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Abstract

We provide finite-sample analysis of a general framework for using k-nearest neigh-
bor statistics to estimate functionals of a nonparametric continuous probability
density, including entropies and divergences. Rather than plugging a consistent
density estimate (which requires k → ∞ as the sample size n → ∞) into the
functional of interest, the estimators we consider fix k and perform a bias cor-
rection. This is more efficient computationally, and, as we show in certain cases,
statistically, leading to faster convergence rates. Our framework unifies several
previous estimators, for most of which ours are the first finite sample guarantees.

1 Introduction
Estimating entropies and divergences of probability distributions in a consistent manner is of im-
portance in a number of problems in machine learning. Entropy estimators have applications in
goodness-of-fit testing [13], parameter estimation in semi-parametric models [51], studying fractal
random walks [3], and texture classification [14, 15]. Divergence estimators have been used to
generalize machine learning algorithms for regression, classification, and clustering from inputs in
RD to sets and distributions [40, 33].

Divergences also include mutual informations as a special case; mutual information estimators have
applications in feature selection [35], clustering [2], causality detection [16], optimal experimental
design [26, 38], fMRI data analysis [7], prediction of protein structures [1], and boosting and facial
expression recognition [41]. Both entropy estimators and mutual information estimators have been
used for independent component and subspace analysis [23, 47, 37, 17], as well as for image
registration [14, 15]. Further applications can be found in [25].

This paper considers the more general problem of estimating functionals of the form
F (P ) := E

X∼P
[f(p(X))] , (1)

using n IID samples from P , where P is an unknown probability measure with smooth density
function p and f is a known smooth function. We are interested in analyzing a class of nonparametric
estimators based on k-nearest neighbor (k-NN) distance statistics. Rather than plugging a consistent
estimator of p into (1), which requires k →∞ as n→∞, these estimators derive a bias correction
for the plug-in estimator with fixed k; hence, we refer to this type of estimator as a fixed-k estimator.
Compared to plug-in estimators, fixed-k estimators are faster to compute. As we show, fixed-k
estimators can also exhibit superior rates of convergence.

As shown in Table 1, several authors have derived bias corrections necessary for fixed-k estimators of
entropies and divergences, including, most famously, the Shannon entropy estimator of [20]. 1 The
estimators in Table 1 estimators are known to be weakly consistent, 2 but, except for Shannon entropy,

1MATLAB code for these estimators is in the ITE toolbox https://bitbucket.org/szzoli/ite/ [48].
2Several of these proofs contain errors regarding the use of integral convergence theorems when their

conditions do not hold, as described in [39].
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Functional Name Functional Form Bias Correction Ref.
Shannon Entropy E [log p(X)] Additive constant: ψ(n)− ψ(k) + log(k/n) [20][13]
Rényi-α Entropy E

[
pα−1(X)

]
Multiplicative constant: Γ(k)

Γ(k+1−α) [25, 24]

KL Divergence E
[
log p(X)

q(X)

]
None∗ [50]

α-Divergence E
[(

p(X)
q(X)

)α−1
]

Multiplicative constant: Γ2(k)
Γ(k−α+1)Γ(k+α−1) [39]

Table 1: Functionals with known bias-corrected k-NN estimators, their bias corrections, and references. All
expectations are over X ∼ P . Γ(t) =

∫∞
0
xt−1e−x dx is the gamma function, and ψ(x) = d

dx
log (Γ(x)) is

the digamma function. α ∈ R\{1} is a free parameter. ∗For KL divergence, bias corrections for p and q cancel.

no finite sample bounds are known. The main goal of this paper is to provide finite-sample analysis
of these estimators, via unified analysis of the estimator after bias correction. Specifically, we show
conditions under which, for β-Hölder continuous (β ∈ (0, 2]) densities on D dimensional space, the
bias of fixed-k estimators decays as O

(
n−β/D

)
and the variance decays as O

(
n−1

)
, giving a mean

squared error of O
(
n−2β/D + n−1

)
. Hence, the estimators converge at the parametric O(n−1) rate

when β ≥ D/2, and at the slower rateO(n−2β/D) otherwise. A modification of the estimators would
be necessary to leverage additional smoothness for β > 2, but we do not pursue this here. Along the
way, we prove a finite-sample version of the useful fact [25] that (normalized) k-NN distances have
an Erlang asymptotic distribution, which may be of independent interest.

