
Interaction Networks for Learning about Objects,
Relations and Physics

Anonymous Author(s)
Affiliation
Address
email

Abstract

Reasoning about objects, relations, and physics is central to human intelligence, and1

a key goal of artificial intelligence. Here we introduce the interaction network, a2

model which can reason about how objects in complex systems interact, supporting3

dynamical predictions, as well as inferences about the abstract properties of the4

system. Our model takes graphs as input, performs object- and relation-centric5

reasoning in a way that is analogous to a simulation, and is implemented using6

deep neural networks. We evaluate its ability to reason about several challenging7

physical domains: n-body problems, rigid-body collision, and non-rigid dynamics.8

Our results show it can be trained to accurately simulate the physical trajectories of9

dozens of objects over thousands of time steps, estimate abstract quantities such10

as energy, and generalize automatically to systems with different numbers and11

configurations of objects and relations. Our interaction network implementation12

is the first general-purpose, learnable physics engine, and a powerful general13

framework for reasoning about object and relations in a wide variety of complex14

real-world domains.15

1 Introduction16

Representing and reasoning about objects, relations and physics is a “core” domain of human common17

sense knowledge [25], and among the most basic and important aspects of intelligence [27, 15]. Many18

everyday problems, such as predicting what will happen next in physical environments or inferring19

underlying properties of complex scenes, are challenging because their elements can be composed20

in combinatorially many possible arrangements. People can nevertheless solve such problems by21

decomposing the scenario into distinct objects and relations, and reasoning about the consequences22

of their interactions and dynamics. Here we introduce the interaction network – a model that can23

perform an analogous form of reasoning about objects and relations in complex systems.24

Interaction networks combine three powerful approaches: structured models, simulation, and deep25

learning. Structured models [7] can exploit rich, explicit knowledge of relations among objects,26

independent of the objects themselves, which supports general-purpose reasoning across diverse27

contexts. Simulation is an effective method for approximating dynamical systems, predicting how the28

elements in a complex system are influenced by interactions with one another, and by the dynamics29

of the system. Deep learning [23, 16] couples generic architectures with efficient optimization30

algorithms to provide highly scalable learning and inference in challenging real-world settings.31

Interaction networks explicitly separate how they reason about relations from how they reason about32

objects, assigning each task to distinct models which are: fundamentally object- and relation-centric;33

and independent of the observation modality and task specification (see Model section 2 below34

and Fig. 1a). This lets interaction networks automatically generalize their learning across variable35

numbers of arbitrarily ordered objects and relations, and also recompose their knowledge of entities36

Submitted to 30th Conference on Neural Information Processing Systems (NIPS 2016). Do not distribute.

Object reasoningRelational reasoning

Compute interaction Apply object dynamics

EffectsObjects,
relations

Predictions,
inferences

a.

b.

Figure 1: Schematic of an interaction network. a. For physical reasoning, the model takes objects and relations
as input, reasons about their interactions, and applies the effects and physical dynamics to predict new states. b.
For more complex systems, the model takes as input a graph that represents a system of objects, oj , and relations,
〈i, j, rk〉k, instantiates the pairwise interaction terms, bk, and computes their effects, ek, via a relational model,
fR(·). The ek are then aggregated and combined with the oj and external effects, xj , to generate input (as cj),
for an object model, fO(·), which predicts how the interactions and dynamics influence the objects, p.

and interactions in novel and combinatorially many ways. They take relations as explicit input,37

allowing them to selectively process different potential interactions for different input data, rather38

than being forced to consider every possible interaction or those imposed by a fixed architecture.39

We evaluate interaction networks by testing their ability to make predictions and inferences about var-40

ious physical systems, including n-body problems, and rigid-body collision, and non-rigid dynamics.41

