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Abstract

We present CYCLADES, a general framework for parallelizing stochastic optimiza-
tion algorithms in a shared memory setting. CYCLADES is asynchronous during
model updates, and requires no memory locking mechanisms, similar to HOG-
WILD!-type algorithms. Unlike HOGWILD!, CYCLADES introduces no conflicts
during parallel execution, and offers a black-box analysis for provable speedups
across a large family of algorithms. Due to its inherent cache locality and conflict-
free nature, our multi-core implementation of CYCLADES consistently outperforms
HOGWILD!-type algorithms on sufficiently sparse datasets, leading to up to 40%
speedup gains compared to HOGWILD!, and up to 5x gains over asynchronous
implementations of variance reduction algorithms.

1 Introduction

Following the seminal work of HOGWILD! [17], many studies have demonstrated that near linear
speedups are achievable on several machine learning tasks via asynchronous, lock-free implemen-
tations [25, 13, 8, 16]. In all of these studies, classic algorithms are parallelized by simply running
parallel and asynchronous model updates without locks. These lock-free, asynchronous algorithms
exhibit speedups even when applied to large, non-convex problems, as demonstrated by deep learn-
ing systems such as Google’s Downpour SGD [6] and Microsoft’s Project Adam [4]. While these
techniques have been remarkably successful, many of the above papers require delicate and tailored
analyses to quantify the benefits of asynchrony for each particular learning task. Moreover, in
non-convex settings, we currently have little quantitative insight into how much speedup is gained
from asynchrony.

In this work, we present CYCLADES, a general framework for lock-free, asynchronous machine
learning algorithms that obviates the need for specialized analyses. CYCLADES runs asynchronously
and maintains serial equivalence, i.e., it produces the same outcome as the serial algorithm. Since
it returns the same output as a serial implementation, any algorithm parallelized by our framework
inherits the correctness proof of the serial counterpart without modifications. Additionally, if a
particular serially run heuristic is popular, but does not have a rigorous analysis, CYCLADES still
guarantees that its execution will return a serially equivalent output.

CYCLADES achieves serial equivalence by partitioning updates among cores, in a way that ensures
that there are no conflicts across partitions. Such a partition can always be found efficiently by
leveraging a powerful result on graph phase transitions [12]. When applied to our setting, this result
guarantees that a sufficiently small sample of updates will have only a logarithmic number of conflicts.
This allows us to evenly partition model updates across cores, with the guarantee that all conflicts are
localized within each core. Given enough problem sparsity, CYCLADES guarantees a nearly linear
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speedup, while inheriting all the qualitative properties of the serial counterpart of the algorithm, e.g.,
proofs for rates of convergence. Enforcing a serially equivalent execution in CYCLADES comes with
additional practical benefits. Serial equivalence is helpful for hyperparameter tuning, or locating
the best model produced by the asynchronous execution, since experiments are reproducible, and
solutions are easily verifiable. Moreover, a CYCLADES program is easy to debug because bugs are
repeatable and we can examine the step-wise execution to localize them.

A significant benefit of the update partitioning in CYCLADES is that it induces considerable access
locality compared to the more unstructured nature of the memory accesses during HOGWILD!. Cores
will access the same data points and read/write the same subset of model variables. This has the addi-
tional benefit of reducing false sharing across cores. Because of these gains, CYCLADES can actually
outperform HOGWILD! in practice on sufficiently sparse problems, despite appearing to require
more computational overhead. Remarkably, because of the added locality, even a single threaded
implementation of CYCLADES can actually be faster than serial SGD. In our SGD experiments for
matrix completion and word embedding problems, CYCLADES can offer a speedup gain of up to 40%
compared to that of HOGWILD!. Furthermore, for variance reduction techniques such as SAGA [7]
and SVRG [11], CYCLADES yields better accuracy and more significant speedups, with up to 5x
performance gains over HOGWILD !-type implementations.

2 The Algorithmic Family of Stochastic-Updates

We study parallel asynchronous iterative algorithms on the computational model used by [17]: several
cores have access to the same shared memory, and each of them can read and update components of
the shared memory. In this work, we consider a family of randomized algorithms that we refer to as
Stochastic Updates (SU). The main algorithmic component of SU focuses on updating small subsets
of a model variable x, according to prefixed access patterns, as sketched by Alg. 1.