We present our results for distributions P supported on the unit cube in RD because this significantly
simplifies the statements of our results, but, as we discuss in the supplement, our results generalize
fairly naturally, for example to distributions supported on smooth compact manifolds. In this context,
it is worth noting that our results scale with the intrinsic dimension of the manifold. As we discuss
later, we believe deriving finite sample rates for distributions with unbounded support may require a
truncated modification of the estimators we study (as in [49]), but we do not pursue this here.

2 Problem statement and notation
LetX := [0, 1]D denote the unit cube in RD, and let µ denote the Lebesgue measure. Suppose P is an
unknown µ-absolutely continuous Borel probability measure supported on X , and let p : X → [0,∞)
denote the density of P . Consider a (known) differentiable function f : (0,∞) → R. Given n
samples X1, ..., Xn drawn IID from P , we are interested in estimating the functional

F (P ) := E
X∼P

[f(p(X))] .

Somewhat more generally (as in divergence estimation), we may have a function f : (0,∞)2 → R
of two variables and a second unknown probability measure Q, with density q and n IID samples
Y1, ..., Yn. Then, we are interested in estimating

F (P,Q) := E
X∼P

[f(p(X), q(X))] .

Fix r ∈ [1,∞] and a positive integer k. We will work with distances induced by the r-norm

‖x‖r :=

(
D∑
i=1

xri

)1/r

and define cD,r :=
(2Γ(1 + 1/r))

D

Γ(1 +D/r)
= µ(B(0, 1)),

where B(x, ε) := {y ∈ RD : ‖x − y‖r < ε} denotes the open radius-ε ball centered at x. Our
estimators use k-nearest neighbor (k-NN) distances:
Definition 1. (k-NN distance): Given n IID samples X1, ..., Xn from P , for x ∈ RD, we define the
k-NN distance εk(x) by εk(x) = ‖x−Xi‖r, where Xi is the kth-nearest element (in ‖ · ‖r) of the set
{X1, ..., Xn} to x. For divergence estimation, given n samples Y1, ..., Yn from Q, then we similarly
define δk(x) by δk(x) = ‖x− Yi‖r, where Yi is the kth-nearest element of {Y1, ..., Yn} to x.

µ-absolute continuity of P precludes the existence of atoms (i.e., ∀x ∈ RD, P ({x}) = µ({x}) = 0).
Hence, each εk(x) > 0 a.s. We will require this to study quantities such as log εk(x) and 1/εk(x).
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3 Estimator
3.1 k-NN density estimation and plug-in functional estimators
The k-NN density estimator

p̂k(x) =
k/n

µ(B(x, εk(x))
=

k/n

cDεDk (x)

is well-studied nonparametric density estimator [28], motivated by noting that, for small ε > 0,

p(x) ≈ P (B(x, ε))

µ(B(x, ε))
,

and that, P (B(x, εk(x))) ≈ k/n. One can show that, for x ∈ RD at which p is continuous, if
k → ∞ and k/n → 0 as n → ∞, then p̂k(x) → p(x) in probability ([28], Theorem 3.1). Thus, a
natural approach for estimating F (P ) is the plug-in estimator

F̂PI :=
1

n

n∑
i=1

f (p̂k(Xi)) . (2)

Since p̂k → p in probability pointwise as k, n→∞ and f is smooth, one can show F̂PI is consistent,
and in fact derive finite sample convergence rates (depending on how k →∞). For example, [44]
show a convergence rate of O

(
n−min{ 2β

β+D ,1}
)

for β-Hölder continuous densities (after sample

splitting and boundary correction) by setting k � n
β
β+d .

