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Abstract

This paper studies the k-means++ algorithm for clustering as well as the class ofD`

sampling algorithms to which k-means++ belongs. It is shown that for any constant
factor β > 1, selecting βk cluster centers by D` sampling yields a constant-factor
approximation to the optimal clustering with k centers, in expectation and without
conditions on the dataset. This result extends the previously known O(log k)
guarantee for the case β = 1 to the constant-factor bi-criteria regime. It also
improves upon an existing constant-factor bi-criteria result that holds only with
constant probability.

1 Introduction

The k-means problem and its variants constitute one of the most popular paradigms for clustering
[15]. Given a set of n data points, the task is to group them into k clusters, each defined by a cluster
center, such that the sum of distances from points to cluster centers (raised to a power `) is minimized.
Optimal clustering in this sense is known to be NP-hard [11, 3, 20, 6]. In practice, the most widely
used algorithm remains Lloyd’s [19] (often referred to as the k-means algorithm), which alternates
between updating centers given cluster assignments and re-assigning points to clusters.

In this paper, we study an enhancement to Lloyd’s algorithm known as k-means++ [4] and the more
general class of D` sampling algorithms to which k-means++ belongs. These algorithms select
cluster centers randomly from the given data points with probabilities proportional to their current
costs. The clustering can then be refined using Lloyd’s algorithm. D` sampling is attractive for
two reasons: First, it is guaranteed to yield an expected O(log k) approximation to the optimal
clustering with k centers [4]. Second, it is as simple as Lloyd’s algorithm, both conceptually as well
as computationally with O(nkd) running time in d dimensions.

The particular focus of this paper is on the setting where an optimal k-clustering remains the
benchmark but more than k cluster centers can be sampled to improve the approximation. Specifically,
it is shown that for any constant factor β > 1, if βk centers are chosen by D` sampling, then a
constant-factor approximation to the optimal k-clustering is obtained. This guarantee holds in
expectation and for all datasets, like the one in [4], and improves upon the O(log k) factor therein.
Such a result is known as a constant-factor bi-criteria approximation since both the optimal cost and
the relevant degrees of freedom (k in this case) are exceeded but only by constant factors.

In the context of clustering, bi-criteria approximation guarantees can be valuable because an ap-
propriate number of clusters k is almost never known or pre-specified in practice. Approaches to
determining k from the data are ideally based on knowing how the optimal cost decreases as k
increases, but obtaining this optimal trade-off between cost and k is NP-hard as mentioned earlier.
Alternatively, a simpler algorithm (like k-means++) that has a constant-factor bi-criteria guarantee
would ensure that the trade-off curve generated by this algorithm deviates by no more than constant
factors along both axes from the optimal curve. This may be more appealing than a deviation along
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the cost axis that grows as O(log k). Furthermore, if a solution with a specified number of clusters k
is truly required, then linear programming techniques can be used to select a k-subset from the βk
cluster centers while still maintaining a constant-factor approximation [1, 8].

The next section reviews existing work onD` sampling and other clustering approximations. Section 2
formally states the problem, the D` sampling algorithm, and existing lemmas regarding the algorithm.
Section 3 states the main results and compares them to previous results. Proofs are presented in
Section 4 with more algebraic proofs deferred to the supplementary material.

1.1 Related Work

Approximation algorithms for k-means (` = 2), k-medians (` = 1), and related problems span a
wide range in the trade-off between tighter approximation factors and lower algorithm complexity.
At one end, while exact algorithms [14] and polynomial-time approximation schemes (PTAS)
(see [22, 18, 9, 12, 13, 10] and references therein) may have polynomial running times in n, the
dependence on k and/or the dimension d is exponential or worse. Simpler local search [17, 5] and
linear programming [8, 16] algorithms offer constant-factor approximations but still with high-order
polynomial running times in n, and some rely on dense discretizations of size O(nε−d log(1/ε)).

In contrast to the above, this paper focuses on highly practical algorithms in the D` sampling class,
including k-means++. As mentioned, it was proved in [4] that D` sampling results in an O(log k)
approximation, in expectation and for all datasets. The current work extends this guarantee to the
constant-factor bi-criteria regime, also for all datasets. The authors of [4] also provided a matching
lower bound, exhibiting a dataset on which k-means++ achieves an expected Ω(log k) approximation.

