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Abstract

Digital crowdsourcing (CS) is a modern approach to perform certain large projects
using small contributions of a large crowd. In CS, a taskmaster typically breaks
down the project into small batches of tasks and assigns them to so-called workers
with imperfect skill levels. The crowdsourcer then collects and analyzes the results
for inference and serving the purpose of the project. In this work, the CS problem,
as a human-in-the-loop computation problem, is modeled and analyzed in an
information theoretic rate-distortion framework. The purpose is to identify the
ultimate fidelity that one can achieve by any form of query from the crowd and any
decoding (inference) algorithm with a given budget. The results are established
by a joint source channel (de)coding scheme, which represent the query scheme
and inference, over parallel noisy channels, which model workers with imperfect
skill levels. We also present and analyze a query scheme dubbed k-ary incidence
coding and study optimized query pricing in this setting.

1 Introduction

Digital crowdsourcing (CS) is a modern approach to perform certain large projects using small
contributions of a large crowd. Crowdsourcing is usually used when the tasks involved may better suite
humans rather than machines or in situations where they require some form of human participation.
As such crowdsourcing is categorized as a form of human-based computation or human-in-the-loop
computation system. This article examines the fundamental performance limits of crowdsourcing
and sheds light on the design of optimized crowdsourcing systems.

Crowdsourcing is used in many machine learning projects for labeling of large sets of unlabeled
data and Amazon Mechanical Turk (AMT) serves as a popular platform to this end. Crowdsourcing
is also useful in very subjective matters such as rating of different goods and services, as is now
widely popular in different online rating platforms and applications such as Yelp. Another example is
if we wish to classify a large number of images as suitable or unsuitable for children. In so-called
citizen research projects, a large number of –often human deployed or operated– sensors contribute
to accomplish a wide array of crowdsensing objectives, e.g., [2] and [3].

In crowdsourcing, a taskmaster typically breaks down the project into small batches of tasks, recruits
so-called workers and assigns them the tasks accordingly. The crowdsourcer then collects and
analyzes the results collectively to address the purpose of the project. The worker’s pay is often
low or non-existent. In cases such as labeling, the work is typically tedious and hence the workers
usually handle only a small batch of work in a given project. The workers are often non-specialists
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Figure 1: (a): An information theoretic crowdsourcing model; (b) 3IC for N = 2 valid responses, (c)
invalid responses

and as such there may be errors in their completion of assigned tasks. Due to the nature of task
assignment by the taskmaster, the workers and the skill level are typically unknown a priori. In case
of rating systems, such as Yelp, there is no pay for regular reviewers but only non-monetary personal
incentives; however, there are illegal reviewers who are paid to write fake reviews. In many cases
of crowdsourcing, the ground truth is not known at all. The transitory or fleeting characteristic of
workers, their unknown and imperfect skill levels and their possible motivations for spamming makes
the design of crowdsourcing projects and the analysis of the obtained results particularly challenging.

Researchers have studied the optimized design of crowdsourcing systems within the setting described
for enhanced reliability. Most research reported so far is devoted to optimized design and analysis
of aggregation and inference schemes and possibly using redundant task assignment. In AMT-type
crowdsourcing, two popular approaches for aggregation are namely majority voting and the Dawid
and Skene (DS) algorithm [5]. The former sets the estimate based on what the majority of the crowd
agrees on, and is provably suboptimal [8]. Majority voting is susceptible to error, when there are
spammers in the crowd, as it weighs the opinion of everybody in the crowd the same. The DS
algorithm, within a probabilistic framework, aims at joint estimation of the workers’ skill levels
and a reliable label based on the data collected from the crowd. The scheme runs as an expectation
maximization (EM) formulation in an iterative manner. More recent research with similar EM
formulation and a variety of probabilistic models are reported in [9, 12, 10]. In [8], a label inference
algorithm for CS is presented that runs iteratively over a bipartite graph. In [1], the CS problem
is posed as a so-called bandit survey problem for which the trade offs of cost and reliability in the
context of worker selection is studied. Schemes for identifying workers with low skill levels is studied
in, e.g., [6]. In [13], an analysis of the DS algorithm is presented and an improved inference algorithm
is presented. Another class of works on crowdsourcing for clustering relies on convex optimization
formulations of inferring clusters within probabilistic graphical models, e.g., [11] and the references
therein.