Unfortunately, while necessary to ensure V [p̂k(x)]→ 0, the requirement k →∞ is computationally
burdensome. Furthermore, increasing k can increase the bias of p̂k due to over-smoothing (see (5)
below), suggesting that this may be sub-optimal for estimating F (P ). Indeed, similar work based on
kernel density estimation [42] suggests that, for plug-in functional estimators, under-smoothing may
be preferable, since the empirical mean results in additional smoothing.

3.2 Fixed-k functional estimators
An alternative approach is to fix k as n→∞. Since F̂PI is itself an empirical mean, unlike V [p̂k(x)],
V
[
F̂PI

]
→ 0 as n → ∞. The more critical complication of fixing k is bias. Since f is typically

non-linear, the non-vanishing variance of p̂k translates into asymptotic bias. A solution adopted by
several papers is to derive a bias correction function B (depending only on known factors) such that

E
X1,...,Xn

[
B
(
f

(
k/n

µ(B(x, εk(x))

))]
= E
X1,...,Xn

[
f

(
P (B(x, εk(x)))

µ(B(x, εk(x))

)]
. (3)

For continuous p, the quantity

pεk(x)(x) :=
P (B(x, εk(x)))

µ(B(x, εk(x))
(4)

is a consistent estimate of p(x) with k fixed, but it is not computable, since P is unknown. The bias
correction B gives us an asymptotically unbiased estimator

F̂B(P ) :=
1

n

n∑
i=1

B (f (p̂k(Xi))) =
1

n

n∑
i=1

B
(
f

(
k/n

µ(B(Xi, εk(Xi))

))
.

that uses k/n in place of P (B(x, εk(x))). This estimate extends naturally to divergences:

F̂B(P,Q) :=
1

n

n∑
i=1

B (f (p̂k(Xi), q̂k(Xi))) .

As an example, if f = log (as in Shannon entropy), then it can be shown that, for any continuous p,

E [logP (B(x, εk(x)))] = ψ(k)− ψ(n).
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Hence, for Bn,k := ψ(k)− ψ(n) + log(n)− log(k),

E
X1,...,Xn

[
f

(
k/n

µ(B(x, εk(x))

)]
+Bn,k = E

X1,...,Xn

[
f

(
P (B(x, εk(x)))

µ(B(x, εk(x))

)]
.

giving the estimator of [20]. Other examples of functionals for which the bias correction is known
are given in Table 1.

In general, deriving an appropriate bias correction can be quite a difficult problem specific to the
functional of interest, and it is not our goal presently to study this problem; rather, we are interested in
bounding the error of F̂B(P ), assuming the bias correction is known. Hence, our results apply to all
of the estimators in Table 1, as well as any estimators of this form that may be derived in the future.

4 Related work
4.1 Estimating information theoretic functionals
Recently, there has been much work on analyzing estimators for entropy, mutual information,
divergences, and other functionals of densities. Besides bias-corrected fixed-k estimators, most of
this work has taken one of three approaches. One series of papers [27, 42, 43] studied a boundary-
corrected plug-in approach based on under-smoothed kernel density estimation. This approach has
strong finite sample guarantees, but requires prior knowledge of the support of the density, and can
have a slow rate of convergence. A second approach [18, 22] uses von Mises expansion to partially
correct the bias of optimally smoothed density estimates. This is statistically more efficient, but can
require computationally demanding numerical integration over the support of the density. A final line
of work [30, 31, 44, 46] studied plug-in estimators based on consistent, boundary corrected k-NN
density estimates (i.e., with k →∞ as n→∞). [32] study a divergence estimator based on convex
risk minimization, but this relies of the context of an RKHS, making results are difficult to compare.

Rates of Convergence: For densities over RD satisfying a Hölder smoothness condition parametrized
by β ∈ (0,∞), the minimax mean squared error rate for estimating functionals of the form∫
f(p(x)) dx has been known since [6] to be O

(
n−min{ 8β

4β+D ,1}
)

. [22] recently derived iden-
tical minimax rates for divergence estimation.