Improved O(1) approximation factors have been shown for sampling algorithms like k-means++
provided that the dataset satisfies certain conditions. Such results were established in [24] for k-
means++ and other variants of Lloyd’s algorithm under the condition that the dataset is well-suited
in a sense to partitioning into k clusters, and for an algorithm called successive sampling [23] with
O(n(k + log n) + k2 log2 n) running time subject to a bound on the dispersion of the points.

In a similar direction to the one pursued in the present work, [1] showed that if the number of cluster
centers is increased to a constant factor times k, then k-means++ can achieve a constant-factor
approximation, albeit only with constant probability. An O(1) factor was also obtained independently
by [2] using more centers, of order O(k log k). It is important to note that the constant-probability
result of [1] in no way implies the main results herein, which are true in expectation and are therefore
stronger guarantees. Furthermore, Section 3.1 shows that a constant-probability corollary of Theorem
1 improves upon [1] by more than a factor of 2.

Recently, [21, 7] have also established constant-factor bi-criteria results for the k-means problem.
These works differ from the present paper in studying more complex local search and linear program-
ming algorithms applied to large discretizations, of size nO(log(1/ε)/ε2) (a high-order polynomial)
in [21] and O(nε−d log(1/ε)) in [7], the latter the same as in [17]. Moreover, [7] employs search
neighborhoods that are also of exponential size in d (requiring doubly exponential running time).

2 Preliminaries

2.1 Problem Definition

We are given n points x1, . . . , xn in a real metric space X with metric D(x, y). The objective is to
choose t cluster centers c1, . . . , ct in X and assign points to the nearest cluster center to minimize the
potential function

φ =

n∑
i=1

min
j=1,...,t

D(xi, cj)
`. (1)

A cluster is thus defined by the points xi assigned to a center cj , where ties (multiple closest centers)
are broken arbitrarily. For a subset of points S, define φ(S) =

∑
xi∈S minj=1,...,tD(xi, cj)

` to be
the contribution to the potential from S; φ(xi) is the contribution from a single point xi.

The exponent ` ≥ 1 in (1) is regarded as a problem parameter. Letting ` = 2 and D be Euclidean
distance, we have what is usually known as the k-means problem, so-called because the optimal
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Algorithm 1 D` Sampling
Input: Data points x1, . . . , xn, number of clusters t. Initialize φ(xi) = 1 for i = 1, . . . , n.
for j = 1 to t do

Select jth center cj = xi with probability φ(xi)/φ.
Update φ(xi) for i = 1, . . . , n.

cluster centers are means of the points assigned to them. The choice ` = 1 is also popular and
corresponds to the k-medians problem.

Throughout this paper, an optimal clustering will always refer to one that minimizes (1) over solutions
with t = k clusters, where k ≥ 2 is given. Likewise, the term optimal cluster and symbolA will refer
to one of the k clusters from this optimal solution. The goal is to approximate the potential φ∗ of this
optimal k-clustering using t = βk cluster centers for β ≥ 1.

2.2 D` Sampling Algorithm

The D` sampling algorithm chooses cluster centers randomly from x1, . . . , xn with probabilities
proportional to their current contributions to the potential, as detailed in Algorithm 1. Following [4],
the case ` = 2 is referred to as the k-means++ algorithm and the non-uniform probabilities used after
the first iteration are referred to as D2 weighting (hence D` in general). For t cluster centers, the
running time of D` sampling is O(ntd) in d dimensions.

In practice, Algorithm 1 is used as an initialization to Lloyd’s algorithm, which usually produces
further decreases in the potential. The analysis herein pertains only to Algorithm 1 and not to the
subsequent improvement due to Lloyd’s algorithm.

2.3 Existing Lemmas Regarding D` Sampling

The following lemmas synthesize useful results from [4] that bound the expected potential within a
single optimal cluster due to selecting a center from that cluster with uniform or D` weighting.
Lemma 1. [4, Lemmas 3.1 and 5.1] Given an optimal cluster A, let φ be the potential resulting from
selecting a first cluster center randomly from A with uniform weighting. Then E[φ(A)] ≤ r(`)u φ∗(A)
for any A, where

r(`)u =

{
2, ` = 2 and D is Euclidean,
2`, otherwise.

