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Abstract

Many canonical machine learning problems boil down to a convex optimization
problem with a finite sum structure. However, whereas much progress has been
made in developing faster algorithms for this setting, the inherent limitations of
these problems are not satisfactorily addressed by existing lower bounds. Indeed,
current bounds focus on first-order optimization algorithms, and only apply in
the often unrealistic regime where the number of iterations is less than O(d/n)
(where d is the dimension and n is the number of samples). In this work, we
extend the framework of Arjevani et al. [3} 5] to provide new lower bounds, which
are dimension-free, and go beyond the assumptions of current bounds, thereby
covering standard finite sum optimization methods, e.g., SAG, SAGA, SVRG,
SDCA without duality, as well as stochastic coordinate-descent methods, such as
SDCA and accelerated proximal SDCA.

1 Introduction

Many machine learning tasks reduce to Finite Sum Minimization (FSM) problems of the form

min F(w) := %Zfl(w), (1)
i=1

weRe

where f; are L-smooth and pu-strongly convex. In recent years, a major breakthrough was made
when a linear convergence rate was established for this setting (SAG [[L6] and SDCA [18]]), and since
then, many methods have been developed to achieve better convergence rate. However, whereas a
large body of literature is devoted for upper bounds, the optimal convergence rate with respect to the
problem parameters is not quite settled.

Let us discuss existing lower bounds for this setting, along with their shortcomings, in detail. One
approach to obtain lower bounds for this setting is to consider the average of carefully handcrafted
functions defined on n disjoint sets of variables. This approach was taken by Agarwal and Bottou [1]]
who derived a lower bound for FSM under the first-order oracle model (see Nemirovsky and Yudin
[12])). In this model, optimization algorithms are assumed to access a given function by issuing queries
to an external first-order oracle procedure. Upon receiving a query point in the problem domain, the
oracle reports the corresponding function value and gradient. The construction used by Agarwal and
Bottou consisted of n different quadratic functions which are adversarially determined based on the
first-order queries being issued during the optimization process. The resulting bound in this case does
not apply to stochastic algorithms, rendering it invalid for current state-of-the-art methods. Another
instantiation of this approach was made by Lan [10] who considered n disjoint copies of a quadratic
function proposed by Nesterov in [13| Section 2.1.2]. This technique is based on the assumption that
any iterate generated by the optimization algorithm lies in the span of previously acquired gradients.
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This assumption is rather permissive and is satisfied by many first-order algorithms, e.g., SAG and
SAGA [6]. However, the lower bound stated in the paper faces limitations in a few aspects. First, the
validity of the derived bound is restricted to d/n iterations. In many datasets, even if d, n are very
large, d/n is quite small. Accordingly, the admissible regime of the lower bound is often not very
interesting. Secondly, it is not clear how the proposed construction can be expressed as a Regularized
Loss Minimization (RLM) problem with linear predictors (see Sectiond). This suggests that methods
specialized in dual RLM problems, such as SDCA and accelerated proximal SDCA [19]], can not be
addressed by this bound. Thirdly, at least the formal theorem requires assumptions (such as querying
in the span of previous gradients, or sampling from a fixed distribution over the individual functions),
which are not met by some state-of-the-art methods, such as coordinate descent methods, SVRG [9]
and without-replacements sampling algorithms [[15].

Another relevant approach in this setting is to model the functional form of the update rules. This
approach was taken by Arjevani et al. [3] where new iterates are assumed to be generated by a
recurrent application of some fixed linear transformation. Although this method applies to SDCA
and produces a tight lower bound of Q((n 4+ 1/X)In(1/¢)), its scope is rather limited. In recent
work, Arjevani and Shamir [5] considerably generalized parts of this framework by introducing
the class of first-order oblivious optimization algorithms, whose step sizes are scheduled regardless
of the function under consideration, and deriving tight lower bounds for general smooth convex
minimization problems (note that obliviousness rules out, e.g., quasi-Newton methods where gradients
obtained at each iteration are multiplied by matrices which strictly depend on the function at hand,
see Definition 2 below).