In Alg. 1, S; is a subset of the coordinates in x, each function
fi operates on the subset S; of coordinates, and u; is a local
update function that computes a vector with support on S; using
as input x5, and f;. Moreover, 1" is the total number of iterations,
and D is the distribution with support {1,...,n} from which we
draw 7. Several machine learning algorithms belong to the SU 4 xs, = ui(xs,, fi)
algorithmic family, such as stochastic gradient descent (SGD), ' Output: x

with or without weight decay and regularization, variance-reduced

learning algorithms like SAGA and SVRG, and even some combinatorial graph algorithms. In our
supplemental material, we explain how these algorithms can be phrased in the SU language.

Algorithm 1 Stochastic Updates
I: Input: x; f1,..., fu; T
2. fort=1:Tdo
3: samplei ~ D

The updates conflict graph A useful construct for our develop- o, éﬁ; i
ments is the conflict graph between updates, which can be generated — “2¢ : uz ]

from the bipartite graph between the updates and the model variables. : |

We define these graphs below, and provide an illustrative sketchin " 2 Un
Fig. I.

Figure 1: In the bipartite graph,
an update u; is linked to variable
x; when it needs to read/write it.
From G, we obtain the conflict
graph G, whose max degree is
A. If that is small, we expect that
it is possible to parallelize updates
without too many conflicts. CY-
CLADES exploits this intuition.

Definition 1. Let G, denote the bipartite update-variable graph
between the n updates and the d model variables. An update u;
is linked to a variable x;, if u; requires to read/write x;. Let I,
denote the number of edges in the bipartite graph, Ay, the max left
degree of G, and Ay the average left degree. Finally, we denote
by G, the conflict graph on the n updates. Two vertices in G are
linked, if the corresponding updates share at least one variable in
G- We also denote as A the max vertex degree of G..

We stress that the conflict graph is never constructed, but is a useful for understanding CYCLADES.

Our Main Result By exploiting the structure of the above graphs and through a light-weight
sampling and allocation of updates, CYCLADES guarantees the following result for SU algorithms,
which we establish in the following sections.

Theorem 1 (informal). Let an SU algorithm A be defined through n update rules, where the conflict
max degree between the n updates is A, and the sampling distribution D is uniform with (or without)
replacement from {1, ... ,n}. Moreover, assume that we wish to run A for T = O(n) iterations, and



that % < /n.Thenonupto P = (N)(ALAL) cores, CYCLADES guarantees a S)(P) speedup over
L
A, while outputting the same solution x as A would do after the same random set of T iterations.*

We now provide two examples of how these guarantees translate for specific problem cases.

Example 1. In many applications we seek to minimize: miny % Z?Zl Ei(aiTX) where a; represents
the ith data point, x is the parameter vector, and {; is a loss. Several problems can be formulated in
this way, such as logistic regression, least squares, binary classification, etc. If we tackle the above
problem using SGD, or techniques like SVRG and SAGA, then (as we show in the supplemental) the
update sparsity is determined by the gradient of a single sampled data point a;. Here, we will have
A = max; ||ag||o, and A will be equal to the maximum number of data points a; that share at least
one feature. As a toy example, let % = O(1) and let the non-zero support of a; be of size n? and

uniformly distributed. Then, one can show that with high probability A = 5(711/ 2+6) and hence
CYCLADES achieves an QU P) speedup on up to P = O(n'/?=29) cores.

Example 2. Consider the generic optimization miny, o icin] Y vy 25— Gi.(Xi,¥;), which cap-
tures several problems like matrix completion and factorization [17], word embeddings [2], graph
k-way cuts [17], etc. Assume that we aim to minimize the above by sampling a single function
¢s,; and then updating x; and y ; using SGD. Here, the number of update functions is proportional
to n = m?, and each gradient update with respect to the sampled function ¢; ;(x;,y;) is only
interacting with the variables x; and y j, i.e., only two variable vectors out of the 2m vectors (i.e.,
Ay = 2). This also implies a conflict degree of at most A = 2m. Here, CYCLADES can provably
guarantee an Q(P) speedup for up to P = O(m) cores.

In our experiments we test CYCLADES on several problems including least squares, classification
with logistic models, matrix factorization, and word embeddings, and several algorithms including
SGD, SVRG, and SAGA. We show that in most cases it can significantly outperform the HOGWILD!
implementation of these algorithms, if the data is sparse.