Our interaction networks learn to capture the complex interactions that can be used to predict future42

states and abstract physical properties, such as energy. We show that they can roll out thousands of43

realistic future state predictions, even when trained only on single-step predictions. We also explore44

how they generalize to novel systems with different numbers and configurations of elements. Though45

they are not restricted to physical reasoning, the interaction networks used here represent the first46

general-purpose learnable physics engine, and even have the potential to learn novel physical systems47

for which no physics engines currently exist.48

Related work Our model draws inspiration from previous work that reasons about graphs and49

relations using neural networks. The “graph neural network” [22] is a framework that shares learning50

across nodes and edges, the “recursive autoencoder” [24] adapts its processing architecture to exploit51

an input parse tree, the “neural programmer-interpreter” [21] is a composable neural network that52

mimics the execution trace of a program, and the “spatial transformer” [11] learns to dynamically53

modify network connectivity to capture certain types of interactions. Others have explored deep54

learning of logical and arithmetic relations [26], and relations suitable for visual question-answering55

[1].56

The behavior of our model is similar in spirit to a physical simulation engine [2], which generates57

sequences of states by repeatedly applying rules that approximate the effects of physical interactions58

and dynamics on objects over time. The interaction rules are relation-centric, operating on two or59

more objects that are interacting, and the dynamics rules are object-centric, operating on individual60

objects and the aggregated effects of the interactions they participate in.61

Previous AI work on physical reasoning explored commonsense knowledge, qualitative representa-62

tions, and simulation techniques for approximating physical prediction and inference [28, 9, 6]. The63

“NeuroAnimator” [8] was perhaps the first quantitative approach to learning physical dynamics, by64

training neural networks to predict and control the state of articulated bodies. Ladický et al. [14]65

recently used regression forests to learn fluid dynamics. Recent advances in convolutional neural66

networks (CNNs) have led to efforts that learn to predict coarse-grained physical dynamics from67

images [19, 17, 18]. Notably, Fragkiadaki et al. [5] used CNNs to predict and control a moving68

ball from an image centered at its coordinates. Mottaghi et al. [20] trained CNNs to predict the 3D69

trajectory of an object after an external impulse is applied. Wu et al. [29] used CNNs to parse objects70

from images, which were then input to a physics engine that supported prediction and inference.71

2

2 Model72

Definition To describe our model, we use physical reasoning as an example (Fig. 1a), and build73

from a simple model to the full interaction network (abbreviated IN). To predict the dynamics of a74

single object, one might use an object-centric function, fO, which inputs the object’s state, ot, at75

time t, and outputs a future state, ot+1. If two or more objects are governed by the same dynamics,76

fO could be applied to each, independently, to predict their respective future states. But if the77

objects interact with one another, then fO is insufficient because it does not capture their relationship.78

Assuming two objects and one directed relationship, e.g., a fixed object attached by a spring to a freely79

moving mass, the first (the sender, o1) influences the second (the receiver, o2) via their interaction.80

The effect of this interaction, et+1, can be predicted by a relation-centric function, fR. The fR takes81

as input o1, o2, as well as attributes of their relationship, r, e.g., the spring constant. The fO is82

modified so it can input both et+1 and the receiver’s current state, o2,t, enabling the interaction to83

influence its future state, o2,t+1,84

et+1 = fR(o1,t, o2,t, r) o2,t+1 = fO(o2,t, et+1)

The above formulation can be expanded to larger and more complex systems by representing them85

as a graph, G = 〈O,R〉, where the nodes, O, correspond to the objects, and the edges, R, to the86

relations (see Fig. 1b). We assume an attributed, directed multigraph because the relations have87

attributes, and there can be multiple distinct relations between two objects (e.g., rigid and magnetic88

interactions). For a system with NO objects and NR relations, the inputs to the IN are,89

O = {oj}j=1...NO
, R = {〈i, j, rk〉k}k=1...NR

where i 6= j, 1 ≤ i, j ≤ NO , X = {xj}j=1...NO

The O represents the states of each object. The triplet, 〈i, j, rk〉k, represents the k-th relation in the90

system, from sender, oi, to receiver, oj , with relation attribute, rk. The X represents external effects,91

such as active control inputs or gravitational acceleration, which we define as not being part of the92

system, and which are applied to each object separately.93

The basic IN is defined as,94

IN(G) = φO(a(G, X, φR(m(G)))) (1)