In this work, a crowdsourcing problem is modeled and analyzed in an information theoretic setting.
The purpose is to seek ultimate performance bounds, in terms of the CS budget (or equivalently the
number of queries per item) and a CS fidelity, that one can achieve by any form of query from the
workers and any inference algorithm. Two particular scenarios of interest include the case where the
workers’ skill levels are unknown both to the taskmaster and the crowdsourcer, or the case where
the skill levels are perfectly estimated during inference by the crowdsourcer. Within the presented
framework, we also investigate a class of query schemes dubbed k-ary incidence coding and analyze
its performance. At the end, we comment on an associated query pricing strategy.

2 Modeling Crowdsourcing

In this Section, we present a communication system model for crowdsourcing. The model, as depicted
in Figure 1a, then enables the analysis of the fundamental performance limits of crowdsourcing.
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2.1 Data Set: Source

Consider a dataset X = {X1, . . . , XL} composed of L items, e.g., images. In practice, there is
certain function B(X) ∈ B(X ) of the items that is of interest in crowdsourcing and is here considered
as the source. The value of this function is to be determined by the crowd for the given dataset. In the
case of crowdsourced clustering, B(Xi) = Bj ∈ B(X ) = {B1, . . . , BN} indicates the bin or cluster
to which the item Xi ideally belongs. We have B(X1, . . . , Xn) = B(Xn) = (B(X1), . . . , B(Xn)).
The number of clusters, |B(X )| = N , may or may not be known a priori.

2.2 Crowd Workers: Channels

The crowd is modeled by a set of parallel noisy channels in which each channel Ci, i = 1, . . . ,W,
represents the ith worker. The channel input is a query that is designed based on the source. The
channel output is what a user perceives or responds to a query. The output may or may not be the
correct answer to the query depending on the skill level of the worker and hence the noisy channel is
meant to model possible errors by the worker.

A suitable model for Ci is a discrete channel model. The channels may be assumed independent,
on the basis that different individuals have different knowledge sets. Related probabilistic models
representing the possible error in completion of a task by a worker are reviewed in [8]. Formally, a
channel (worker) is represented by a probability distribution P (v|u), u ∈ U , v ∈ V , where U is the
set of possible responses to a query and V is the set of choices offered to the worker in responding
to a query. For the example of images suitable for children, in general we may consider a shade of
possible responses to the query, U , including the extremes of totally suitable and totally unsuitable; As
possible choices offered to the worker to answer the query, V , we may consider two options of suitable
and unsuitable. As described below, in this work we consider two channel models representing
possibly erroneous responses of the workers: an M -ary symmetric channel model (MSC) and a
spammer-hammer channel model (SHC).

An MSC model with parameter ε, is a symmetric discrete memoryless channel without feedback [4]
and with input u ∈ U and output v ∈ V (|U| = |V| = M ), that is characterized by the following
transition probability

P (v|u) =
{

ε
M−1 v �= u
1− ε v = u.

(1)

If we consider a sequence of channel inputs un = (u1, . . . , un) and the corresponding output
sequence vn, we have P (vn|un) =

∏n
i=1 P (vi|ui), which holds because of the memoryless and no

feedback assumptions. In case of clustering and MSC, the probability of misclassifying any input
from a given cluster in another cluster only depends on the worker and not the corresponding clusters.