Remark 1. We would like to note that there are several cases where there might be a few outlier
updates with extremely high conflict degree. In the supplemental material, we prove that if there are
no more than O(n®) vertices of high conflict degree ,, and the rest of the vertices have max degree
at most A\, then the result of Theorem 1 still holds in expectation.

In the following section, we establish the theory of CYCLADES and provide the details behind our
parallelization framework.

3 CYCLADES: Shattering Dependencies

CYCLADES consists of three computational components as shown in Fig. 2.

It starts by sampling (according to a distribution D) a

number of B updates from the graph shown in Fig. 1, v

and assigns a label to each of them (a processing ~ Sample Batch + Connected Components
. . conflict-graph

order). After sampling, it computes the connected

components of the sampled subgraph induced by the P}W’i\ % B \ » : ©®
E =

B sampled updates, to determine the conflict groups.

Once the conflicts groups are formed, it allocates

Allocation

them across P cores. Finally, each core processes o = 0
locally the conflict groups of updates that it has been ® } 0y === \ ®
assigned, following the order that each update has Corel Core 2 Corep

been labeled with. The above process is then repeated, e o e T T

for as many iterations as needed. The key component

of CYCLADES is to carry out the sampling in such @ @ - @}
a way that we have as many connected components Corel Core 2 Corep

as possible, and all of them of small size, provably. etch Synqpronzztion

In the next subsections, we explain how each part

is carried out, and provide theoretical guarantees for Figure 2: CYCLADES samples updates, finds
each of them individually, which we combine at the conflict-groups, and allocates them across cores.
end of this section for our main theorem. Each core asynchronously updates the model, with-
out access conflicts. This is possible by processing
the conflicting updates within the same core.

4Q(-) and O(-) hide polylog factors.



A key technical aspect that we exploit in CYCLADES is that appropriate sampling and allocation of
updates can lead to near optimal parallelization of SU algorithms. To do that we expand upon the
following result established in [12].

Theorem 2. Let G be a graph on n vertices, with max degree A. Let us sample each vertex

independently with probability p = 1;6 and define as G' the induced subgraph on the sampled

vertices. Then, the largest connected component of G’ has size at most - log n, with high probability.

€

The above result pays homage to the giant component phase transition phenomena in random
Erdos-Renyi graphs. What is surprising is that similar phase transitions apply to any given graph!

In practice, for most SU algorithms of interest, the sampling distribution of updates is either with or
without replacement from the n updates. As it turns out, morphing Theorem 2 into a with-/without-
replacement result is not straightforward. We defer the analysis needed to the supplemental material,
and present our main theorem about graph sampling here.

Theorem 3. Let G be a graph on n vertices, with max degree A. Let us sample B = (lz)n vertices

with or without replacement, and define as G' the induced subgraph on the sampled vertices. Then,
the largest connected component of G' has size at most O( 1052" ), with high probability.

The key idea from the above is that if one samples no more than B = (1—¢) X updates, then there will

be at least O (<*B/10gn) conflict groups to allocate across cores, each of size at most O (logn/€?).
Since there are no conflicts between different conflict-groups, the processing of updates per any single
group will never interact with the variables corresponding to the updates of another conflict group.
The next step of CYCLADES is to form and allocate the connected components (CCs) across cores,
efficiently. We address this in the following subsection. In the following, for brevity we focus on the
with-replacement sampling case, but the results can be extended to the without-replacement case.

Identifying groups of conflict In CYCLADES, we sample batches of updates of size B multiple
times, and for each batch we need to identify the conflict groups across the updates. Let us refer
to G, as the subgraph induced by the ith sampled batch of updates on the update-variable graph
G, In the following we always assume that we sample n, = ¢ - A/(1 — €) batches, where ¢ > 1 is
a constant. This number of batches results in a constant number of passes over the dataset. Then,
identifying the conflict groups in G, can be done with a connected components (CC) algorithm. The
main question we need to address is what is the best way to parallelize this graph partitioning part. In
the supplemental, we provide the details of this part, and prove the following result:

Lemma 1. Let the number of cores be P = O(ALAL) and let % < v/n. Then, the overall computation
L

of CCs forny, = c- li batches, each of size B = (1 — €)%, costs no more than O(E, /P log? n).