In this work, building upon the framework of oblivious algorithms, we take a somewhat more
abstract point of view which allows us to easily incorporate coordinate-descent methods, as well
as stochastic algorithms. Our framework subsumes the vast majority of optimization methods for
machine learning problems, in particular, it applies to SDCA, accelerated proximal SDCA, SDCA
without duality [17], SAG, SAGA, SVRG and acceleration schemes [7, [11]]), as well as to a large
number of methods for smooth convex optimization (i.e., FSM with n = 1), e.g., (stochastic) Gradient
descent (GD), Accelerated Gradient Descent (AGD, [13]]), the Heavy-Ball method (HB, [14]) and
stochastic coordinate descent.

Under this structural assumption, we derive lower bounds for FSM , according to which the
iteration complexity, i.e., the number of iterations required to obtain an e-optimal solution in terms of
function value, is at leas

Q(n+ v/n(k —1)In(1/e)), (2)

where r denotes the condition number of F'(w) (that is, the smoothness parameter over the strong
convexity parameter). To the best of our knowledge, this is the first tight lower bound to address all
the algorithms mentioned above. Moreover, our bound is dimension-free and thus applies to settings
in machine learning which are not covered in the current literature (e.g., when n is Q(d)). We also
derive a dimension-free nearly-optimal lower bound for smooth convex optimization of

((Le-2/9""),

for any § € (2, 4), which holds for any oblivious stochastic first-order algorithm. It should be noted
that our lower bounds remain valid under any source of randomness which may be introduced into
the optimization process (by the oracle or by the optimization algorithm). In particular, our bounds
hold in cases where the variance of the iterates produced by the algorithm converges to zero, a highly
desirable property of optimization algorithms in this setting.

Two implications can be readily derived from this lower bound. First, obliviousness forms a real
barrier for optimization algorithms, and whereas non-oblivious algorithms may achieve a super-linear
convergence rate at later stages of the optimization process (e.g., quasi-newton), or practically zero
error after ©(d) iterations (e.g. Center of Gravity method, MCG), oblivious algorithms are bound
to linear convergence indefinitely, as demonstrated by Figure[I] We believe that this indicates that
a major progress can be made in solving machine learning problems by employing non-oblivious
methods for settings where d < n. It should be further noted that another major advantage of

"Following standard conventions, here tilde notation hides logarithmic factors in the parameters of a given
class of optimization problems, e.g., smoothness parameter and number of components.



non-oblivious algorithms is their ability to obtain optimal convergence rates without an explicit
specification of the problem parameters (e.g., [5, Section 4.1]).
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Figure 1: Comparison of first-order methods based on the function used by Nesterov in [13 Section
2.1.2] over R, Whereas L-BFGS (with a memory size of 100) achieves a super-linear convergence
rate after ©(d) iterations, the convergence rate of GD, AGD and HB remains linear as predicted by
our bound.

Secondly, many practitioners have noticed that oftentimes sampling the individual functions without
replacement at each iteration performs better than sampling with replacement (e.g., [18l[15]], see also
[8,1200). The fact that our lower bound holds regardless of how the individual functions are sampled
and is attained using with-replacement sampling (e.g., accelerated proximal SDCA), implies that,
in terms of iteration complexity, one should expect to gain no more than log factors in the problem
parameters when using one method over the other (it is noteworthy that when comparing with and
without replacement samplings, apart from iteration complexity, other computational resources, such
as limited communication in distributed settings [4], may significantly affect the overall runtime).

2  Framework

2.1 Motivation

Due to difficulties which arise when studying the complexity of general optimization problems under
discrete computational models, it is common to analyze the computational hardness of optimization
algorithms by modeling the way a given algorithm interacts with the problem instances (without
limiting its computational resources). In the seminal work of Nemirovsky and Yudin [[12], it is shown
that algorithms which access the function at hand exclusively by querying a first-order oracle require
at least

Q (min {d, v/} In(1/e)), ©w>0 3)
Q(min{dIn(1/e),\/T/e}), p=20

oracle calls to obtain an e-optimal solution, where L and p are the smoothness and the strong
convexity parameter, respectively (note that, here and throughout this section we refer to FSM
problems with n = 1). This lower bound is tight and its dimension-free part is attained by Nesterov’s
well-known accelerated gradient descent, and by MCG otherwise. The fact that this approach is
based on information considerations alone is very appealing and renders it valid for any first-order
algorithm. However, discarding the resources needed for executing a given algorithm, in particular
the per-iteration cost (in time and space), the complexity boundaries drawn by this approach are
too crude from a computational point of view. Indeed, the per-iteration cost of MCG, the only
method known with oracle complexity of O(d1n(1/¢)), is excessively high, rendering it prohibitive
for high-dimensional problems.