95
m(G) = B = {bk}k=1...NR

fR(bk) = ek
φR(B) = E = {ek}k=1...NR

a(G,X,E) = C = {cj}j=1...NO

fO(cj) = pj
φO(C) = P = {pj}j=1...NO

(2)

The marshalling function, m, rearranges the objects and relations into interaction terms, bk =96

〈oi, oj , rk〉 ∈ B, one per relation, which correspond to each interaction’s receiver, sender, and97

relation attributes. The relational model, φR, predicts the effect of each interaction, ek ∈ E, by98

applying fR to each bk. The aggregation function, a, collects all effects, ek ∈ E, that apply to each99

receiver object, merges them, and combines them with O and X to form a set of object model inputs,100

cj ∈ C, one per object. The object model, φO, predicts how the interactions and dynamics influence101

the objects by applying fO to each cj , and returning the results, pj ∈ P . This basic IN can predict102

the evolution of states in a dynamical system – for physical simulation, P may equal the future states103

of the objects, Ot+1.104

The IN can also be augmented with an additional component to make abstract inferences about the105

system. The pj ∈ P , rather than serving as output, can be combined by another aggregation function,106

g, and input to an abstraction model, φA, which returns a single output, q, for the whole system. We107

explore this variant in our final experiments that use the IN to predict potential energy.108

An IN applies the same fR and fO to every bk and cj , respectively, which makes their relational and109

object reasoning able to handle variable numbers of arbitrarily ordered objects and relations. But110

one additional constraint must be satisfied to maintain this: the a function must be commutative and111

associative over the objects and relations. Using summation within a to merge the elements of E into112

C satisfies this, but division would not.113

Here we focus on binary relations, which means there is one interaction term per relation, but another114

option is to have the interactions correspond to n-th order relations by combining n senders in each bk.115

The interactions could even have variable order, where each bk includes all sender objects that interact116

with a receiver, but would require a fR than can handle variable-length inputs. These possibilities are117

beyond the scope of this work, but are interesting future directions.118

3

Implementation The general definition of the IN in the previous section is agnostic to the choice119

of functions and algorithms, but we now outline a learnable implementation capable of reasoning120

about complex systems with nonlinear relations and dynamics. We use standard deep neural network121

building blocks, multilayer perceptrons (MLP), matrix operations, etc., which can be trained efficiently122

from data using gradient-based optimization, such as stochastic gradient descent.123

We defineO as aDS×NO matrix, whose columns correspond to the objects’DS-length state vectors.124

The relations are a triplet, R = 〈Rr, Rs, Ra〉, where Rr and Rs are NO ×NR binary matrices which125

index the receiver and sender objects, respectively, and Ra is a DR ×NR matrix whose DR-length126

columns represent the NR relations’ attributes. The j-th column of Rr is a one-hot vector which127

indicates the receiver object’s index; Rs indicates the sender similarly. For the graph in Fig. 1b,128

Rr =
[
0 0
1 1
0 0

]
and Rs =

[
1 0
0 0
0 1

]
. The X is a DX ×NO matrix, whose columns are DX -length vectors129

that represent the external effect applied each of the NO objects.130

The marshalling function, m, computes the matrix products, ORr and ORs, and concatenates them131

with Ra: m(G) = [ORr;ORs;Ra] = B .132

The resulting B is a (2DS +DR)×NR matrix, whose columns represent the interaction terms, bk,133

for the NR relations (we denote vertical and horizontal matrix concatenation with a semicolon and134

comma, respectively). The way m constructs interaction terms can be modified, as described in our135

Experiments section (3).136

The B is input to φR, which applies fR, an MLP, to each column. The output of fR is a DE-length137

vector, ek, a distributed representation of the effects. The φR concatenates the NR effects to form the138

DE ×NR effect matrix, E.139

The G, X , and E are input to a, which computes the DE ×NO matrix product, Ē = ERT
r , whose140

j-th column is equivalent to the elementwise sum across all ek whose corresponding relation has141

receiver object, j. The Ē is concatenated with O and X: a(G,X,E) = [O;X; Ē] = C.142