In the spammer-hammer channel model with the probability of being a hammer of q (SHC(q)), a
spammer randomly and uniformly chooses a valid response to a query, and a hammer perfectly
answers the query [8]. The corresponding discrete memoryless channel model without feedback,
with input u ∈ U and output v ∈ V and state C ∈ {S,H}, P (C = H) = q is described as follows

P (v|u,C) =

⎧⎨
⎩

0 C = H and v �= u
1 C = H and v = u
1
|V| C = S

(2)

where C ∈ {S,H} indicates whether the worker (channel) is a spammer or a hammer. In the case of
our current interest |U| = |V| = M , and we have P (vn|un, Cn) =

∏n
i=1 P (vi|ui, C

i).

In the sequel, we consider the following two scenarios: when the workers’ skill levels are unknown
(SL-UK) and when it is perfectly known by the crowdsourcer (SL-CS). In both cases, we assume that
the skill levels are not known at the taskmaster (transmitter).

The presented framework can also accommodate other more general scenarios of interest. For
example, the feedforward link in Figure 1a could be used to model a channel whose state is affected
by the input, e.g., difficulty of questions. These extensions remain for future studies.
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2.3 Query Scheme and Inference: Coding

In the system model presented in Figure 1a, encoding shows the way the queries are posed. A basic
query is that the worker is asked of the value of B(X). In the example of crowdsourcing for labeling
images that are suitable for children, the query is "This image suits children; true or false?" The
decoder or the crowdsourcer collects the responses of workers to the queries and attempts to infer the
right label (cluster) for each of the images. This is while the collected responses could be in general
incomplete or erroneous.

In the case of crowdsourcing for labeling a large set of dog images with their breeds, a query may be
formed by showing two pictures at once and inquiring whether they are from the same breed [11].
The queries in fact are posed as showing the elements of a binary incidence matrix, A, whose rows
and columns correspond to X . In this case, A(X1, X2) = 1 indicates that the two are members of
the same cluster (breed) and A(X1, X2) = 0 indicates otherwise. The matrix is symmetric and its
diagonal is 1. We refer to this query scheme as Binary Incidence Coding. If we show three pictures
at once and ask the user to classify them (put the pictures in similar or distinct bins); it is as if we
ask about three elements of the same matrix, i.e., A(X1, X2),A(X1, X3) and A(X2, X3) (Ternary
Incidence Coding). In general, if we show k pictures as a single query, it is equivalent to inquiring
about C(k, 2) (choose 2 out of k elements) entries of the matrix (k-ary Incidence Coding or kIC). As

we elaborate below, out of the 2C(k,2) possibilities, a number of the choices remain invalid and this
provides an error correction capability for kIC.

Figures 1b and 1c show the graphical representation of 3IC, and the choices a worker would have in
clustering with this code. The nodes denote the items and the edges indicate whether they are in the
same cluster. In 3IC, if X1 and X2 are in the same cluster as X3, then all three of them are in the
same cluster. It is straightforward to see that in 3IC and for N = 2, we only have four valid responses

(Figure 1b) to a query as opposed to 2C(3,2) = 8. The first item in Figure 1c is invalid because there
are only two clusters (N = 2) (in case we do not know the number of clusters or N ≥ 3, then this
would remain a valid response). In this setting, the encoded signal u can be one of the four valid
symbols in the set U ; and similarly what the workers may select v (decoded signal over the channel)
is from the set V , where U = V . As such, since in kIC the obviously erroneous answers are removed
from the choices a worker can make in responding to a query, one expects an improved overall CS
performance, i.e., an error correction capability for kIC. In Section 4, we study the performance of
this code in greater details. Note that in clustering with kIC (k ≥ 2) described above, the code would
identify clusters up to their specific labellings.

While we presented kIC as a concrete example, there may be many other forms of query or coding
schemes. Formally, the code is composed of encoder and decoder mappings:

C : B(X )
n → U

∑W
i=1 mi , C′ : V

∑W
i=1 mi → B̂(X )

n
, (3)

where n is the block size or number of items in each encoding (we assume n|L), and mi is the number
of uses of channel Ci or queries that worker i, 1 ≤ i ≤ W, handles. In many practical cases of

interest, we have B̂(X ) = B(X ) and we may have n = L. The rate of the code is R =
∑W

i=1 mi/n

queries per item. In this setting, C′(C(B(Xn))) = B̂(Xn).