We are thus led into the question of how well can a given optimization algorithm perform assuming
that its per-iteration cost is constrained? Arjevani et al. 3, 5] adopted a more structural approach



where instead of modeling how information regarding the function at hand is being collected, one
models the update rules according to which iterates are being generated. Concretely, they proposed
the framework of p-CLI optimization algorithms where, roughly speaking, new iterates are assumed
to form linear combinations of the previous p iterates and gradients, and the coefficients of these
linear combinations are assumed to be either stationary (i.e., remain fixed throughout the optimization
process) or oblivious. Based on this structural assumption, they showed that the iteration complexity
of minimizing smooth and strongly convex functions is 2(v/+<1n(1/¢)). The fact that this lower
bound is stronger than (EI), in the sense that it does not depend on the dimension, confirms that
controlling the functional form of the update rules allows one to derive tighter lower bounds. The
framework of p-CLIs forms the nucleus of our formulation below.

2.2 Definitions

When considering lower bounds one must be very precise as to the scope of optimization algorithms
to which they apply. Below, we give formal definitions for oblivious stochastic CLI optimization algo-
rithms and iteration complexity (which serves as a crude proxy for their computational complexity).

Definition 1 (Class of Optimization Problems). A class of optimization problems is an ordered triple
(F,Z,0y), where F is a family of functions defined over some domain designated by domF, T is
the side-information given prior to the optimization process and Oy is a suitable oracle which upon
receiving x € domF and 0 in the parameter set ©, returns Of(x,0) C dom(F) for a given f € F
(we shall omit the subscript in Of when f is clear from the context).

For example, in FSM, F contains functions as defined in (E]), the side-information contains the
smoothness parameter L, the strong convexity parameter p and the number of components n (although
it carries a crucial effect on the iteration complexity, e.g., [5]], in this work, we shall ignore the side-
information and assume that all the parameters of the class are given). We shall assume that both
first-order and coordinate-descent oracles (see [[0[TT] below) are allowed to be used during the
optimization process. Formally, this is done by introducing an additional parameter which indicates
which oracle is being addressed. This added degree of freedom does not violate our lower bounds.

We now turn to rigorously define CLI optimization algorithms. Note that, compared with the definition
of first-order p-CLIs provided in [5], here, in order to handle coordinate-descent and first-order oracles
in a unified manner, we base our formulation on general oracle procedures.

Definition 2 (CLI). An optimization algorithm is called a Canonical Linear Iterative (CLI) opti-
mization algorithm over a class of optimization problems (F,T, Oy), if given an instance f € F

and initialization points {WEO)}iej C dom(F), where J is some index set, it operates by iteratively
generating points such that for any i € J,

wi e S o, <w§k);0$)), k=0,1,... (4)
€T

holds, where 91@ € O are parameters chosen, stochastically or deterministically, by the algorithm,
possibly depending on the side-information. If the parameters do not depend on previously acquired
oracle answers, we say that the given algorithm is oblivious. Lastly, algorithms with |J| < p, for
some p € N, are denoted by p-CLI

Note that assigning different weights to different terms in can be done through Gg«“) € 0
(e.g., oracle ['115] below). This allows a succinct definition for obliviousness. Lastly, we define
iteration complexity.

Definition 3 (Iteration Complexity). The iteration complexity of a given CLI w.r.t. a given problem
class (F,I,0Oy) is defined to be the minimal number of iterations K such that

E[f(w¥) — min_f(w)] <e, VfeFk>K

where the expectation is taken over all the randomness introduced into the optimization process

(choosing wgk) merely serves as a convention and is not necessary for our bounds to hold).



2.3 Proof Technique - Deriving Lower Bounds via Approximation Theory

Consider the following parametrized class of L-smooth and y-strongly convex optimization problems,

nw?