The resulting C is a (DS +DX +DE)×NO matrix, whose NO columns represent the object states,143

external effects, and per-object aggregate interaction effects.144

The C is input to φO, which applies fO, another MLP, to each of the NO columns. The output of fO145

is a DP -length vector, pj , and φO concatenates them to form the output matrix, P .146

To infer abstract properties of a system, an additional φA is appended and takes P as input. The g147

aggregation function performs an elementwise sum across the columns of P to return a DP -length148

vector, P̄ . The P̄ is input to φA, another MLP, which returns a DA-length vector, q, that represents149

an abstract, global property of the system.150

Training an IN requires optimizing an objective function over the learnable parameters of φR and φO.151

Note, m and a involve matrix operations that do not contain learnable parameters.152

Because φR and φO are shared across all relations and objects, respectively, training them is statisti-153

cally efficient. This is similar to CNNs, which are very efficient due to their weight-sharing scheme.154

A CNN treats a local neighborhood of pixels as related, interacting entities: each pixel is effectively155

a receiver object and its neighboring pixels are senders. The convolution operator is analogous to156

φR, where fR is the local linear/nonlinear kernel applied to each neighborhood. Skip connections,157

recently popularized by residual networks, are loosely analogous to how the IN inputs O to both158

φR and φO, though in CNNs relation- and object-centric reasoning are not delineated. But because159

CNNs exploit local interactions in a fixed way which is well-suited to the specific topology of images,160

capturing longer-range dependencies requires either broad, insensitive convolution kernels, or deep161

stacks of layers, in order to implement sufficiently large receptive fields. The IN avoids this restriction162

by being able to process arbitrary neighborhoods that are explicitly specified by the R input.163

3 Experiments164

Physical reasoning tasks Our experiments explored two types of physical reasoning tasks: pre-165

dicting future states of a system, and estimating their abstract properties, specifically potential energy.166

We evaluated the IN’s ability to learn to make these judgments in three complex physical domains:167

n-body systems; balls bouncing in a box; and strings composed of springs that collide with rigid168

objects. We simulated the 2D trajectories of the elements of these systems with a physics engine, and169

recorded their sequences of states. See the Supplementary Material for full details.170

4

In the n-body domain, such as solar systems, all n bodies exert distance- and mass-dependent171

gravitational forces on each other, so there were n(n − 1) relations input to our model. Across172

simulations, the objects’ masses varied, while all other fixed attributes were held constant. The173

training scenes always included 6 bodies, and for testing we used 3, 6, and 12 bodies. In half of174

the systems, bodies were initialized with velocities that would cause stable orbits, if not for the175

interactions with other objects; the other half had random velocities.176

In the bouncing balls domain, moving balls could collide with each other and with static walls.177

The walls were represented as objects whose shape attribute represented a rectangle, and whose178

inverse-mass was 0. The relations input to the model were between the n objects (which included the179

walls), for (n(n− 1) relations). Collisions are more difficult to simulate than gravitational forces, and180

the data distribution was much more challenging: each ball participated in a collision on less than 1%181

of the steps, following straight-line motion at all other times. The model thus had to learn that despite182

there being a rigid relation between two objects, they only had meaningful collision interactions when183

they were in contact. We also varied more of the object attributes – shape, scale and mass (as before)184

– as well as the coefficient of restitution, which was a relation attribute. Training scenes contained 6185

balls inside a box with 4 variably sized walls, and test scenes contained either 3, 6, or 9 balls.186