Lemma 2. [4, Lemma 3.2] Given an optimal cluster A and an initial potential φ, let φ′ be the
potential resulting from adding a cluster center selected randomly from A with D` weighting. Then
E[φ′(A)] ≤ r(`)D φ∗(A) for any A, where r(`)D = 2`r

(`)
u .

The factor of 2` between r(`)u and r(`)D for general ` is explained just before Theorem 5.1 in [4].

3 Main Results

The main results of this paper are stated below in terms of the single-cluster approximation ratio r(`)D
defined by Lemma 2. Subsequently in Section 3.1, the results are discussed in the context of previous
work.
Theorem 1. Let φ be the potential resulting from selecting βk cluster centers according to Algo-
rithm 1, where β ≥ 1. The expected approximation ratio is then bounded as

E[φ]

φ∗
≤ r(`)D

(
1 + min

{
ϕ(k − 2)

(β − 1)k + ϕ
,Hk−1

})
−Θ

(
1

n

)
,

where ϕ = (1 +
√

5)/2
.
= 1.618 is the golden ratio and Hk = 1 + 1

2 + · · ·+ 1
k ∼ log k is the kth

harmonic number.

In the proof of Theorem 1 in Section 4.2, it is shown that the 1/n term is indeed non-positive and can
therefore be omitted, with negligible loss for large n.
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The approximation ratio bound in Theorem 1 is stated as a function of k. The following corollary
confirms that the theorem also implies a constant-factor bi-criteria approximation.
Corollary 1. With the same definitions as in Theorem 1, the expected approximation ratio is bounded
as

E[φ]

φ∗
≤ r(`)D

(
1 +

ϕ

β − 1

)
.

Proof. The minimum in Theorem 1 is bounded by its first term. This term is in turn increasing in k
with asymptote ϕ/(β − 1), which can therefore be taken as a k-independent bound.

It follows from Corollary 1 that a constant “oversampling” ratio β > 1 leads to a constant-factor
approximation. Theorem 1 offers a further refinement for finite k.

The bounds in Theorem 1 and Corollary 1 consist of two factors. As β increases, the second,
parenthesized factor decreases to 1 either exactly or approximately as 1/(β − 1). The first factor
of r(`)D however is no smaller than 4, and is a direct consequence of Lemma 2. Any future work on
improving Lemma 2 would therefore strengthen the approximation factors above.

3.1 Comparisons to Existing Results

A comparison of Theorem 1 to results in [4] is implicit in its statement since the Hk−1 term in the
minimum comes directly from [4, Theorems 3.1 and 5.1]. For k = 2, 3, the first term in the minimum
is smaller than Hk−1 for any β ≥ 1, and hence Theorem 1 is always an improvement. For k > 3,
Theorem 1 improves upon [4] for β greater than the critical value

βc = 1 +
φ(k − 2−Hk−1)

kHk−1
.

Numerical evaluation of βc shows that it reaches a maximum value of 1.204 at k = 22 and then
decreases back toward 1 roughly as 1/Hk−1. It can be concluded that for any k, at most 20%
oversampling is required for Theorem 1 to guarantee a better approximation than [4].

The most closely related result to Theorem 1 and Corollary 1 is found in [1, Theorem 1]. The latter
establishes a constant-factor bi-criteria approximation that holds only with constant probability, as
opposed to in expectation. Since a bound on the expectation implies a bound with constant probability
via Markov’s inequality (but not the other way around), a direct comparison with [1] is possible.
Specifically, for ` = 2 and the t = d16(k +

√
k)e cluster centers assumed in [1], Theorem 1 in the

present work implies that

E[φ]

φ∗
≤ 8

(
1 + min

{
ϕ(k − 2)

d15k + 16
√
ke+ ϕ

,Hk−1

})
≤ 8

(
1 +

ϕ

15

)
,

after taking k →∞. Then by Markov’s inequality,

φ

φ∗
≤ 8

0.97

(
1 +

ϕ

15

)
.
= 9.137

with probability at least 1− 0.97 = 0.03 as in [1]. This 9.137 approximation factor is less than half
the factor of 20 in [1].

