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Abstract

An iterative regularization path with structural sparsity is proposed in this paper
based on variable splitting and the Linearized Bregman Iteration, hence called Split
LBI. Despite its simplicity, Split LBI outperforms the popular generalized Lasso
in both theory and experiments. A theory of path consistency is presented that
equipped with a proper early stopping, Split LBI may achieve model selection
consistency under a family of Irrepresentable Conditions which can be weaker than
the necessary and sufficient condition for generalized Lasso. Furthermore, some {5
error bounds are also given at the minimax optimal rates. The utility and benefit of
the algorithm are illustrated by applications on both traditional image denoising
and a novel example on partial order ranking.

1 Introduction

In this paper, consider the recovery from linear noisy measurements of 5* € RP, which satisfies the
following structural sparsity that the linear transformation v* := D/* for some D € R™*P has most
of its elements being zeros. For a design matrix X € R™*?, let

y=XpB"+e v =D (S=suwpp(7v"), s =|5), (1.1)

where € € R™ has independent identically distributed components, each of which has a sub-Gaussian
distribution with parameter o2 (E[exp(te;)] < exp(c?t?/2)). Here v* is sparse, i.e. s < m. Given
(y, X, D), the purpose is to estimate 8* as well as v*, and in particular, recovers the support of *.

There is a large literature on this problem. Perhaps the most popular approach is the following
£1-penalized convex optimization problem,
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Such a problem can be at least traced back to [ROF92] as a total variation regularization for image
denoising in applied mathematics; in statistics it is formally proposed by [Tib+05] as fused Lasso. As
D = I it reduces to the well-known Lasso [Tib96] and different choices of D include many special
cases, it is often called generalized Lasso [TT11] in statistics.

Various algorithms are studied for solving (1.2) at fixed values of the tuning parameter A\, most of
which is based on the Split Bregman or ADMM using operator splitting ideas (see for examples
[GO09; YX11; Wah+12; RT14; Zhul5] and references therein). To avoid the difficulty in dealing
with the structural sparsity in || D31, these algorithms exploit an augmented variable ~ to enforce
sparsity while keeping it close to DS.

On the other hand, regularization paths are crucial for model selection by computing estimators as
functions of regularization parameters. For example, [Efr+04] studies the regularization path of
standard Lasso with D = I, the algorithm in [Hoe10] computes the regularization path of fused
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Lasso, and the dual path algorithm in [TT11] can deal with generalized Lasso. Recently, [AT16]
discussed various efficient implementations of the the algorithm in [TT11], and the related R package
genlasso can be found in CRAN repository. All of these are based on homotopy method of solving
convex optimization (1.2).

Our departure here, instead of solving (1.2), is to look at an extremely simple yet novel iterative
scheme which finds a new regularization path with structural sparsity. We are going to show that
it works in a better way than genlasso, in both theory and experiments. To see this, define a loss
function which splits DS and ~,
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Now consider the following iterative algorithm,
Br+1 = Br — kaVgl(Br, Vi), (1.4a)
21 = 2k — AV (B, Vk), (1.4b)
Vk+1 = K - Prox. |, (Zh41)s (1.4¢)

where the initial choice zp = 79 = 0 € R™, fp = 0 € RP, parameters k > 0, a > 0, v > 0,
and the proximal map associated with a convex function h is defined by prox,, (z) = arg min, ||z —
x||?/2 + h(x), which is reduced to the shrinkage operator when h is taken to be the ¢;-norm,
prox. |, () = § (2, 1) where

S (z,A) =sign(z) - max (|z| — A, 0) (A >0).

In fact, without the sparsity enforcement (1.4c), the algorithm is called the Landweber Iteration
in inverse problems [YRCO07], also known as Ls-Boost [BY02] in statistics. When D = I and
v — 0 which enforces v = D = f, the iteration (1.4) is reduced (by dropping (1.4a)) to the
popular Linearized Bregman Iteration (LBI) for linear regression or compressed sensing which is
firstly proposed in [Yin+08]. The simple iterative scheme returns the whole regularization path,
at the same cost of computing one Lasso estimator at a fixed regularization parameter using the
iterative soft-thresholding algorithm. However, LBI regularization path could be better than Lasso
regularization path which is always biased. In fact, recently [Osh+16] shows that under nearly the
same conditions as standard Lasso, LBI may achieve sign-consistency but with a less biased estimator
than Lasso, which in the limit dynamics will reach the bias-free Oracle estimator.