Depending on the availability of feedback from the decoder to the encoder, the code can adapt for
optimized performance. The feedback could provide the encoder with the results of prior queries.
We here focus on non-adaptive codes in (3) that are static and remain unchanged over the period of
crowdsourcing project. We will elaborate on code design in Section 3.

Depending on the type of code in use and the objectives of crowdsourcing, one may design different
decoding schemes. For instance, in the simple case of directly inquiring workers about the function
B(Xi), with multiple queries for each item, popular approaches are majority voting, and EM style
decoding due to Dawid and Skene [5], where it attempts to jointly estimate the workers’ skill
levels and decode B(X). In the case of clustering with 2IC, an inference scheme based on convex
optimization is presented in [11].

The rate of the code is proportional to the CS budget and we use the rate as a proxy for budget
throughout this analysis. However, since different types of query have different costs both financially
(in crowdsourcing platforms) and from the perspective of time or effort it takes from the user to
process it, one needs to be careful in comparing the results of different coding schemes. We shall
elaborate on this issue for the case of kIC in Appendix E.
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2.4 Distortion and the Design Problem

In the framework of Figure 1a, we are interested to design the CS code, i.e., the query and inference
schemes, such that with a given budget a certain CS fidelity is optimized. We consider the fidelity as

an average distortion with respect to the source (dataset). For a distance function d(B(x), B̂(x)), for

which d(B(xn), B̂(xn)) = 1
n

∑n
i=1 d(B(xi), B̂(xi)), the average distortion is

D(B(X), B̂(X)) = Ed(B(Xn), B̂(Xn))

=
∑

Xn P (B(Xn))P (B̂(Xn)|B(Xn))d(B(Xn), B̂(Xn)),
(4)

where P (B(Xn)) = P (B(X))n for iid B(X). The design problem is therefore one of CS fidelity-
query budget optimization (or distortion-rate, D(R), optimization) and may be expressed as follows

D∗(Rt) = min
C,C′,R≤Rt

D(B(X), B̂(X)) (5)

where Rt is a target rate or query budget. The optimization is with respect to the coding and
decoding schemes, the type of feedback (if applicable), and query assignment and rate allocation.
The optimum solution to the above problem is referred to as the distortion-rate function, D∗(Rt) (or
CS fidelity-query budget function). A basic distance function, for the case where B(X) is discrete,

is l0(B(X), B̂(X)), or the Hamming distance. In this case, the average distortion D(B(X), B̂(X))
reflects the average probability of error. As such, the D(R) optimization problem may be rewritten
as follows

D∗(Rt) = min
C,C′,R≤Rt

P (E : B̂(X) �= B(X)). (6)

In case of crowdsourcing for clustering, this quantifies the performance in terms of the overall
probability of error in clustering. For other crowdsourcing problems, we may consider other distortion
functions. Equivalently, we may consider minimizing the rate subject to a constrained distortion in
crowdsourcing. The R(D) problem is expressed as follows

R∗(Dt) = min
C,C′,D(B(X),B̂(X))≤Dt

R = min
C,C′,D(B(X),B̂(X))≤Dt

W∑
i=1

mi/n (7)

where Dt is a target distortion or average probability of error. The optimum solution to the above
problem is referred to as the rate-distortion function, R∗(Dt) (CS query budget-fidelity function). In
case, the taskmaster does not know the skill level of the workers, different users -disregarding their
skill levels- would receive the same number of queries (mi = m′, ∀i); and the code design involves
designing the query and inference schemes.