Corollary 1 may also be compared to the results in [21], which are obtained through more complex
algorithms applied to a large discretization, of size nO(log(1/ε)/ε2) for reasonably small ε. The main
difference between Corollary 1 and the bounds in [21] is the extra factor of r(`)D . As discussed above,
this factor is due to Lemma 2 and is unlikely to be intrinsic to the D` sampling algorithm.

4 Proofs

The overall strategy used to prove Theorem 1 is similar to that in [4]. The key intermediate result is
Lemma 3 below, which relates the potential at a later iteration in Algorithm 1 to the potential at an
earlier iteration. Section 4.1 is devoted to proving Lemma 3. Subsequently in Section 4.2, Theorem 1
is proven by an application of Lemma 3.
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In the sequel, we say that an optimal cluster A is covered by a set of cluster centers if at least one of
the centers lies in A. Otherwise A is uncovered. Also define ρ = r

(`)
D φ∗ as an abbreviation.

Lemma 3. For an initial set of centers leaving u optimal clusters uncovered, let φ denote the
potential, U the union of uncovered clusters, and V the union of covered clusters. Let φ′ denote
the potential resulting from adding t ≥ u centers, each selected randomly with D` weighting as in
Algorithm 1. Then the new potential is bounded in expectation as

E[φ′ | φ] ≤ cV(t, u)φ(V) + cU (t, u)ρ(U)

for coefficients cV(t, u) and cU (t, u) that depend only on t, u. This holds in particular for

cV(t, u) =
t+ au+ b

t− u+ b
= 1 +

(a+ 1)u

t− u+ b
, (2a)

cU (t, u) =

{
cV(t− 1, u− 1), u > 0,

0, u = 0,
(2b)

where the parameters a and b satisfy a+ 1 ≥ b > 0 and ab ≥ 1. The choice of a, b that minimizes
cV(t, u) in (2a) is a+ 1 = b = ϕ.

4.1 Proof of Lemma 3

Lemma 3 is proven using induction, showing that if it holds for (t, u) and (t, u + 1), then it also
holds for (t + 1, u + 1), similar to the proof of [4, Lemma 3.3]. The proof is organized into three
parts. Section 4.1.1 provides base cases. In Section 4.1.2, sufficient conditions on the coefficients
cV(t, u), cU (t, u) are derived that allow the inductive step to be completed. In Section 4.1.3, it is
shown that the closed-form expressions in (2) are consistent with the base cases in Section 4.1.1 and
satisfy the sufficient conditions from Section 4.1.2, thus completing the proof.

4.1.1 Base cases

This subsection exhibits two base cases of Lemma 3. The first case corresponds to u = 0, for which
we have φ(V) = φ. Since adding centers cannot increase the potential, i.e. φ′ ≤ φ deterministically,
Lemma 3 holds with

cV(t, 0) = 1, cU (t, 0) = 0, t ≥ 0. (3)

The second base case occurs for t = u, u ≥ 1. For this purpose, a slightly strengthened version of [4,
Lemma 3.3] is used, as given next.
Lemma 4. With the same definitions as in Lemma 3 except with t ≤ u, we have

E[φ′ | φ] ≤ (1 +Ht)φ(V) + (1 +Ht−1)ρ(U) +
u− t
u

φ(U),

where we define H0 = 0 and H−1 = −1 for convenience.

The improvement is in the coefficient in front of ρ(U), from (1 + Ht) to (1 + Ht−1). The proof
follows that of [4, Lemma 3.3] with some differences and is deferred to the supplementary material.