Iwnelﬁ fo(w) = W € [, L]. %)
Clearly, the minimizer of f, are w*(n) := 1/n, with norm bounded by 1/. For simplicity, we will
consider a special case, namely, vanilla gradient descent (GD) with step size 1/L, which produces
new iterates as follows

1

w () = w® () - £

fy® ) = (1= 1) wb () + 7.

Setting the initialization point to be w(®) () = 0, we derive an explicit expression for w¥) (n):
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Figure 2: The first four iterates of GD and AGD, which form polynomials in 7, the parameter of
problem (5)), are compared to 1/n over [1, 4].

It turns out that each w*) (7)) forms a univariate polynomial whose degree is at most k. Furthermore,
since f,(w) are L-smooth y-strongly convex for any n € [u, L], standard convergence analysis for

GD (e.g., [13]l, Theorem 2.1.14) guarantees that [w® (1) — w*(n)| < (1 — 2/(1 4 &) |w*(n)].
where « denotes the condition number. Substituting Equation (@) for w® (n) yields

1 k—1 k 1 2 %
— —1)¢ - <—(1- :
ngﬁi] L ;( 2 (i—|— 1) (/L)' = 1/n) < 1 (1 1+ n)

Thus, we see that the faster the convergence rate of a given optimization algorithm is, the better
the induced sequence of polynomials (w*)(n));>o approximate 1/n w.r.t. the maximum norm
Il - |2 (ju,z)) OVer [u, L]. In Fig. 2, we compare the first 4 polynomials induced by GD and AGD.
Not surprisingly, AGD polynomials approximates 1/7 better than those of GD.

Now, one may ask, assuming that iterates of a given optimization algorithm A for (5) can be
expressed as polynomials s () whose degree does not exceed the iteration number, just how fast
can these iterates converge to the minimizer? Since the convergence rate is bounded from below by
lsx(n) — 1/0ll L (ju,])> We may address the following question instead:

min ||s(n) —1 , 7
sy [s(m) = 1/nll e () (7

where Py, denotes the set of univariate polynomials whose degree does not exceed k. Problem (7)) and
other related settings are main topics of study in approximation theory. Accordingly, our technique



for proving lower bounds makes an extensive use of tools borrowed from this area. Specifically, in a
paper from 1899 [21] Chebyshev showed that

1
n—c
by which we derive the following theorem (see Appendix [A.T]for a detailed proof).

(c— e —1)F
c2—1 ’

min

s _
s(n)EPk (77)

c>1, ®)

Loo(-1,1])

Theorem 1. The number of iterations required by A to get an e-optimal solution is Q(1/k In(1/¢)).

In the following sections, we apply oblivious CLI on various parameterized optimization problems
so that the resulting iterates are polynomials in the problem parameters. We then apply arguments
similar to the above

A similar reduction, from optimization problems to approximation problems, was used before in a
few contexts to analyze the iteration complexity of deterministic CLIs (e.g., [5 Section 3], see also
Conjugate Gradient convergence analysis [14]). But, what if we allow random algorithms? should we
expect the same iteration complexity? To answer this, we use Yao’s minimax principle according to
which the performance of a given stochastic optimization algorithm w.r.t. its worst input are bounded
from below by the performance of the best deterministic algorithm w.r.t. distributions over the input
space. Thus, following a similar reduction one can show that the convergence rate of stochastic
algorithms is bounded from below by

L
1
min s(n) — 1/n|——dn. 9)
i [ s = 1l (
That is, a lower bound for the stochastic case can be attained by considering an approximation
problem w.r.t. weighted L, with the uniform distribution over [u1, L]. Other approximation problems
considered in this work involve Lo-norm and different distributions. We provide a schematic
description of our proof technique in Scheme 2.1.

SCHEME 2.1 FROM OPTIMIZATION PROBLEMS TO APPROXIMATION PROBLEMS

GIVEN A CLASS OF FUNCTIONS F, A SUITABLE ORACLE O
AND A SEQUENCE OF SETS OF FUNCTION S}, OVER SOME PARAMETERS SET H.
CHOOSE A SUBSET OF FUNCTIONS {f,, € F|n € H},s.T. wk(n) € Sy.
COMPUTE THE MINIMIZER W™ (77) FOR ANY f5,
BOUND FROM BELOW THE BEST APPROXIMATION FOR W* (1) W.R.T. S,
AND ANORM || - [, LE.. min{[s(n) — w* (n)|| | s(n) € Sk}