Allocating updates to cores Once we compute the CCs (i.e., the conflicts groups of the sampled
updates), we have to allocate them across cores. Once a core has been assigned with CCs, it will
process the updates included in these CCs, according to the order that each update has been labeled

with. Due to Theorem 3, each connected component will contain at most O( 106%") updates. Assuming
that the cost of the j-th update in the batch is w;, the cost of a single connected component C will be

we =Y. jec w;. To proceed with characterizing the maximum load among the P cores, we assume
that the cost of a single update w;, fori € {1,...,n}, is proportional to the out-degree of that update
—according to the update-variable graph GG,,— times a constant cost which we shall refer to as k.
Hence, w; = O(dy ; - k), where dy, ; is the degree of the j-th left vertex of G,,. In the supplemental
material, we establish that a near-uniform allocation of CCs according to their weights leads to the
following guarantee.

Lemma 2. Let the number of cores by bounded as P = O(ALAL), and let %—i < v/n. Then, computing
the stochastic updates across all ny, = c - & batches can be performed in time O(%ﬁgrz" - K), with
high probability, where & is the per edge cost for computing one of the n updates defined on G.,.

Stitching the pieces together Now that we have described the sampling, conflict computation, and
allocation strategies, we are ready to put all the pieces together and detail CYCLADES in full. Let us
assume that we sample a total number of n, = ¢ ﬁ batches of size B = (1 — €)%, and that each

update is sampled uniformly at random. For the i-th batch let us denote as C?, . . . C;m the connected



components on the induced subgraph G*,. Due to Theorem 3, each connected component C contains a
number of at most O (=% logn ) updates; each update carries an ID (the order of which it would have been
sampled by the serial algorlthm) Using the above notation, we give the pseudocode for CYCLADES
in Alg. 2. Note that the inner loop that is parallelized (i.e., the SU processing loop in lines 6 — 9), can
be performed asynchronously; cores do not have to synchronize, and do not need to lock any memory
variables, as they are all accessing non-overlapping subset of x. This also provides for better cache
coherence. Moreover, each core potentially accesses the same coordinates several times, leading to
good cache locality. These improved cache locality and coherence properties experimentally lead to
substantial performance gains as we see in the next section. We can now combine the results of the
previous subsection to obtain our main theorem for CYCLADES.

Theorem 4. Let us assume any given update-variable graph G, with Aj, and Ay, such that

L < V/n, and with induced max conflict degree A. Then, CYCLADES on P = O( x5 Ny ) cores, with
batch sizes B = (1 — €)% can execute T' = c - n updates, for any constant ¢ > 1, selected uniformly
- log? n) , with high probability.

at random with replacement, in time O (E}g“

Observe that CYCLADES bypasses the need to es-

tablish convergence guarantees for the parallel algo- Algorithm 2 CYCLADES

rithm. Hence, it could be the case for an applications 1 Input: G, n. 1 ny

. . 2: Sample np subgraphs G, . .., G" from G,
of interest that we cannot analyze how a serial SU al- 3: Compute in parallel CCs for sampled graphs
gorithm performs in terms of say the accuracy of the 4. g0 patchi = 1 - ns do
solution, but CYCLADES can still provide black box 5. Ajlocation of C¢,...CE, to P cores
guarantees for speedup, since our analysis is com- e o e parallei do
pletely oblivious to the qualitative performance of 7. for each allocated component C do
the serial algorithm. This is in contrast to recent stud-  g. for each ordered update j from C do
ies similar to [5], where the authors provide speedup  9: xs; = u;(xs;, f;)
guarantees via a convergence-to-optimal proof for an - 7o, Qutput: x

asynchronous SGD on a nonconvex problem. Unfor-
tunately these proofs can become complicated on a wider range of nonconvex objectives.

In the following section we show that CYCLADES is not only useful theoretically, but can consistently
outperform HOGWILD! on sufficiently sparse datasets.

4 Evaluation

We implemented CYCLADES’ in C++ and tested it on a variety of problems, and a number of
stochastic updates algorithms, and compared against their HOGWILD! (i.e., asynchronous, lock-free)
implementations. Since CYCLADES is intended to be a general SU parallelization framework, we
do not compare against algorithms tailored to specific applications, nor do we expect CYCLADES
to outperform every such highly-tuned, well-designed, specific algorithms. Our experiments were
conducted on a machine with 72 CPUs (Intel(R) Xeon(R) CPU E7-8870 v3, 2.10 GHz) on 4 NUMA
nodes, each with 18 CPUs, and 1TB of memory. We ran CYCLADES and HOGWILD! with 1, 4, 8, 16
and 18 threads pinned to CPUs on a single NUMA node (i.e., the maximum physical number of cores
per single node), to can avoid well-known cache coherence and scaling issues across nodes [24].