3 Information Theoretic CS Budget-Fidelity Limits

In the CS budget-fidelity optimization problem in (5), the code providing the optimized solution
indeed needs to balance two opposing design criteria to meet the target CS fidelity: On one hand the
design aims at efficiency of the query and making as small number of queries as possible; On the
other hand, the code needs to take into account the imperfection of worker responses and incorporate
sufficient redundancy. In information theory (coding theory) realm, the former corresponds to source
coding (compression) and the latter corresponds to channel coding (error control coding) and coding
to serve both purposes is a joint source channel code.

In this Section, we first present a brief overview on joint source channel coding and related results
in information theory. Next, we present the CS budget-fidelity function in two cases of SL-UK and
SL-CS described in Section 2.2.

3.1 Background

Consider the communication of a random source Z from a finite alphabet Z over a discrete memo-
ryless channel. The source is first processed by an encoder C and whose output is communicated
over the channel. The channel output is processed by a decoder C′, which reconstructs the source as

Ẑ ∈ Ẑ and we often have Z = Ẑ .
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From a rate-distortion theory perspective, we first consider the case where the channel is error free.
The source is iid distributed with probability mass function P (Z) and based on Shannon’s source
coding theorem is characterized by a rate-distortion function,

R∗(Dt) = min
C,C′:D(Z,Ẑ)≤Dt

I(Z, Ẑ), (8)

where I(., .) indicates mutual information between two random variables. The source coding is
defined by the following two mappings:

C : Zn → {1, . . . , 2nR}, C′ : {1, . . . , 2nR} → Ẑn (9)

The average distortion is defined in (4) and Dt is the target performance. The optimization in source
coding with distortion is with respect to the source coding or compression scheme, that is described

probabilistically as P (Ẑ|Z) in information theory. The proof of the source coding theorem follows
in two steps: In the first step, we prove that any rate R ≥ R∗(Dt) is achievable in the sense that there
exists a family (as a function of n) of codes {Cn, C′

n} for which as n grows to infinity the resulting
average distortion satisfies the desired constraint. In the second step or the converse, we prove that
any code with rate R < R∗(Dt) results in an average distortion that violates the desired constraint.
This establishes the described rate-distortion function as the fundamental limit for lossy compression
of a source with a desired maximum average distortion.

From the perspective of Shannon’s channel coding theorem, we consider the source as an iid uniform
source and the channel as a discrete memoryless channel characterized by P (V |U), where U ∈ U is
the channel input and, V ∈ V is the channel output. The channel coding is defined by the following
two mappings:

C : {1, . . . , |Z|} → Un C′ : Vn → {1, . . . , |Z|} (10)

The theorem establishes the capacity of the channel as C = maxC,C′ I(Z, Ẑ) and states that for a
rate R, there exists a channel code that provides a reliable communication over the noisy channel if
and only if R ≤ C. Again the proof follows in two steps: First, we establish achievability, i.e., we
show that for any rate R ≤ C, there exists a family of codes (as a function of length n) for which

the average probability of error P (Ẑ �= Z) goes to zero as n grows to infinity. Next, we prove the
converse, i.e., we show that for any rate R > C, the probability of error is always greater than zero
and grows exponentially fast to 1/2 as R goes beyond C. This establishes the described capacity as
the fundamental limit for transmission of an iid uniform source over a discrete memoryless channel.

For the problem of our interest, i.e., the transmission of an iid source (not necessarily uniform)
over a discrete memoryless channel, the joint source channel coding theorem, aka source-channel
separation theorem, is instrumental. The theorem states that in this setting a code exists that can

facilitate reconstruction of the source with distortion D(Z, Ẑ) ≤ Dt if and only if R∗(Dt) < C. For
completeness, we reproduce the theorem form [4] below.

Theorem 1 Let Z be a finite alphabet iid source which is encoded as a sequence of n input symbols
Un of a discrete memoryless channel with capacity C. The output of the channel V n is mapped onto
the reconstruction alphabet Ẑn = C′(V n). Let D(Zn, Ẑn) be the average distortion achieved by this
joint source and channel coding scheme. Then distortion D is achievable if and only if C > R∗(Dt).