3 Lower Bound for Finite Sums Minimization Methods

Having described our analytic approach, we now turn to present some concrete applications, starting
with iteration complexity lower bounds in the context of FSM problems (I). In what follows, we
derive a lower bound on the iteration complexity of oblivious (possibly stochastic) CLI algorithms
equipped with first-order and coordinate-descent oracles for FSM. Strictly speaking, we focus on
optimization algorithms equipped with both generalized first order oracle,

O(w; A, B,c,j) = AVfj(w)+Bw+c, A BecR™ ccR?jenl, (10)
and steepest coordinate-descent oracle

O(w;i,j) =w+t'e;, ¢ €argminfj(wi,...,wi—1,w; +t, Wit1,...,waq),7 € [n], (11)
teR
where e; denotes the i’th unit vector. We remark that coordinate-descent steps w.r.t. partial gradients
can be implemented using (10) by setting A to be some principal minor of the unit matrix. It should
be further noted that our results below hold for scenarios where the optimization algorithm is free to
call a different oracle at different iterations.

First, we sketch the proof of the lower bound for deterministic oblivious CLIs. Following Scheme
2.1, we restrict our attention to a parameterized subset of problems. We assum d > 1 and denote by

“Clearly, in order to derive a lower bound for coordinate-descent algorithms, we must assume d > 1. If only
a first-order oracle is allowed, then the same lower bound as in Theoremcan be derived for d = 1.



Hrsm the set of all (1, ...,7,) € R™ such that all the entries equal —(L — 1)/2, except for some
j € [n], for which n; € [—(L — p)/2, (L — p)/2]. Now, given n == (n1,...,n,) € Hrsm we define

I& (1 T

Fy(w) = - Zl (2W QnwW—q w) , where (12)

Ry

o va

. Ltp Ry

i ) 2

Q’I’]i = ,LL ) q = O

Iz 0

It is easy to verify that the minimizers of (I2)) are
.
R R

w(n) = a a ,0,...,0] . (13)

Ve (B iy m) vE (LT )

We would like to show that the coordinates of the iterates of deterministic oblivious CLIs, which
minimize I, using first-order and coordinate-descent oracles, form multivariate polynomials in i
of total degrees (the maximal sum of powers over all the terms) which does not exceed the iteration
number. Indeed, if the coordinates of wgk) (m) are multivariate polynomial in 7 of total degree at
most k, then the coordinates of the vectors returned by both oracles

First-order oracle: O(W](-k); A,B,c,j) = AQy, wgk) -q)+ ngk) +c, (14)

Coordinate-descent oracle: O(w'";, j) = (I = (1/(Qy, )it)ei(Qy, i) W = 4:/(Qy )iser,

are multivariate polynomials of total degree of at most k& + 1, as all the parameters (A, B, C, i and j)

do not depend on 7 (due to obliviousness) and the rest of the terms (@, q, I, 1/(Q7]j )iis (an )ixs €

and g;) are either linear in 7; or constants. Now, since the next iterates are generated simply by

summing up all the oracle answers, they also form multivariate polynomials of total dee of at most
8

k + 1. Thus, denoting the first coordinate of wgk) (n) by s(n) and using Inequality (
following bound

), we get the

(k) . Ry
max [[wy ' (n) —w*(n)| > ||s(n) — (15)
NnEHrsm \/§ (ﬂ + 1 Zn 77-)
2 = e ()
k/n
VEL+1-1
R0 1¢) ) S — (16)

- VEL+1+1

where (2(1) designates a constant which does not depend on k (but may depend on the problem
parameters). Lastly, this implies that for any deterministic oblivious CLI and any iteration number,
there exists some 1) € Hggy such that the convergence rate of the algorithm, when applied on F,,
is bounded from below by Inequality (I6). We note that, as opposed to other related lower bounds,
e.g., [10]], our proof is non-constructive. As discussed in subsection [2.3] this type of analysis can be
extended to stochastic algorithms by considering w.r.t. other norms such as weighted L;-norm.
We now arrive at the following theorem whose proof, including the corresponding logarithmic factors
and constants, can be found in Appendix [A.2}

Theorem 2. The iteration complexity of oblivious (possibly stochastic) CLIs for FSM (1)) equipped
with first-order (I0) and coordinate-descent oracles (I1), is bounded from below by

Q(n+ /n(k — 1)In(1/e)).