The difference between (1.4) and the standard LBI lies in the partial sparsity control on ~y, which
splits the structural sparsity on D3 into a sparse -y and Df3 by controlling their gap ||y — D3||?/(2v).
Thereafter algorithm (1.4) is called Split LBI in this paper.

Split LBI generates a sequence (g, vk )ren Which indeed defines a discrete regularization path.
Furthermore, the path can be more accurate than that of generalized Lasso, in terms of Area Under
Curve (AUC) measurement of the order of regularization paths becoming nonzero in consistent with
the ground truth sparsity pattern. The following simple experiment illustrates these properties.

Example 1. Consider two problems: standard Lasso and 1-D fused Lasso. In both cases, set
n = p = 50, and generate X € R"*? denoting n i.i.d. samples from N (0, I,), e ~ N(0,1I,),
y=Xp"+e B =23G1< 7 <10), -2 Gf 11 < j < 15), and 0 (otherwise). For Lasso
we choose D = I, and for 1-D fused Lasso we choose D = [Dy; Dy] € R(P=1P)XP guch that
(D18); = Bj — Bj+1 (for 1 < j < p —1) and Dy = I,. The left panel of Figure 1 shows the
regularization paths by genlasso ({Df,}) and by iteration (1.4) (linear interpolation of {~;}) with
x =200 and v € {1,5, 10}, respectively. The generalized Lasso path is in fact piecewise linear with
respect to A while we show it along ¢ = 1/ for a comparison. Note that the iterative paths exhibit a
variety of different shapes depending on the choice of v. However, in terms of order of those curves
entering into nonzero range, these iterative paths exhibit a better accuracy than genlasso. Table |
shows this by the mean AUC of 100 independent experiments in each case, where the increase of v
improves the model selection accuracy of Split LBI paths and beats that of generalized Lasso.

Why does the simple iterative algorithm (1.4) work, even better than the generalized Lasso? In this
paper, we aim to answer it by presenting a theory for model selection consistency of (1.4).

Model selection and estimation consistency of generalized Lasso (1.2) has been studied in previous
work. [SSR12] considered the model selection consistency of the edge Lasso, with a special D in
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Figure 1: Left shows {Df)} (t = 1/A) by genlasso and {vi} (¢t = ka) by Split LBI (1.4) with
v = 1,5,10, for 1-D fused Lasso. Right is a comparison between our family of Irrepresentable
Condition (IRR(v)) and IC in [Vai+13], with log-scale horizontal axis. As v grows, IRR(v) can be
significantly smaller than IC( and ICy, so that our model selection condition is easier to be met!

Table 1: Mean AUC (with standard deviation) comparisons where Split LBI (1.4) beats genlasso.
Left is for the standard Lasso. Right is for the 1-D fused Lasso in Example 1.

genlasso Split LBI genlasso Split LBI
1 5 10 1 5 10
.9426 9845 .9969 .9982 9705 9955 .9996 .9998
(.0390) (.0185) (.0065) (.0043) (.0212) (.0056) (.0014) (.0009)

(1.2), which has applications over graphs. [LY Y 13] provides an upper bound of estimation error by
assuming the design matrix X is a Gaussian random matrix. In particular, [Vai+13] proposes a general
condition called Identifiability Criterion (IC) for sign consistency. [LST13] establishes a general
framework for model selection consistency for penalized M-estimators, proposing an Irrepresentable
Condition which is equivalent to IC from [Vai+13] under the specific setting of (1.2). In fact both of
these conditions are sufficient and necessary for structural sparse recovery by generalized Lasso (1.2)
in a certain sense.

However, as we shall see soon, the benefits of exploiting algorithm (1.4) not only lie in its algorithmic
simplicity, but also provide a possibility of theoretical improvement on model selection consistency.
Below a new family of Irrepresentable Condition depending on v will be presented for iteration (1.4),
under which model selection consistency can be established. Moreover, this family can be weaker
than IC as the parameter v grows, which sheds light on the superb performance of Split LBI we
observed above. The main contributions of this paper can be summarized as follows: (A) a new
iterative regularization path with structural sparsity by (1.4); (B) a theory of path consistency which
shows the model selection consistency of (1.4), under some weaker conditions than generalized
Lasso, together with /5 error bounds at minimax optimal rates. Further experiments are given with
applications on 2-D image reconstruction and partial order estimation.

1.1 Notation

For matrix @) with m rows (D for example) and J C {1,2,...,m},let Q; = Q. be the submatrix
of @ with rows indexed by .J. However, for ) € R"*? (X for example) and J C {1,2,...,p}, let
Q7 = Q.. be the submatrix of () with columns indexed by .J, abusing the notation.