Most of the above estimators have been shown to converge at the rate O
(
n−min{ 2β

β+D ,1}
)

. Only
the von Mises approach [22] is known to achieve the minimax rate for general β and D, but due to
its computational demand (O(2Dn3)), 3 the authors suggest using other statistically less efficient
estimators for moderate sample size. Here, we show that, for β ∈ (0, 2], bias-corrected fixed-k
estimators converge at the relatively fast rate O

(
n−min{ 2β

D ,1}
)

. For β > 2, modifications are
needed for the estimator to leverage the additional smoothness of the density. Notably, this rate is
adaptive; that is, it does not require selecting a smoothing parameter depending on the unknown β;
our results (Theorem 5) imply the above rate is achieved for any fixed choice of k. On the other hand,
since no empirical error metric is available for cross-validation, parameter selection is an obstacle for
competing estimators.

4.2 Prior analysis of fixed-k estimators

As of writing this paper, the only finite-sample results for F̂B(P ) were those of [5] for the Kozachenko-
Leonenko (KL) 4 Shannon entropy estimator. [20] Theorem 7.1 of [5] shows that, if the density p has
compact support, then the variance of the KL estimator decays as O(n−1). They also claim (Theorem
7.2) to bound the bias of the KL estimator by O(n−β), under the assumptions that p is β-Hölder
continuous (β ∈ (0, 1]), bounded away from 0, and supported on the interval [0, 1]. However, in
their proof, [5] neglect to bound the additional bias incurred near the boundaries of [0, 1], where the
density cannot simultaneously be bounded away from 0 and continuous. In fact, because the KL
estimator does not attempt to correct for boundary bias, it is not clear that the bias should decay as
O(n−β) under these conditions; we require additional conditions at the boundary of X .

3Fixed-k estimators can be computed in O
(
Dn2

)
time, or O

(
2Dn logn

)
using k-d trees for small D.

4Not to be confused with Kullback-Leibler (KL) divergence, for which we also analyze an estimator.
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[49] studied a closely related entropy estimator for which they prove
√
n-consistency. Their estimator

is identical to the KL estimator, except that it truncates k-NN distances at
√
n, replacing εk(x) with

min{εk(x),
√
n}. This sort of truncation may be necessary for certain fixed-k estimators to satisfy

finite-sample bounds for densities of unbounded support, though consistency can be shown regardless.

Finally, two very recent papers [12, 4] have analyzed the KL estimator. In this case, [12] generalize
the results of [5] to D > 1, and [4] weaken the regularity and boundary assumptions required by our
bias bound, while deriving the same rate of convergence. Moreover, they show that, if k increases
with n at the rate k � log5 n, the KL estimator is asymptotically efficient (i.e., asymptotically normal,
with optimal asymptotic variance). As explained in Section 8, together with our results this elucidates
the role of k in the KL estimator: fixing k optimizes the convergence rate of the estimator, but
increasing k slowly can further improve error by constant factors.

5 Discussion of assumptions
The lack of finite-sample results for fixed-k estimators is due to several technical challenges. Here,
we discuss some of these challenges, motivating the assumptions we make to overcome them.

First, these estimators are sensitive to regions of low probability (i.e., p(x) small), for two reasons:

1. Many functions f of interest (e.g., f = log or f(z) = zα, α < 0) have singularities at 0.
2. The k-NN estimate p̂k(x) of p(x) is highly biased when p(x) is small. For example, for p
β-Hölder continuous (β ∈ (0, 2]), one has ([29], Theorem 2)

Bias(p̂k(x)) �
(

k

np(x)

)β/D
. (5)

For these reasons, it is common in analysis of k-NN estimators to assume the following [5, 39]:

(A1) p is bounded away from zero on its support. That is, p∗ := infx∈X p(x) > 0.