The string domain used two types of relations (indicated in rk), relation structures that were more187

sparse and specific than all-to-all, as well as variable external effects. Each scene contained a string,188

comprised of masses connected by springs, and a static, rigid circle positioned below the string. The189

n masses had spring relations with their immediate neighbors (2(n− 1)), and all masses had rigid190

relations with the rigid object (2n). Gravitational acceleration, with a magnitude that was varied191

across simulation runs, was applied so that the string always fell, usually colliding with the static192

object. The gravitational acceleration was an external input (not to be confused with the gravitational193

attraction relations in the n-body experiments). Each training scene contained a string with 15 point194

masses, and test scenes contained either 5, 15, or 30 mass strings. In training, one of the point masses195

at the end of the string, chosen at random, was always held static, as if pinned to the wall, while the196

other masses were free to move. In the test conditions, we also included strings that had both ends197

pinned, and no ends pinned, to evaluate generalization.198

Our model takes as input the state of each system, G, decomposed into the objects, O (e.g., n-body199

objects, balls, walls, points masses that represented string elements), and their physical relations, R200

(e.g., gravitational attraction, collisions, springs), as well as the external effects, X (e.g., gravitational201

acceleration). Each object state, oj , could be further divided into a dynamic state component202

(e.g., position and velocity) and a static attribute component (e.g., mass, size, shape). The relation203

attributes, Ra, represented quantities such as the coefficient of restitution, and spring constant. The204

input represented the system at the current time. The prediction experiment’s target outputs were the205

velocities of the objects on the subsequent time step, and the energy estimation experiment’s targets206

were the potential energies of the system on the current time step. We also generated multi-step207

rollouts for the prediction experiments (Fig. 2), to assess the model’s effectiveness at creating visually208

realistic simulations. The output velocity, vt, on time step t became the input velocity on t+ 1, and209

the position at t+ 1 was updated by the predicted velocity at t.210

Data Each of the training, validation, test data sets were generated by simulating 2000 scenes211

over 1000 time steps, and randomly sampling 1 million, 200k, and 200k one-step input/target pairs,212

respectively. The model was trained for 2000 epochs, randomly shuffling the data indices between213

each. We used mini-batches of 100, and balanced their data distributions so the targets had similar214

per-element statistics. The performance reported in the Results was measured on held-out test data.215

We explored adding a small amount of Gaussian noise to 20% of the data’s input positions and216

velocities during the initial phase of training, which was reduced to 0% from epochs 50 to 250. The217

noise std. dev. was 0.05× the std. dev. of each element’s values across the dataset. It allowed the218

model to experience physically impossible states which could not have been generated by the physics219

engine, and learn to project them back to nearby, possible states. Our error measure did not reflect220

clear differences with or without noise, but rollouts from models trained with noise were slightly221

more visually realistic, and static objects were less subject to drift over many steps.222

Model architecture The fR and fO MLPs contained multiple hidden layers of linear transforms223

plus biases, followed by rectified linear units (ReLUs), and an output layer that was a linear transform224

plus bias. The best model architecture was selected by a grid search over layer sizes and depths. All225

5

True Model True Model True Model

Ti
m
e

Ti
m
e

Ti
m
e

Figure 2: Prediction rollouts. Each column contains three panels of three video frames (with motion blur),
each spanning 1000 rollout steps. Columns 1-2 are ground truth and model predictions for n-body systems, 3-4
are bouncing balls, and 5-6 are strings. Each model column was generated by a single model, trained on the
underlying states of a system of the size in the top panel. The middle and bottom panels show its generalization
to systems of different sizes and structure. For n-body, the training was on 6 bodies, and generalization was to 3
and 12 bodies. For balls, the training was on 6 balls, and generalization was to 3 and 9 balls. For strings, the
training was on 15 masses with 1 end pinned, and generalization was to 30 masses with 0 and 2 ends pinned.