The proof follows a similar two step approach described above and assumes large block length
(n → ∞). The result is important from a communication theoretic perspective as a concatenation
of a source code, which removes the redundancy and produces an iid uniform output at a rate
R > R∗(Dt), and a channel code, which communicates this reliably over the noisy channel at a rate
R < C, can achieve the same fundamental limit.

3.2 Basic Information Theoretic Bounds

We here consider crowdsourcing within the presented framework, and derive basic information
theoretic bounds. Following Section 2.1, we examine the case where a large dataset X (L → ∞) and
a function of interest B(X) with associated probability mass function, P (B(X)), are available.

We consider the MSC worker pool model described in Section 2.2, where the skill set of workers are
from a discrete set E = {ε1, ε2, . . . , εW ′} with probability P (ε), ε ∈ E . The number of workers in
each skill level class is assumed large. We here study the two scenarios of SL-UK and SL-CS.
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At any given instance, a query is posed to a random worker with a random skill level within the set, E .
We assume there is no feedback available from the decoder (non-adaptive coding) and the queries do
not influence the channel probabilities (no feedforward). Extensions remain for future work.

The following theorem identifies the information theoretic minimum number of queries per item to
perform at least as good as a target fidelity in case the skill levels are not known (SL-UK). The bound
is oblivious to the type of code used and serves as an ultimate performance bound.

Theorem 2 In crowdsourcing for a large dataset of N -ary discrete source B(X) ∼ P (B(X)) with
Hamming distortion, when a large number of unknown workers with skill levels ε ∈ E , ε ∼ P (ε)
from an MSC population participate (SL-UK), the minimum number of queries per item to obtain an
overall error probability of at most ε̂, is given by

Rmin =

{
H(B(X))−HN (ε̂)
log2 M−HM (E(ε)) ε̂ ≤ min{1− pmax, 1− 1

N }
0 otherwise,

(11)

in which HN (ε) � H(1− ε, ε/(N − 1), . . . , ε/(N − 1)), and pmax = maxB(X)∈B(X ) P (B(X)).

The proof is provided in Appendix A. Another interesting scenario is when the crowdsourcer attempts
to estimate the worker skill levels from the data it has collected as part of the inference. In case this
estimation is done perfectly, the next theorem identifies the corresponding fundamental limit on the
crowdsourcing rate. The proof is provided in Appendix B.

Theorem 3 In crowdsourcing for a large dataset of N -ary discrete source B(X) ∼ P (B(X)) with
Hamming distortion, when a large number of workers with skill levels ε ∈ E , ε ∼ P (ε) -known to the
crowdsourcer (SL-CS)- from an MSC population participate, the minimum number of queries per
item to obtain an overall error probability of at most ε̂, is given by

Rmin =

{
H(B(X))−HN (ε̂)
log2 M−E(HM (ε)) ε̂ ≤ min{1− pmax, 1− 1

N }
0 otherwise.

(12)

Comparing the results in Theorems 2 and 3 the following interesting observation can be made. In case
the worker skill levels are unknown, the CS system provides an overall work quality (capacity) of an
average worker; whereas when the skill levels are known at the crowdsourcer, the system provides an
overall work quality that pertains to the average of the work quality of the workers.

4 k-ary Incidence Coding

In this Section, we examine the performance of the k-ary incidence coding introduced in Section 2.3.
The k-ary incidence code poses a query as a set of k ≥ 2 items and inquires the workers to identify
those with the same label. In the sequel, we begin with deriving a lower-bound on the performance
of kIC with a spammer-hammer worker pool. We then presents numerical results along with the
information theoretic lower bounds presented in the previous Section.