Second, unlike many functional estimators (see e.g., [34, 45, 42]), the fixed-k estimators we consider
do not attempt correct for boundary bias (i.e., bias incurred due to discontinuity of p on the boundary
∂X of X ). 5 The boundary bias of the density estimate p̂k(x) does vanish at x in the interior X ◦
of X as n→∞, but additional assumptions are needed to obtain finite-sample rates. Either of the
following assumptions would suffice:

(A2) p is continuous not only on X ◦ but also on ∂X (i.e., p(x)→ 0 as dist(x, ∂X )→ 0).
(A3) p is supported on all of RD. That is, the support of p has no boundary. This is the approach

of [49], but we reiterate that, to handle an unbounded domain, they require truncating εk(x).

Unfortunately, both assumptions (A2) and (A3) are inconsistent with (A1). Our approach is to assume
(A2) and replace assumption (A1) with a much milder assumption that p is locally lower bounded on
its support in the following sense:

(A4) There exist ρ > 0 and a function p∗ : X → (0,∞) such that, for all x ∈ X , r ∈ (0, ρ],
p∗(x) ≤ P (B(x,r))

µ(B(x,r)) .

We show in Lemma 2 that assumption (A4) is in fact very mild; in a metric measure space of positive
dimension D, as long as p is continuous on X , such a p∗ exists for any desired ρ > 0. For simplicity,
we will use ρ =

√
D = diam(X ).

As hinted by (5) and the fact that F (P ) is an expectation, our bounds will contain terms of the form

E
X∼P

[
1

(p∗(X))
β/D

]
=

∫
X

p(x)

(p∗(x))
β/D

dµ(x)

(with an additional f ′(p∗(x)) factor if f has a singularity at zero). Hence, our key assumption is that
these quantities are finite. This depends primarily on how quickly p approaches zero near ∂X . For
many functionals, Lemma 6 gives a simple sufficient condition.

5This complication was omitted in the bias bound (Theorem 7.2) of [5] for entropy estimation.

5



6 Preliminary lemmas
Here, we present some lemmas, both as a means of summarizing our proof techniques and also
because they may be of independent interest for proving finite-sample bounds for other k-NN methods.
Due to space constraints, all proofs are given in the appendix. Our first lemma states that, if p is
continuous, then it is locally lower bounded as described in the previous section.
Lemma 2. (Existence of Local Bounds) If p is continuous on X and strictly positive on the interior
X ◦ of X , then, for ρ :=

√
D = diam(X ), there exists a continuous function p∗ : X ◦ → (0,∞) and

a constant p∗ ∈ (0,∞) such that

0 < p∗(x) ≤ P (B(x, r))

µ(B(x, r))
≤ p∗ <∞, ∀x ∈ X , r ∈ (0, ρ].

We now use these local lower and upper bounds to prove that k-NN distances concentrate around a
term of order (k/(np(x)))

1/D. Related lemmas, also based on multiplicative Chernoff bounds, are
used by [21, 9] and [8, 19] to prove finite-sample bounds on k-NN methods for cluster tree pruning
and classification, respectively. For cluster tree pruning, the relevant inequalities bound the error of
the k-NN density estimate, and, for classification, they lower bound the probability of nearby samples
of the same class. Unlike in cluster tree pruning, we are not using a consistent density estimate, and,
unlike in classification, our estimator is a function of k-NN distances themselves (rather than their
ordering). Thus, our statement is somewhat different, bounding the k-NN distances themselves:
Lemma 3. (Concentration of k-NN Distances) Suppose p is continuous on X and strictly positive
on X ◦. Let p∗ and p∗ be as in Lemma 2. Then, for any x ∈ X ◦,

1. if r >
(

k
p∗(x)n

)1/D

, then P [εk(x) > r] ≤ e−p∗(x)rDn

(
e
p∗(x)rDn

k

)k
.

2. if r ∈
[
0,
(

k
p∗n

)1/D
)

, then P [εk(x) < r] ≤ e−p∗(x)rDn

(
ep∗rDn

k

)kp∗(x)/p∗

.