Sometimes we use (a,b) := a’'b, denoting the inner product between vectors a, b. P, denotes the
projection matrix onto a linear subspace L, Let Ly + Lo := {{&1 + & ¢ € € Ly, £ € Lo} for
subspaces L1, L. For a matrix @, let QT denotes the Moore-Penrose pseudoinverse of ), and we
recall that QT = (QTQ)TQT. Let Auin(Q), Amax(Q) denotes the smallest and largest singular value
(i.e. eigenvalue if @) is symmetric) of ). For symmetric matrices P and @, @ > P (or Q = P)
means that ) — P is positive (semi)-definite, respectively. Let Q* := QT /n.



2 Path Consistency of Split LBI

2.1 Basic Assumptions

For the identifiability of 8*, we assume that 8* and its estimators of interest are restricted in
L := (ker(X) Nker(D))" =Im (X7) +Im (D7),

since replacing 3* with “the projection of 5* onto L” does not change the model.

Note that £(3,~y) is quadratic, and we can define its Hessian matrix which depends on v > 0

w2 _(X*X+DTD/v -DT/v
H(v):=V(B,7) = ( —D/v v ) 2.1)
We make the following assumptions on H.
Assumption 1 (Restricted Strong Convexity (RSC)). There is a constant Az > 0 such that
(B,78) - Hg.s).05.9) - ( > H( ) (Be€L,vs eR%). (2.2)

Remark 1. Since the true parameter supp(v*) = supp(DS*) = S, it is equivalent to say that the loss
£(8,7y) is strongly convex when restricting on the sparse subspace corresponding to support of v*.

Assumption 2 (Irrepresentable Condition (IRR)). There is a constant € (0, 1] such that

; 0
Hse o.M (5.9, (5.5) < pp>

Remark 2. IRR here directly generalizes the Irrepresentable Condition from standard Lasso [ZY06]
and other algorithms [Tro04], to the partial Lasso: ming ~ (¢ (3,v) + Al|v||1). Following the standard
Lasso, one version of the Irrepresentable Condition should be

sup
pe(—1,1]°

<1-n. (2.3)

’ (oo}

f * _ 0
"HS“v(ﬁ»S)H(ﬁ,S)ﬁ(ﬁ,S)p(ﬂys)HOO < 1-n, where pg 5) = (,og) :

P3,s) s the value of gradient (subgradient) of £, penalty function | - [l1 on (B%;75). Here p = 0y,

because (3 is not assumed to be sparse and hence is not penalized. Assumption 2 slightly strengthens
this by a supremum over p, for uniform sparse recovery independent to a particular sign pattern of v*.

2.2 Equivalent Conditions and a Comparison Theorem

The assumptions above, though being natural, are not convenient to compare with that in [Vai+13].
Here we present some equivalent conditions, followed by a comparison theorem showing that IRR
can be weaker than IC in [Vai+13], a necessary and sufficient for model selection consistency of
generalized Lasso.

First of all, we introduce some notations. Given ~, minimizing £ solves 8 = Af(vX*y + DT),
where A := vX*X + DT D. Substituting AT (vX*y + DT;) for By, in (1.4b), and dropping (1.4a),
we have

Zpy1 = 2k + (DAT Xy — Sy, (2.4a)
Vi1 = £ - prox., (2k+1)s (2.4b)

where
S:= (I - DA'DT) /v, A=vX*X + D' D. (2.5)

In other words, 3 is the Schur complement of Hg s in Hessian matrix H (v). Comparing (2.4) with
the standard LBI (D = I) studied in [Osh+16], we know that ¥ in our paper plays the similar role of
X*X in their paper. In order to obtain path consistency results of standard LBI in [Osh+16], they
propose “Restricted Strong Convexity” and “Irrpresentable Condition” on X*X. So in this paper,
we can obtain similar assumptions on X (instead of H), which actually prove to be equivalent with
Assumption 1 and 2, and closely related to literature.

Precisely, by Lemma 6 in Supplementary Information we know that Assumption 1 is equivalent to



Assumption 1’ (Restricted Strong convexity (RSC)). There is a constant Ay, > 0 such that
Ys,s = Anl. (2.6)

Remark 3. Lemma 2 in Supplementary Information says g g > 0 < ker(Dge) Nker(X) C
ker(Dg), which is also a natural assumption for the uniqueness of 5*. Actually, if it fails, then there
will be some 3 such that Dge3 = 0, X3 = 0 while Dg8 # 0. Thus for any 8" := 5* + 3, we have
y = XpB"™ + ¢, supp(DS"™) C supp(DS*) = S, while Dg"* # DgB*. Therefore one can neither
estimate 5* nor DgB* even if the support set is known or has been exactly recovered.