Specializing to the case t = u, Lemma 4 coincides with Lemma 3 with coefficients

cV(u, u) = 1 +Hu, cU (u, u) = 1 +Hu−1. (4)

4.1.2 Sufficient conditions on coefficients

We now assume inductively that Lemma 3 holds for (t, u) and (t, u+ 1). The induction to the case
(t+ 1, u+ 1) is then completed under the following sufficient conditions on the coefficients:

cV(t, u+ 1) ≥ 1, (5a)

(cV(t, u+ 1)− cU (t, u+ 1))cV(t, u)2 ≥ (cU (t, u+ 1)− cV(t, u))2, (5b)

and

cV(t+ 1, u+ 1) ≥ 1

2

[
cV(t, u) +

(
cV(t, u)2 + 4 max{cV(t, u+ 1)− cV(t, u), 0}

)1/2]
, (6a)

cU (t+ 1, u+ 1) ≥ cV(t, u). (6b)
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The first pair of conditions (5) applies to the coefficients involved in the inductive hypothesis for (t, u)
and (t, u+ 1). The second pair (6) can be seen as a recursive specification of the new coefficients
for (t+ 1, u+ 1). This inductive step together with base cases (3) and (4) are sufficient to extend
Lemma 3 to all t > u, starting with (t, u) = (1, 0) and (t, u+ 1) = (1, 1).

The inductive step is broken down into a series of three lemmas, each building upon the last. The first
lemma applies the inductive hypothesis to derive a bound on the potential that depends not only on
φ(V) and ρ(U) but also on φ(U).

Lemma 5. Assume that Lemma 3 holds for (t, u) and (t, u+ 1). Then for the case (t+ 1, u+ 1),
i.e. φ corresponding to u+ 1 uncovered clusters and φ′ resulting after adding t+ 1 centers,

E[φ′ | φ] ≤ min

{
cV(t, u)φ(U) + cV(t, u+ 1)φ(V)

φ(U) + φ(V)
φ(V)

+
cV(t, u)φ(U) + cU (t, u+ 1)φ(V)

φ(U) + φ(V)
ρ(U), φ(U) + φ(V)

}
.

Proof. We consider the two cases in which the first of the t+ 1 new centers is chosen from either the
covered set V or the uncovered set U . Denote by φ1 the potential after adding the first new center.

Covered case: This case occurs with probability φ(V)/φ and leaves the covered and uncovered sets
unchanged. We then invoke Lemma 3 with (t, u+ 1) (one fewer center to add) and φ1 playing the
role of φ. The contribution to E[φ′ | φ] from this case is then bounded by

φ(V)

φ

(
cV(t, u+ 1)φ1(V) + cU (t, u+ 1)ρ(U)

)
≤ φ(V)

φ
(cV(t, u+ 1)φ(V) + cU (t, u+ 1)ρ(U)) ,

(7)
noting that φ1(S) ≤ φ(S) for any set S.

Uncovered case: We consider each uncovered cluster A ⊆ U separately. With probability φ(A)/φ,
the first new center is selected from A, moving A from the uncovered to the covered set and reducing
the number of uncovered clusters by one. Applying Lemma 3 for (t, u), the contribution to E[φ′ | φ]
is bounded by

φ(A)

φ

[
cV(t, u)

(
φ1(V) + φ1(A)

)
+ cU (t, u)(ρ(U)− ρ(A))

]
.

Taking the expectation with respect to possible centers in A and using Lemma 2 and φ1(V) ≤ φ(V),
we obtain the further bound

φ(A)

φ
[cV(t, u)(φ(V) + ρ(A)) + cU (t, u)(ρ(U)− ρ(A))] .

Summing over A ⊆ U yields

φ(U)

φ
(cV(t, u)φ(V) + cU (t, u)ρ(U)) +

cV(t, u)− cU (t, u)

φ

∑
A⊆U

φ(A)ρ(A)

≤ φ(U)

φ
cV(t, u)(φ(V) + ρ(U)), (8)

using the inner product bound
∑
A⊆U φ(A)ρ(A) ≤ φ(U)ρ(U).

The result follows from summing (7) and (8) and combining with the trivial bound E[φ′ | φ] ≤ φ =
φ(U) + φ(V).

The bound in Lemma 5 depends on φ(U), the potential over uncovered clusters, which can be
arbitrarily large or small. In the next lemma, φ(U) is eliminated by maximizing with respect to it.