4.1 Performance of kIC with SHC Worker Pool

We consider kIC for crowdsourcing in the following setting. The items X in the dataset are iid
with N = 2. There is no feedback from the decoder to the task manager (encoder), i.e., the code
is non-adaptive. Since the task manager has no knowledge of the workers’ skill levels, it queries
the workers at the same fixed rate of R queries per item. To compose a query, the items are drawn
uniformly at random from the dataset. We assume that the workers are drawn from the SHC(q) model
elaborated in Section 2.2. The purpose is to obtain a lower-bound on the performance assuming an
Oracle decoder that can perfectly identify the workers’ skill levels (here a spammer or a hammer)
and perform an optimal decoding. Specifically, we consider the following:

min
C′,C:kIC

P (E : B̂(X) �= B(X)) (13)

where minimization is with respect to the choice of a decoder for a given kIC code. We note that the
code length is governed by how the decoder operates, and often could be as long as the dataset. As
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evident in (2), in the SHC model, the channel error rate (worker reliability) is explicitly influenced by
the code and parameter, k. In the model of Figure 1a, this implies that a certain static feedforward
exists in this setting. We first present a lemma, which is used later to establish a Theorem 4 on kIC
performance. The proofs are respectively provided in Appendix C and Appendix D.

Lemma 1 In crowdsourcing for binary labeling (N = 2) of a uniformly distributed dataset, with
kIC and a SHC worker pool, the probability of error in labeling of an item by a spammer (C = S), is
given by

ε̄S = P (E : B̂(X) �= B(X)|C = S) =

⎧⎪⎪⎨
⎪⎪⎩

1
k2k−1

∑�(k−1)/2�
i=0 i×

(
k
i

)
k odd

1
k2k−1

[∑�(k−1)/2�
i=0 i×

(
k
i

)
+ k

4

(
k
k/2

)]
k even.

Theorem 4 Assuming crowdsourcing using a non-adaptive kIC over a uniformly distributed dataset
(k ≥ 2), if the number of queries per item, R, is less than 1

k ln(1−q) ln
ε̂
ε̄S
, then no decoder can achieve

an average probability of labeling error less than ε̂ for any L under the SHC(q) worker model.

To interpret and use the result in Theorem 4, we consider the following points: (i) The theorem
presents a necessary condition, i.e., the minimum rate (budget) requirement identified here for kIC
with a given fidelity is a lower bound. This is due to the fact that we are considering an oracle CS
decoder that can perfectly identify the workers’ skill levels and correctly label the item if the item
is at least labeled by one hammer out of R′ times it is processed by the workers. (ii) In the current
setting, where the taskmaster does not know the workers’ skill levels, each item is included in exactly
R′ ∈ Z

+ k-ary queries. That is due to the nature of the code R′. (iii) As discussed in Appendix
E, Theorem 4 can also be used to establish an approximate rule of thumb for pricing. Specifically,

considering two query schemes k1IC and k2IC, the query price π is to be set as
π(k1)
π(k2)

≈ k1

k2
.

4.2 Numerical Results

To obtain an information theoretic benchmark, the next corollary specializes Theorem 3 to the setting
of interest in this Section.

Corollary 1 In crowdsourcing for binary labeling of a uniformly distributed dataset with a SHC(q)
worker pool -known to the crowdsourcer (SL-CS)- and number of choices in responding to a query of
M , the minimum rate for any given coding scheme to obtain a probability of error of at most ε̂, is

Rmin =

{
1−Hb(ε̂)
q log2 M , 0 ≤ ε̂ ≤ 0.5

0 otherwise.
queries per item (14)

Figure 2 shows the information theoretic limit of Corollary 1 and the bound obtained in Theorem 4.
For rates (budgets) greater than the former bound, there exist a code which provides crowdsourcing
with the desired fidelity; and for rates below this bound no such code exists. The coding theoretic
lower bounds for kIC depend on k, q and fidelity, and improve as k and q grow. The kIC bounds for
k = 1 is equivalent to the analysis leading to Lemma 1 of [8].
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Figure 2: kIC performance bound and the information theoretic limit
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