It is worth noting an asymmetry in the above bounds: counter-intuitively, the lower bound depends on
p∗. This asymmetry is related to the large bias of k-NN density estimators when p is small (as in (5)).

The next lemma uses Lemma 3 to bound expectations of monotone functions of the ratio p̂k/p∗. As
suggested by the form of integrals (6) and (7), this is essentially a finite-sample statement of the fact
that (appropriately normalized) k-NN distances have Erlang asymptotic distributions; this asymptotic
statement is key to consistency proofs of [25] and [39] for α-entropy and divergence estimators.
Lemma 4. Let p be continuous on X and strictly positive on X ◦. Define p∗ and p∗ as in Lemma 2.
Suppose f : (0,∞)→ R is continuously differentiable and f ′ > 0. Then, we have the upper bound 6

sup
x∈X◦

E
[
f+

(
p∗(x)

p̂k(x)

)]
≤ f+(1) + e

√
k

∫ ∞
k

e−yyk

Γ(k + 1)
f+

(y
k

)
dy, (6)

and, for all x ∈ X ◦, for κ(x) := kp∗(x)/p∗, the lower bound

E
[
f−

(
p∗(x)

p̂k(x)

)]
≤ f−(1) + e

√
k

κ(x)

∫ κ(x)

0

e−yyκ(x)

Γ(κ(x) + 1)
f−

(y
k

)
dy (7)

Note that plugging the function z 7→ f

((
kz

cD,rnp∗(x)

) 1
D

)
into Lemma 4 gives bounds on

E [f(εk(x))]. As one might guess from Lemma 3 and the assumption that f is smooth, this bound is

roughly of the order �
(

k
np(x)

) 1
D

. For example, for any α > 0, a simple calculation from (6) gives

E [εαk (x)] ≤
(

1 +
α

D

)( k

cD,rnp∗(x)

) α
D

. (8)

(8) is used for our bias bound, and more direct applications of Lemma 4 are used in variance bound.
6f+(x) = max{0, f(x)} and f−(x) = −min{0, f(x)} denote the positive and negative parts of f . Recall

that E [f(X)] = E [f+(X)]− E [f−(X)].
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7 Main results
Here, we present our main results on the bias and variance of F̂B(P ). Again, due to space constraints,
all proofs are given in the appendix. We begin with bounding the bias:
Theorem 5. (Bias Bound) Suppose that, for some β ∈ (0, 2], p is β-Hölder continuous with constant
L > 0 on X , and p is strictly positive on X ◦. Let p∗ and p∗ be as in Lemma 2. Let f : (0,∞)→ R
be differentiable, and define Mf,p : X → [0,∞) by

Mf,p(x) := sup
z∈[p∗(x),p∗]

∣∣∣∣ ddz f(z)

∣∣∣∣
Assume

Cf := E
X∼p

[
Mf,p(X)

(p∗(X))
β
D

]
<∞. Then,

∣∣∣E F̂B(P )− F (P )
∣∣∣ ≤ CfL(k

n

) β
D

.

The statement for divergences is similar, assuming that q is also β-Hölder continuous with constant L
and strictly positive on X ◦. Specifically, we get the same bound if we replace Mf,o with

Mf,p(x) := sup
(w,z)∈[p∗(x),p∗]×[q∗(x),q∗]

∣∣∣∣ ∂∂wf(w, z)

∣∣∣∣
and define Mf,q similarly (i.e., with ∂

∂z ) and we assume that

Cf := E
X∼p

[
Mf,p(X)

(p∗(X))
β
D

]
+ E
X∼p

[
Mf,q(X)

(q∗(X))
β
D

]
<∞.

As an example of the applicability of Theorem 5, consider estimating the Shannon entropy. Then,
f(z) = log(x), and so we need Cf =

∫
X (p∗(x))

−β/D
dµ(x) <∞.