[ Dataset [[ #datapoints | # features | av. sparsity / datapoint | Comments ]
NH2010 48,838 48,838 4.8026 Topological graph
DBLP 5,425,964 | 5,425,964 3.1880 Authorship network
MovieLens ~10M 82,250 200 10M movie ratings
EN-Wiki 20,207,156 213,272 200 Subset of english Wikipedia dump.

Table 1: Details of datasets used in our experiments.

In our experiments, we measure overall running times which include the overheads for computing
connected components and allocating work in CYCLADES. We also compute the objective value at
the end of each epoch (i.e., one full pass over the data). We measure the speedups for each algorithm

time of the parallel algorithm to reach e objecti L .
as o7 PAATE D BOTITI0 T € SPCIVE wwhere € was chosen to be the smallest objective value that is
time of the serial algorithm to reach € objective

achievable by all parallel algorithms on every choice of number of threads. The serial algorithm used
for comparison is HOGWILD! running serially on one thread. In Table 1 we list some details of the
datasets that we use in our experiments. We tune our constant stepsizes so to maximize convergence

>Code is available at https://github.com/amplab/cyclades.
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without diverging, and use one random data reshuffling across all epochs. Batch sizes are picked to

optimize performance for CYCLADES.
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Figure 3: Convergence of CYCLADES and HOGWILD! in terms of overall running time with 1, 8, 16, 18 threads.
CYCLADES is initially slower, but ultimately reaches convergence faster than HOGWILD!.
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Figure 4: Speedup of CYCLADES and HOGWILD! versus number of threads.
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On multiple threads, CYCLADES

always reaches € objective faster than HOGWILD!. In some cases CYCLADES is faster than HOGWILD! even
on 1 thread, due to better cache locality. In Figs. 4(a) and 4(b), CYCLADES exhibits significant gains since
HoGWwILD! suffers from asynchrony noise, and we had to use comparatively smaller stepsizes to prevent it from

diverging.

Least squares via SAGA The first problem we consider is least
squares: miny miny = > | (al’x — b;)? which we will solve using
the SAGA algorithm [7], an incrimental gradient algorithm with
faster than SGD rates on convex, or strongly convex functions. In
SAGA, we initialize g; = V f;(x¢) and iterate the following two
steps X1 = Xk — 7 (Vo (Xk) — 8, + % 2?21 g:) and g,
V fs,. (xk), where f;(x) = (al'x — b;)2. In the above iteration it is
useful to observe that the updates can be performed in a sparse and
“lazy” way, as we explain in detail in our supplemental material.

The stepsizes chosen for each of CYCLADES and HOGWILD! were
largest such that the algorithms did not diverge. We used the DBLP
and NH2010 datasets for this experiment, and set A as the adjacency
matrix of each graph. For NH2010, the values of b were set to
population living in the Census Block. For DBLP we used synthetic
values: we set b = Ax + 0.1z, where X and z were generated
randomly. The SAGA algorithm was run for 500 epochs for each
dataset. When running SAGA for least squares, we found that
HoGwILD! was divergent with the large stepsizes that we were
using for CYCLADES (Fig. 5). Thus, in the multi-thread setting,
we were only able to use smaller stepsizes for HOGWILD!, which

2

S 102
> 1010
10°
10°

Object

Overall running time / s

Figure 5: Convergence of CY-
CLADES and HOGWILD! on least
squares using SAGA, with 16
threads, on DBLP dataset. HOG-
wiILD! diverges with v > 1075;
thus, we were only able to use a
smaller step size v = 107° for
HOGWILD! on multiple threads.
For HOGWILD! on 1 thread (and
CYCLADES on any number of
threads), we could use a larger
stepsize of ¥ = 3 x 1077,

resulted in slower convergence than CYCLADES, as seen in Fig. 3(a). The effects of a smaller stepsize
for HOGWILD! are also manifested in terms of speedups in Fig. 4(a), since HOGWILD! takes a longer

time to converge to an € objective value.

Graph eigenvector via SVRG  Given an adjacency matrix A, the top eigenvector of A” A is useful
in several applications such as spectral clustering, principle component analysis, and others. In a



recent work, [10] proposes an algorithm for computing the top eigenvector of A7 A by running
intermediate SVRG steps to approximate the shift-and-invert iteration. Specifically, at each step
SVRG is used to solve: min Z?:l (%XT (%I — aia;fr) X — %bTx), where a; is the i-th column of
A. According to [10], if we initialize y = x( and assume ||a;|| = 1, we have to iterate the following
updates X1 =Xk — v -1 (Vfs, (k) — Vs, (¥)) +7v- Vf(y) where after every T iterations we

update y = X, and the stochastic gradients are of the form V fi(x) = (2I — a;a] ) x — 1b.