6

inputs (except Rr and Rs) were normalized by centering at the median and rescaling the 5th and 95th226

percentiles to -1 and 1. All training objectives and test measures used mean squared error (MSE)227

between the model’s prediction and the ground truth target.228

All prediction experiments used the same architecture, with parameters selected by a hyperparameter229

search. The fR MLP had four, 150-length hidden layers, and output length DE = 50. The fO MLP230

had one, 100-length hidden layer, and output length DP = 2, which targeted the x, y-velocity. The231

m and a were customized so that the model was invariant to the absolute positions of objects in the232

scene. The m concatenated three terms for each bk: the difference vector between the dynamic states233

of the receiver and sender, the concatenated receiver and sender attribute vectors, and the relation234

attribute vector. The a only outputs the velocities, not the positions, for input to φO.235

The energy estimation experiments used the IN from the prediction experiments with an additional236

φA MLP which had one, 25-length hidden layer. Its P inputs’ columns were length DP = 10, and237

its output length was DA = 1.238

We optimized the parameters using Adam [13], with a waterfall schedule that began with a learning239

rate of 0.001 and down-scaled the learning rate by 0.8 each time the validation error, estimated over240

a window of 40 epochs, stopped decreasing.241

Two forms of L2 regularization were explored: one applied to the effects, E, and another to the model242

parameters. Regularizing E improved generalization to different numbers of objects and reduced243

drift over many rollout steps. It likely incentivizes sparser communication between the φR and φO,244

prompting them to operate more independently. Regularizing the parameters generally improved245

performance and reduced overfitting. Both penalty factors were selected by a grid search.246

Few competing models are available in the literature to compare our model against, but we considered247

several alternatives: a constant velocity baseline which output the input velocity; an MLP baseline,248

with two 300-length hidden layers, which took as input a flattened vector of all of the input data; and249

a variant of the IN with the φR component removed (the interaction effects, E, was set to a 0-matrix).250

4 Results251

Prediction experiments Our results show that the IN can predict the next-step dynamics of our task252

domains very accurately after training, with orders of magnitude lower test error than the alternative253

models (Fig. 3a, d and g, and Table 1). Because the dynamics of each domain depended crucially on254

interactions among objects, the IN was able to learn to exploit these relationships for its predictions.255

The dynamics-only IN had no mechanism for processing interactions, and performed similarly to the256

constant velocity model. The baseline MLP’s connectivity makes it possible, in principle, for it to257

learn the interactions, but that would require learning how to use the relation indices to selectively258

process the interactions. It would also not benefit from sharing its learning across relations and259

objects, instead being forced to approximate the interactive dynamics in parallel for each objects.260

The IN also generalized well to systems with fewer and greater numbers of objects (Figs. 3b-c, e-f261

and h-k, and Table SM1 in Supp. Mat.). For each domain, we selected the best IN model from the262

system size on which it was trained, and evaluated its MSE on a different system size. When tested263

on smaller n-body and spring systems from those on which it was trained, its performance actually264

exceeded a model trained on the smaller system. This may be due to the model’s ability to exploit its265

greater experience with how objects and relations behave, available in the more complex system.266

We also found that the IN trained on single-step predictions can be used to simulate trajectories over267

thousands of steps very effectively, often tracking the ground truth closely, especially in the n-body268

and string domains. When rendered into images and videos, the model-generated trajectories are269

usually visually indistinguishable from those of the ground truth physics engine (Fig. 2; see Supp.270

Mat. for videos of all images). This is not to say that given the same initial conditions, they cohere271

perfectly: the dynamics are highly nonlinear and imperceptible prediction errors by the model can272

rapidly lead to large differences in the systems’ states. But the incoherent rollouts do not violate273

people’s expectations, and might be roughly on par with people’s understanding of these domains.274

Estimating abstract properties We trained an abstract-estimation variant of our model to predict275

potential energies in the n-body and string domains (the ball domain’s potential energies were always276

0), and found it was much more accurate (n-body MSE 1.4, string MSE 1.1) than the MLP baseline277

7

10-2

10-3

g. 15, 1 h. 5, 1 i. 30, 1 j. 15, 0 k. 15, 2

String

1
10-1

10
102

M
S

E
 (

lo
g-

sc
al

e) a. 6 b. 3 c. 12

n-body

10-2

10-1

10-3

d. 6 e. 3 f. 9

Balls

IN (15 obj, 1 pin) IN (5 obj, 1 pin)
IN (15 obj, 0 pin)

IN (30 obj, 1 pin)
IN (15 obj, 2 pin)

IN (3 obj) IN (12 obj)IN (6 obj)