Lemma 6. Assume that Lemma 3 holds for (t, u) and (t, u+ 1) with cV(t, u+ 1) ≥ 1. Then for the
case (t+ 1, u+ 1) in the sense of Lemma 5,

E[φ′ | φ] ≤ 1

2
cV(t, u)(φ(V) + ρ(U)) +

1

2
max

{
cV(t, u)(φ(V) + ρ(U)),

√
Q
}
,
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where

Q =
(
cV(t, u)2 − 4cV(t, u) + 4cV(t, u+ 1)

)
φ(V)2

+ 2
(
cV(t, u)2 − 2cV(t, u) + 2cU (t, u+ 1)

)
φ(V)ρ(U) + cV(t, u)2ρ(U)2.

Proof. Let B1(φ(U)) and B2(φ(U)) denote the two terms inside the minimum in Lemma 5 (i.e.
B2(φ(U)) = φ(U) + φ(V)). The derivative of B1(φ(U)) with respect to φ(U) is given by

B′1(φ(U)) =
φ(V)

(φ(U) + φ(V))2
[
(cV(t, u)− cV(t, u+ 1))φ(V) + (cV(t, u)− cU (t, u+ 1))ρ(U)

]
,

which does not change sign as a function of φ(U). The two cases B′1(φ(U)) ≥ 0 and B′1(φ(U)) < 0
are considered separately below. Taking the maximum of the resulting bounds (9), (10) establishes
the lemma.

Case B′1(φ(U)) ≥ 0: Both B1(φ(U)) and B2(φ(U)) are non-decreasing functions of φ(U). The
former has the finite supremum

cV(t, u)(φ(V) + ρ(U)), (9)

whereas the latter increases without bound. Therefore B1(φ(U)) eventually becomes the smaller of
the two and (9) can be taken as an upper bound on min{B1(φ(U)), B2(φ(U))}.
Case B′1(φ(U)) < 0: At φ(U) = 0, we have B1(0) = cV(t, u + 1)φ(V) + cU (t, u + 1)ρ(U) and
B2(0) = φ(V). The assumption cV(t, u + 1) ≥ 1 implies that B1(0) ≥ B2(0). Since B1(φ(U))
is now a decreasing function, the two functions must intersect and the point of intersection then
provides an upper bound on min{B1(φ(U)), B2(φ(U))}. The supplementary material provides some
algebraic details on solving for the intersection. The resulting bound is

1

2
cV(t, u)(φ(V) + ρ(U)) +

1

2

√
Q. (10)

The bound in Lemma 6 is a nonlinear function of φ(V) and ρ(U), in contrast to the desired form in
Lemma 3. The next step is to linearize the bound by imposing additional conditions (5).

Lemma 7. Assume that Lemma 3 holds for (t, u) and (t, u+ 1) with coefficients satisfying (5). Then
for the case (t+ 1, u+ 1) in the sense of Lemma 5,

E[φ′ | φ] ≤ 1

2

[
cV(t, u) +

(
cV(t, u)2 + 4 max{cV(t, u+ 1)− cV(t, u), 0}

)1/2]
φ(V) + cV(t, u)ρ(U).

Proof. It suffices to linearize the
√
Q term in Lemma 6, specifically by showing that Q ≤ (aφ(V) +

bρ(U))2 for all φ(V), ρ(U) with a =
[
cV(t, u)2 + 4(cV(t, u+ 1)− cV(t, u))

]1/2
and b = cV(t, u).

Proof of this inequality is provided in the supplementary material. Incorporating the inequality into
Lemma 6 proves the result.

Given conditions (5) and Lemma 7, the inductive step for Lemma 3 can be completed by defining
cV(t+ 1, u+ 1) and cU (t+ 1, u+ 1) recursively as in (6).

4.1.3 Proof with specific form for coefficients

We now prove that Lemma 3 holds for coefficients cV(t, u), cU (t, u) given by (2) with a+ 1 ≥ b > 0
and ab ≥ 1. Given the inductive approach and the results established in Sections 4.1.1 and 4.1.2,
the proof requires the remaining steps below. First, it is shown that the base cases (3), (4) from
Section 4.1.1 imply that Lemma 3 is true for the same base cases but with cV(t, u), cU (t, u) given
by (2) instead. Second, (2) is shown to satisfy conditions (5) for all t > u, thus permitting Lemma
7 to be used. Third, (2) is also shown to satisfy (6), which combined with Lemma 7 completes the
induction.
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Considering the base cases, for u = 0, (3) and (2) coincide so there is nothing to prove. For the case
t = u, u ≥ 1, Lemma 3 with coefficients given by (4) implies the same with coefficients given by (2)
provided that