We apply CYCLADES to the above SVRG iteration (see supplemental) for parallelizing this problem.
We run experiments on two graphs: DBLP and and NH2010. We ran SVRG for 50 and 100 epochs
for NH2010 and DBLP respectively. The convergence of SVRG for graph eigenvectors is shown
in Fig. 3(b). CYCLADES starts off slower than HOGWILD!, but always produces results equivalent
to the convergence on a single thread. HOGWILD! does not exhibit the same behavior on multiple
threads as it does serially; due to asynchrony causes HOGWILD! to converge slower on multiple
threads. This effect is clearly seen on Figs. 4(b), where HOGWILD! fails to converge faster than the
serial counterpart, and CYCLADES attains a significantly better speedup on 16 threads.

Matrix completion and word embeddings via SGD In matrix completion we are given a partially
observed matrix M, and wish to factorize it as M ~ UV where U and V are low rank matrices with
dimensions n x r and X m respectively. This may be achieved by optimizing min Z(i, i) ca(M;j —

U, . V.;)2+ 3(|U[|% + | V||%) where Q is the set of observed entries, which can be approximated
by SGD on the observed samples. The regularized objective can be optimized by weighted SGD. In
our experiments, we chose a rank of » = 100, and ran SGD and weighted SGD for 200 epochs. We
used the MovieLens 10M dataset containing 10M ratings for 10K movies by 72K users.

Our second task that uses SGD is word embeddings, which aim to represent the mean-
ing of a word w via a vector v,, € R A recent work by [2] proposes to solve:
Mingy,3.0 D Aww (108(Aww) = [V + Var |2 — C)?, where A, is the number of times
words w and w’ co-occur within 7 words in the corpus. In our experiments we set 7 = 10 following
the suggested recipe of the aforementioned paper. We can approximate the solution to the above
problem, by obtaining one using SGD: we can repeatedly sample entries A, ,,» from A and update
the corresponding vectors v,,, v,,». Then, at the end of each full pass over the data, we update the
constant C by its locally optimal value, which can be calculated in closed form. In our experiments,
we optimized for a word embedding of dimension d = 100, and tested on a 80MB subset of the
English Wikipedia dump. For our experiments, we run SGD for 200 epochs.

Figs. 3(c) and 3(d) show the convergence for the matrix completion and word embeddings prob-
lems. CYCLADES is initially slower than HOGWILD! due to the overhead of computing connected
components. However, due to better cache locality and convergence properties, CYCLADES is able
to reach a lower objective value in less time than HOGWILD!. In fact, we observe that CYCLADES
is faster than HOGWILD! when both are run serially, demonstrating that the gains from (temporal)
cache locality outweigh the coordination overhead of CYCLADES. These results are reflected in the
speedups of CYCLADES and HOGWILD! (Figs. 4(c) and 4(d)). CYCLADES consistently achieves a
better speedup (up to 11x on 18 threads) compared to that of HOGWILD! (up to 9x on 18 threads).

Partitioning and allocation costs’ The cost of partitioning and allocation® for CYCLADES is given
in Table 2, relatively to the time that HOGWILD! takes to complete a single pass over the dataset. For
matrix completion and the graph eigenvector problem, on 18 threads, CYCLADES takes the equivalent
of 4-6 epochs of HOGWILD! to complete its partitioning, as the problem is either very sparse or the
updates are expensive. For solving least squares using SAGA and word embeddings using SGD, the
cost of partitioning is equivalent to 11-14 epochs of HOGWILD! on 18 threads. However, we point
out that partitioning and allocation’ is a one-time cost which becomes cheaper with more stochastic
update epochs. Additionally, note that this cost can become amortized due to the extra experiments
one has to run for hyperparameter tuning, since the graph partitioning is identical across different
stepsizes one might want to test.