Constant velocity Baseline MLP Dynamics-only IN

IN (3 obj) IN (9 obj)IN (6 obj)
10-2

Figure 3: Prediction experiment accuracy and generalization. Each colored bar represents the MSE between a
model’s predicted velocity and the ground truth physics engine’s (the y-axes are log-scaled). Sublots (a-c) show
n-body performance, (d-f) show balls, and (g-k) show string. The leftmost subplots in each (a, d, g) for each
domain compare the constant velocity model (black), baseline MLP (grey), dynamics-only IN (red), and full IN
(blue). The other panels show the IN’s generalization performance to different numbers and configurations of
objects, as indicated by the subplot titles. For the string systems, the numbers correspond to: (the number of
masses, how many ends were pinned).

Table 1: Prediction experiment MSEs

Domain Constant velocity Baseline Dynamics-only IN IN

n-body 82 79 76 0.25
Balls 0.074 0.072 0.074 0.0020
String 0.018 0.016 0.017 0.0011

(n-body MSE 19, string MSE 425). The IN presumably learns the gravitational and spring potential278

energy functions, applies them to the relations in their respective domains, and combines the results.279

5 Discussion280

We introduced interaction networks as a flexible and efficient model for explicit reasoning about281

objects and relations in complex systems. Our results provide surprisingly strong evidence of their282

ability to learn accurate physical simulations and generalize their training to novel systems with283

different numbers and configurations of objects and relations. They could also learn to infer abstract284

properties of physical systems, such as potential energy. The alternative models we tested performed285

much more poorly, with orders of magnitude greater error. Simulation over rich mental models is286

thought to be a crucial mechanism of how humans reason about physics and other complex domains287

[4, 12, 10], and Battaglia et al. [3] recently posited a simulation-based “intuitive physics engine”288

model to explain human physical scene understanding. Our interaction network implementation is the289

first learnable physics engine that can scale up to real-world problems, and is a promising template for290

new AI approaches to reasoning about other physical and mechanical systems, scene understanding,291

social perception, hierarchical planning, and analogical reasoning.292

In the future, it will be important to develop techniques that allow interaction networks to handle293

very large systems with many interactions, such as by culling interaction computations that will have294

negligible effects. The interaction network may also serve as a powerful model for model-predictive295

control inputting active control signals as external effects – because it is differentiable, it naturally296

supports gradient-based planning. It will also be important to prepend a perceptual front-end that297

can infer from objects and relations raw observations, which can then be provided as input to an298

interaction network that can reason about the underlying structure of a scene. By adapting the299

interaction network into a recurrent neural network, even more accurate long-term predictions might300

be possible, though preliminary tests found little benefit beyond its already-strong performance.301

By modifying the interaction network to be a probabilistic generative model, it may also support302

probabilistic inference over unknown object properties and relations.303

By combining three powerful tools from the modern machine learning toolkit – relational reasoning304

over structured knowledge, simulation, and deep learning – interaction networks offer flexible,305

accurate, and efficient learning and inference in challenging domains. Decomposing complex306

systems into objects and relations, and reasoning about them explicitly, provides for combinatorial307

generalization to novel contexts, one of the most important future challenges for AI, and a crucial308

step toward closing the gap between how humans and machines think.309

8

References310

[1] J Andreas, M Rohrbach, T Darrell, and D Klein. Learning to compose neural networks for question311

answering. NAACL, 2016.312

[2] D Baraff. Physically based modeling: Rigid body simulation. SIGGRAPH Course Notes, ACM SIGGRAPH,313

2(1):2–1, 2001.314

[3] PW Battaglia, JB Hamrick, and JB Tenenbaum. Simulation as an engine of physical scene understanding.315

Proceedings of the National Academy of Sciences, 110(45):18327–18332, 2013.316

[4] K.J.W. Craik. The nature of explanation. Cambridge University Press, 1943.317

[5] K Fragkiadaki, P Agrawal, S Levine, and J Malik. Learning visual predictive models of physics for playing318

billiards. ICLR, 2016.319

[6] F. Gardin and B. Meltzer. Analogical representations of naive physics. Artificial Intelligence, 38(2):139–320

