

d
ic

ti
o

n
 e

rr
o

r

m = 231

m = 277

m = 369

m = 553

m = 922

Lasso

(b) xi
i.i.d.∼ AR(1)

Figure 1: Plots of the statistical error log ‖X̃(β̂ − β∗)‖22 versus iteration. Each plots shows the
convergence of 10 runs of Algorithm 1 on the same problem instance. We see that the statistical error
decreases linearly up to the statistical precision of the problem.

Recalling
εst(N,D)2 ≈ s logD

N , W
(
XŜ(K(S) ∩ Sd−1)

)2 ≈ s log d,

we deduce the communication cost of the one-shot approach is

O(dnmT ) = O
(
N2m log

(
N

s logD

))
= Õ(mN2),

which matches the communication cost of DECO.

4 Simulation results
In this section, we provide empirical evaluations of our main algorithm SCREENANDCLEAN on
synthetic datasets. In most of the experiments the performance of the methods is evaluated in terms
of the prediction error which is defined as ‖X̃(β̂ − β∗)‖22. All the experiments are implemented
in Matlab on a shared memory machine with 512 GB RAM with 4(6) core intel Xeon E7540 2
GHz processors. We use TFOCS as a solver for any optimization problem involved, e.g., step 5 in
Algorithm 1. For brevity, we refer to our approach as SC in the rest of the section.

4.1 Impact of number of iterations and sketch size
First, we confirm the prediction of Theorem 3.5 by simulation. Figure 1 shows the prediction error of
the iterates of Algorithm 1 with different sketch sizes m. We generate a random instance of a sparse
regression problem with size 1000 by 10000 and sparsity s = 10, and apply Algorithm 1 to estimate
the regression coefficients. Since Algorithm 1 is a randomized algorithm, for a given (fixed) dataset,
its error is reported as the median of the results from 11 independent trials. The two subfigures
show the results for two random designs: standard Gaussian (left) and AR(1) (right). Within each
subfigure, each curve corresponds to a sketch size, and the dashed black line show the prediction
error of the lasso estimator. On the logarithmic scale, a linearly convergent sequence of points appear
on a straight line. As predicted by Theorem 3.5, the iterates of Algorithm 1 converge linearly up to
the statistical precision, which is (roughly) the prediction error of the lasso estimator, and then it
plateaus. As expected, the higher the sketch size is, the fewer number of iteration is needed. These
results are consistent with our theoretical findings.

4.2 Impact of sample size N
Next, we evaluate the statistical performance of our SC algorithm when N grows. For completeness,
we also evaluate several competing methods, namely, lasso, SIS [6] and DECO [17]. The synthetic
datasets used in our experiments are based on model (1). In it,X ∼ N (0, ID) orX ∼ N (0,Σ) with
all predictors equally correlated with correlation 0.7, ε ∼ N (0, 1). Similar to the setting appeared
in [17], the support of β∗, S satisfies that |S| = 5 and its coordinates are randomly chosen from
{1, . . . , D}, and

β∗i =

{
(−1)Ber(0.5)

(
|(0, 1)|+ 5

(
logD
N

)1/2)
i ∈ S

0 i /∈ S.
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We generate datasets with fixed D = 3000 and N ranging from 50 to 600. For each N , 20 synthetic
datasets are generated and the plots are made by averaging the results.

In order to compare with methods such as DECO which is concerned with the Lagrangian formulation
of lasso, we modify our algorithm accordingly. That is, in step 5 of Algorithm 1, we solve

β̃t ← arg minβ∈Rd
1

2
βT Γ̃tβ − (γ̂ − Γ̂β̃t−1)Tβ + λ‖β‖1.

Herein, in our experiments, the regularization parameter is set to be λ = 2‖XT ε‖∞. Also, for SIS
and SC, the screening size is set to be 2N . For SC, we run it with sketch size n = 2s log(N) where
s = 5 and 3 iterations. For DECO, the dataset is partitioned into m = 3 subsets and it is implemented
without the refinement step. The results on two kinds of design matrix are presented in Figure 2.
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Figure 2: Plots of the statistical error log ‖X̃(β̂ − β∗)‖22 versus logN . In the above, (a) is generated
on datasets with independent predictors and (b) is generated on datasets with correlated predictors.
Besides our main algorithm SC, several competing methods, namely, lasso, SIS and DECO are
evaluated. Here D = 3000. For each N , 20 independent simulated datasets are generated and the
averaged results are plotted.

As can be seen, SIS achieves similar errors as lasso. Indeed, after careful inspection, we find out
that when in the cases where predictors are highly correlated, i.e., Figure 2(b), usually less than 2
non-zero coefficients can be recovered by sure independent screening. Nevertheless, this doesn’t
deteriorate the accuracy too much. Moreover, SC’s performance is comparable to both SIS and lasso
as the prediction error goes down in the same rate, and SC outperforms DECO in our experiments.
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Figure 3: Running time of a Spark implemen-
tation of SC versus number of machines.

Finally, in order to demonstrate that our approach is
amenable to distributed computing environments, we
implement it using Spark1 on a modern cluster with
20 nodes, each of which has 12 executor cores. We
run our algorithm on an independent Gaussian prob-
lem instance with size 6000 and 200,000, and sparsity
s = 20. The screening size is 2400, sketch size is 700,
number of iterations is 3. To show the scalability, we
report the running time using 1, 2, 4, 8, 16 machines,
respectively. As most of the steps in our approach are
embarrassingly parallel, the running time becomes
almost half as we double the number of machines.

5 Conclusion and discussion
We presented an approach to feature-distributed
sparse regression that exploits the sparsity of the re-
gression coefficients to reduce communication cost.
Our approach relies on sketching to compress the
information that has to be sent over the network. Em-
pirical results verify our theoretical findings.

1http://spark.apache.org/
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