(1 +Hu)φ(V) + (1 +Hu−1)ρ(U) ≤
(

1 +
(a+ 1)u

b

)
φ(V) +

(
1 +

(a+ 1)(u− 1)

b

)
ρ(U)

for all φ(V), ρ(U). This in turn is ensured if the coefficients satisfy Hu ≤ (a+ 1)u/b for all u ≥ 1.
The most stringent case is u = 1 and corresponds to the assumption a+ 1 ≥ b.
For the second step of establishing (5), it is clear that (5a) is satisfied by (2a). A direct calculation
presented in the supplementary material shows that (5b) is also true.
Lemma 8. Condition (5b) is satisfied for all t > u if cV(t, u), cU (t, u) are given by (2) and ab ≥ 1.

Similarly for the third step, it suffices to show that (2a) satisfies recursion (6a) since (2b) automatically
satisfies (6b). A proof is provided in the supplementary material.
Lemma 9. Recursion (6a) is satisfied for all t > u if cV(t, u) is given by (2a) and ab ≥ 1.

Lastly, we minimize cV(t, u) in (2a) with respect to a, b, subject to a+ 1 ≥ b > 0 and ab ≥ 1. For
fixed a, minimizing with respect to b yields b = a+ 1 and cV(t, u) = 1 + ((a+ 1)u)/(t−u+a+ 1).
Minimizing with respect to a then results in setting ab = a(a + 1) = 1. The solution satisfying
a+ 1 > 0 is a = ϕ− 1 and b = ϕ.

4.2 Proof of Theorem 1

Denote by nA the number of points in optimal cluster A. In the first iteration of Algorithm 1, the first
cluster center is selected from some A with probability nA/n. Conditioned on this event, Lemma 3
is applied with covered set V = A, u = k − 1 uncovered clusters, and t = βk − 1 remaining cluster
centers. This bounds the final potential φ′ as

E[φ′ | φ] ≤ cV(βk − 1, k − 1)φ(A) + cU (βk − 1, k − 1)(ρ− ρ(A))

where cV(t, u), cU (t, u) are given by (2) with a+ 1 = b = ϕ. Taking the expectation over possible
centers in A and using Lemma 1,

E[φ′ | A] ≤ r(`)u cV(βk − 1, k − 1)φ∗(A) + cU (βk − 1, k − 1)(ρ− ρ(A)).

Taking the expectation over clusters A and recalling that ρ = r
(`)
D φ∗,

E[φ′] ≤ r(`)D cU (βk − 1, k − 1)φ∗ − C
∑
A

nA
n
φ∗(A), (11)

where C = r
(`)
D cU (βk−1, k−1)− r(`)u cV(βk−1, k−1). Using (2) and r(`)D = 2`r

(`)
u from Lemma

2,

C = r(`)u
2` ((β − 1)k + ϕ(k − 1))− (β − 1 + ϕ)k

(β − 1)k + ϕ

= r(`)u
(2` − 1)(β − 1)k + ϕ((2` − 1)(k − 1)− 1)

(β − 1)k + ϕ
.

The last expression for C is seen to be non-negative for β ≥ 1, k ≥ 2, and ` ≥ 1. Furthermore, since
nA = 1 (a singleton cluster) implies that φ∗(A) = 0, we have∑

A
nAφ

∗(A) =
∑
A:nA≥2

nAφ
∗(A) ≥ 2φ∗. (12)

Substituting (2) and (12) into (11), we obtain
E[φ′]

φ∗
≤ r(`)D

(
1 +

ϕ(k − 2)

(β − 1)k + ϕ

)
− 2C

n
. (13)

The last step is to recall [4, Theorems 3.1 and 5.1], which together state that
E[φ′]

φ∗
≤ r(`)D (1 +Hk−1) (14)

for φ′ resulting from selecting exactly k cluster centers. In fact, (14) also holds for βk centers, β ≥ 1,
since adding centers cannot increase the potential. The proof is completed by taking the minimum of
(13) and (14).
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