159, 1989.321

[7] Z. Ghahramani. Probabilistic machine learning and artificial intelligence. Nature, 521(7553):452–459,322

2015.323

[8] R Grzeszczuk, D Terzopoulos, and G Hinton. Neuroanimator: Fast neural network emulation and control of324

physics-based models. In Proceedings of the 25th annual conference on Computer graphics and interactive325

techniques, pages 9–20. ACM, 1998.326

[9] P.J Hayes. The naive physics manifesto. Université de Genève, Institut pour les études s é mantiques et327

cognitives, 1978.328

[10] M. Hegarty. Mechanical reasoning by mental simulation. TICS, 8(6):280–285, 2004.329

[11] M Jaderberg, K Simonyan, and A Zisserman. Spatial transformer networks. In in NIPS, pages 2008–2016,330

2015.331

[12] P.N. Johnson-Laird. Mental models: towards a cognitive science of language, inference, and consciousness,332

volume 6. Cambridge University Press, 1983.333

[13] D. Kingma and J. Ba. Adam: A method for stochastic optimization. ICLR, 2015.334

[14] L Ladický, S Jeong, B Solenthaler, M Pollefeys, and M Gross. Data-driven fluid simulations using335

regression forests. ACM Transactions on Graphics (TOG), 34(6):199, 2015.336

[15] B Lake, T Ullman, J Tenenbaum, and S Gershman. Building machines that learn and think like people.337

arXiv:1604.00289, 2016.338

[16] Y LeCun, Y Bengio, and G Hinton. Deep learning. Nature, 521(7553):436–444, 2015.339

[17] A Lerer, S Gross, and R Fergus. Learning physical intuition of block towers by example. arXiv:1603.01312,340

2016.341

[18] W Li, S Azimi, A Leonardis, and M Fritz. To fall or not to fall: A visual approach to physical stability342

prediction. arXiv:1604.00066, 2016.343

[19] R Mottaghi, H Bagherinezhad, M Rastegari, and A Farhadi. Newtonian image understanding: Unfolding344

the dynamics of objects in static images. arXiv:1511.04048, 2015.345

[20] R Mottaghi, M Rastegari, A Gupta, and A Farhadi. " what happens if..." learning to predict the effect of346

forces in images. arXiv:1603.05600, 2016.347

[21] SE Reed and N de Freitas. Neural programmer-interpreters. ICLR, 2016.348

[22] F. Scarselli, M. Gori, A.C. Tsoi, M. Hagenbuchner, and G. Monfardini. The graph neural network model.349

IEEE Trans. Neural Networks, 20(1):61–80, 2009.350

[23] J. Schmidhuber. Deep learning in neural networks: An overview. Neural Networks, 61:85–117, 2015.351

[24] R Socher, E Huang, J Pennin, C Manning, and A Ng. Dynamic pooling and unfolding recursive autoen-352

coders for paraphrase detection. In in NIPS, pages 801–809, 2011.353

[25] E Spelke, K Breinlinger, J Macomber, and K Jacobson. Origins of knowledge. Psychol. Rev., 99(4):605–354

632, 1992.355

[26] I Sutskever and GE Hinton. Using matrices to model symbolic relationship. In D. Koller, D. Schuurmans,356

Y. Bengio, and L. Bottou, editors, in NIPS 21, pages 1593–1600. 2009.357

[27] J.B. Tenenbaum, C. Kemp, T.L. Griffiths, and N.D. Goodman. How to grow a mind: Statistics, structure,358

and abstraction. Science, 331(6022):1279, 2011.359

[28] P Winston and B Horn. The psychology of computer vision, volume 73. McGraw-Hill New York, 1975.360

[29] J Wu, I Yildirim, JJ Lim, B Freeman, and J Tenenbaum. Galileo: Perceiving physical object properties by361

integrating a physics engine with deep learning. In in NIPS, pages 127–135, 2015.362

9