The assumption Cf <∞ is not immediately transparent. For the functionals in Table 1, Cf has the
form

∫
X (p(x))

−c
dx, for some c > 0, and hence Cf <∞ intuitively means p(x) cannot approach

zero too quickly as dist(x, ∂X )→ 0. The following lemma gives a formal sufficient condition:
Lemma 6. (Boundary Condition) Let c > 0. Suppose there exist b∂ ∈ (0, 1

c ), c∂ , ρ∂ > 0 such that,
for all x ∈ X with ε(x) := dist(x, ∂X ) < ρ∂ , p(x) ≥ c∂εb∂ (x). Then,

∫
X (p∗(x))

−c
dµ(x) <∞.

In the supplement, we give examples showing that this condition is fairly general, satisfied by
densities proportional to xb∂ near ∂X (i.e., those with at least b∂ nonzero one-sided derivatives on
the boundary).

We now bound the variance. The main obstacle here is that the fixed-k estimator is an empirical
mean of dependent terms (functions of k-NN distances). We generalize the approach used by [5] to
bound the variance of the KL estimator of Shannon entropy. The key insight is the geometric fact
that, in (RD, ‖ · ‖p), there exists a constant Nk,D (independent of n) such that any sample Xi can be
amongst the k-nearest neighbors of at most Nk,D other samples. Hence, at most Nk,D + 1 of the
terms in (2) can change when a single Xi is added, suggesting a variance bound via the Efron-Stein
inequality [10], which bounds the variance of a function of random variables in terms of its expected
change when its arguments are resampled. [11] originally used this approach to prove a general Law
of Large Numbers (LLN) for nearest-neighbors statistics. Unfortunately, this LLN relies on bounded
kurtosis assumptions that are difficult to justify for the log or negative power statistics we study.
Theorem 7. (Variance Bound) Suppose B ◦ f is continuously differentiable and strictly monotone.
Assume Cf,p := EX∼P

[
B2(f(p∗(X)))

]
<∞, and Cf :=

∫∞
0
e−yykf(y) <∞. Then, for

CV := 2 (1 +Nk,D) (3 + 4k) (Cf,p + Cf ) , we have V
[
F̂B(P )

]
≤ CV

n
.

As an example, if f = log (as in Shannon entropy), then, since B is an additive constant, we simply
require

∫
X p(x) log2(p∗(x)) < ∞. In general, Nk,D is of the order k2cD, for some c > 0. Our

bound is likely quite loose in k; in practice, V
[
F̂B(P )

]
typically decreases somewhat with k.
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8 Conclusions and discussion
In this paper, we gave finite-sample bias and variance error bounds for a class of fixed-k estimators
of functionals of probability density functions, including the entropy and divergence estimators in
Table 1. The bias and variance bounds in turn imply a bound on the mean squared error (MSE) of the
bias-corrected estimator via the usual decomposition into squared bias and variance:
Corollary 8. (MSE Bound) Under the conditions of Theorems 5 and 7,

E
[(
Ĥk(X)−H(X)

)2
]
≤ C2

fL
2

(
k

n

)2β/D

+
CV
n
. (9)

Choosing k: Contrary to the name, fixing k is not required for “fixed-k” estimators. [36] empirically
studied the effect of changing k with n and found that fixing k = 1 gave best results for estimating
F (P ). However, there has been no theoretical justification for fixing k. Assuming tightness of our
bias bound in k, we provide this in a worst-case sense: since our bias bound is nondecreasing in k and
our variance bound is no larger than the minimax MSE rate for these estimation problems, reducing
variance (i.e., increasing k) does not improve the (worst-case) convergence rate. On the other hand,
[4] recently showed that slowly increasing k can improves the asymptotic variance of the estimator,
with the rate k � log5 n leading to asymptotic efficiency. In view of these results, we suggest that
increasing k can improve error by constant factors, but cannot improve the convergence rate.

Finally, we note that [36] found increasing k quickly (e.g., k = n/2) was best for certain hypothesis
tests based on these estimators. Intuitively, this is because, in testing problems, bias is less problematic
than variance (e.g., an asymptotically biased estimator can still lead to a consistent test).
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