The lower bound stated in Theorem [2| is tight and is attained by, e.g., SAG combined with an
acceleration scheme (e.g., [11]). Moreover, as mentioned earlier, our lower bound does not depend
on the problem dimension (or equivalently, holds for any number of iterations, regardless of d and



n), and covers coordinate descent methods with stochastic or deterministic coordinate schedule
(in the special case where n = 1, this gives a lower bound for minimizing smooth and strongly
convex functions by performing steepest coordinate descent steps). Also, our bound implies that
using mini-batches for tackling FSM does not reduce the overall iteration complexity. Lastly, it is
noteworthy that the n term in the lower bound above holds for any algorithm accompanied with an
incremental oracle, which grants access to at most one individual function each time.

We also derive a nearly-optimal lower bound for smooth non-strongly convex functions for the more
restricted setting of n = 1 and first-order oracle. The parameterized subset of functions we use
(see Scheme 2.1) is g, (x) = 2 Ix]|> = Rpelx, 7 € (0,L]. The corresponding minimizer (as
a function of ) is x*(n) = Rej, and in this case we seek to approximate it w.r.t. Lo-norm using
k-degree univariate polynomials whose constant term vanishes. The resulting bound is dimension-free
and improves upon other bounds for this setting (e.g. [S]]) in that it applies to deterministic algorithms,
as well as to stochastic algorithms (see for proof).

Theorem 3. The iteration complexity of any oblivious (possibly stochastic) CLI for L-smooth convex
functions equipped with a first-order oracle, is bounded from below by

QO ((L(é - 2)/e>1/‘5) L 5e(2,4).
4 Lower Bound for Dual Regularized Loss Minimization with Linear
Predictors

The form of functions discussed in the previous section does not readily adapt to general RLM
problems with linear predictors, i.e.,

1< A2
in P == i ((Xi, = ) 17
Inin P(w) =~ ;_105 ({xi, w)) + 5 [lwll (17
where the loss functions ¢; are L-smooth and convex, the samples x1, ..., X, are d-dimensional

vectors in R? and ) is some positive constant. Thus, dual methods which exploit the added structure
of this setting through the dual problem [18]],
2

1< A
min D(a) = - Z@k(—ai) + 5 ; (18)
i=1

acR”

1 n
¥ e
n P

such as SDCA and accelerated proximal SDCA, are not covered by Theorem 2] Accordingly, in
this section, we address the iteration complexity of oblivious (possibly stochastic) CLI algorithms
equipped with dual RLM oracles:

O(a;t,j) = a+tV;D(a)e;, teR,jeE|n], (19)
O(agj) =a+t'e;, t"=argminD(aq,...,aj_1,0; +t,j1,...,a4q),7J € [0,
teR

Following Scheme 2.1, we first describe the relevant parametrized subset of RLM problems. For the
sake of simplicity, we assume that n is even (the proof for odd n holds mutatis mutandis). We denote
by Hgrpm the set of all (¢1, ..., ¢, /2) € R™/2 such that all entries are 0, except for some j € [n/2],
for which ¢; € [—7/2,7/2]. Now, given ¥ € Hgrim, we set Py, (defined in as follows

1 cos(V(ir1)/2)€i +sin(¥r1y/2)€i41 @ is odd
; I 1)2 ;= (i+1)/2)€i (i+1)/2)Ci+ )
Pi(w) 2 (w+1)% xy, {ei 0.W.
We state below the corresponding lower bound, whose proof, including logarithmic factors and
constants, can be found in Appendix [A.4]

Theorem 4. The iteration complexity of oblivious (possibly stochastic) CLIs for RLM ({I7) equipped
with dual RLM oracles ({I9) is bounded from below by

Q(n+ /nL/XIn(1/€)).

This bound is tight w.r.t. the class of oblivious CLIs and is attained by accelerated proximal SDCA. As
mentioned earlier, a tighter lower bound of Q((n + 1/A) In(1/¢)) is known for SDCA [3]], suggesting
that a tighter bound might hold for the more restricted set of stationary CLIs (for which the oracle
parameters remain fixed throughout the optimization process).