Binary classification and dense coordinates Here we explore settings where CYCLADES is ex-
pected to perform poorly due to the inherent density of updates (i.e., for data sets with dense features).
In particular, we test CYCLADES on a classification problem for text based data. Specifically, we run
classification for the URL dataset [15] contains ~ 2.4M URLSs, labeled as either benign or malicious,

31t has come to our attention post submission that parts of our partitioning and allocation code could be
further parallelized. We refer the reader to our arXiv paper 1605.09721 for the latest results.
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# Least Squares Graph Eig. Mat. Comp. Word2Vec
threads; SAGA, DBLP | SVRG, NH2010 | ¢2-SGD, MovieLens | SGD, EN-Wiki
1 2.2245 0.9039 0.5507 0.5299
18 14.1792 4.7639 5.5270 3.9362

Table 2: Ratio of the time that CYCLADES consumes for partition and allocation over the time that HOGWILD!
takes for 1 full pass over the dataset. On 18 threads, CYCLADES takes between 4-14 HOGWILD! epochs to
perform partitioning. Note however, this computational effort is only required once per dataset.

and 3.2M features, including bag-of-words representation of tokens in the URL. For this classification
task, we used a logistic regression model, trained using SGD. By its power-law nature, the dataset
consists of a small number of extremely dense features which occur in nearly all updates. Since
CYCLADES explicitly avoids conflicts, it has a schedule of SGD updates that leads to poor speedups.

However, we observe that most conflicts are caused by a small
percentage of the densest features. If these features are removed
from the dataset, CYCLADES is able to obtain much better
speedups. The speedups that are obtained by CYCLADES and
HOGWILD! on 16 threads for different filtering percentages are
shown in Figure 6. Full results of the experiment are presented
in the supplemental material. CYCLADES fails to get much
speedup when nearly all the features are used. However, as
more dense features are removed, CYCLADES obtains a better
speedup, almost equalling HOGWILD!’s speedup when 0.048%
of the densest features are filtered. Figure 6: Speedups of CYCLADES and
5 Related work HOGWILD! on 16 threads, for differ-

ent percentage of dense features filtered.
The end of Moore’s Law coupled with recent advances in par- When only a very small number of fea-
allel and distributed computing technologies have triggered re- tures are filtered, CYCLADES is almost
newed interest in parallel stochastic optimization [26, 9, 1, 22]. serial. However, as we increase the per-
Much of this contemporary work is built upon the foundational ~centage from 0.016% to 0.048%, the

work of Bertsekas, Tsitsiklis et al. [3, 23]. speedup of CYCLADES improves and
almost catches up with HOGWILD!.

Inspired by HOGWILD!’s success at achieving nearly linear speedups for a variety of machine learning
tasks, several authors developed other lock-free and asynchronous optimization algorithms, such as
parallel stochastic coordinate descent [13]. Additional work in first order optimization and beyond
[8, 21, 5], has further demonstrated that linear speedups are generically possible in the asynchronous
shared-memory setting.

®=© Cyclades
16 }|A=A Hogwild!

8-.- = =

Speedup relative to serial
»

0.02% 0.04%
Filtering Percentage

Other machine learning algorithms that have been parallelized using concurrency control, including
non-parametric clustering [18], submodular maximization [19], and correlation clustering [20].

Sparse, graph-based parallel computation are supported by systems like GraphLab [14]. These
frameworks require computation to be written in a specific programming model with associative,
commutative operations. GraphLab and PowerGraph support serializable execution via locking
mechanisms, this is in contrast to our partition-and-allocate coordination which allows us to provide
guarantees on speedup.

6 Conclusion

We presented CYCLADES, a general framework for lock-free parallelization of stochastic optimization
algorithms, while maintaining serial equivalence. Our framework can be used to parallelize a
large family of stochastic updates algorithms in a conflict-free manner, thereby ensuring that the
parallelized algorithm produces the same result as its serial counterpart. Theoretical properties, such
as convergence rates, are therefore preserved by the CYCLADES-parallelized algorithm, and we
provide a single unified theoretical analysis that guarantees near linear speedups.

By eliminating conflicts across processors within each batch of updates, CYCLADES is able to avoid
all asynchrony errors and conflicts, and leads to better cache locality and cache coherence than
HoOGWILD!. These features of CYCLADES translate to near linear speedups in practice, where it can
outperform HOGWILD!-type of implementations by up to a factor of 5x, in terms of speedups.

In the future, we intend to explore hybrids of CYCLADES with HOGWILD!, pushing the boundaries
of what is possible in a shared-memory setting. We are also considering solutions for scaling out in a
distributed setting, where the cost of communication is significantly higher.
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