When ¥g 5 > 0, Lemma 7 in Supplementary Information implies that Assumption 2 is equivalent to
Assumption 2’ (Irrepresentable condition (IRR)). There is a constant 7 € (0, 1] such that

|Zseszss] _<1-n @7

Remark 4. For standard Lasso problems (D = I), it is easy to derive ¥ = X*(1 + v X X*)71X ~
X*X when v is small. So Assumption 1’ approximates the usual Restricted Strong Convexity
assumption X§Xg = Axl and Assumption 2’ approximates the usual Irrepresentable Condition
| X5 Xs(X5Xs) oo <1 —mn for standard Lasso problems.

The left hand side of (2.7) depends on parameter v. From now on, define

IRR(v) := HZSC,SEE}SH . IRR(0) = lim IRR(v), IRR(00) := lim IRR(v). ~ (28)
(o) v 1% o0

Now we are going to compare Assumption 2’ with the assumption in [Vai+13]. Let W be a matrix
whose columns form an orthogonal basis of ker(Dge), and define

QS — (DEC)T (X*XW (WTX*XW)TWT —I) Dg

IC, = ||Q° IC; := min Qsign (Dgf*) —ul| .
CO H Hoo’ Cl ueker(Dgc)H g ( Sﬁ ) ||oo
[Vai+13] proved the sign consistency of the generalized Lasso estimator of (1.2) for specifically
chosen A, under the assumption IC; < 1 along with ker(Dge) Nker(X) = {0}. As we shall see
later, the same conclusion holds under the assumption IRR(») < 1 — 7 along with Assumption 1’
which is equivalent to ker(Dge) Nker(X) C ker(Dg). Which assumption is weaker to be satisfied?
The following theorem answers this, whose proof is in Supplementary Information.

Theorem 1 (Comparisons between IRR in Assumption 2’ and IC in [Vai+13]).
1. ICy > 1C;.
2. IRR(0) exists, and IRR(0) = ICj.
3. IRR(o0) exists, and IRR(c0) = 0 if and only if ker(X) C ker(Dg).

From this comparison theorem with a design matrix X of full column rank, as v grows, IRR(v) <
IC; < ICy, hence Assumption 2’ is weaker than IC. Now recall the setting of Example 1 where
ker(X) = 0 generically. In the right panel of Figure 1, the (solid and dashed) horizontal red lines
denote ICy,ICy, and we see the blue curve denoting IRR(v) approaches ICy when v — 0 and
approaches 0 when v — 400, which illustrates Theorem 1 (here each of ICy, IC;, IRR(v) is the
mean of 100 values calculated under 100 generated X’s). Although IRR(0) = ICy is slightly larger
than IC;, IRR(v) can be significantly smaller than IC; if v is not tiny. On the right side of the
vertical line, IRR(v) drops below 1, indicating that Assumption 2’ is satisfied while the assumption
in [Vai+13] fails.

Remark 5. Despite that Theorem 1 suggests to adopt a large v/, v can not be arbitrarily large. From
Assumption 1" and the definition of 3, 1/v > [|3||, > [|Xg,5]|2 > As. Soif v is too large, As; has to
be small enough, which will deteriorates the estimator in terms of {5 error shown in the next.

2.3 Consistency of Split LBI

We are ready to establish the theorems on path consistency of Split LBI (1.4), under Assumption 1
and 2. The proofs are based on a careful treatment of the limit dynamics of (1.4) and collected in
Supplementary Information. Before stating the theorems, we need some definitions and constants.



Let the compact singular value decomposition (compact SVD) of D be
D=UAVT (AeR™", A =0, U €R™", Ve RP>), 2.9)
and (V, V) be an orthogonal square matrix. Let the compact SVD of XV /,/n be
XV /i =UA VT (Al ER”X . A >0, U e RV, € R@—")XT“) , (2.10)

and let (Vi, V;) be an orthogonal square matrix. Let

Ax = VAnax (X*X), Ap = Amin (A), Ap = Apmax (A), A1 = Amin (A1) . (2.11)
We see Ap is the largest singular value of D, \p is the smallest nonzero singular value of D, and \?
is the smallest nonzero eigenvalue of VT X*XV.If D has full column rank, then r = p, v’ = 0, and
V, Uy, A1, Vi, A all drop, while V; € R®=")*(=7) jg an orthogonal square matrix.
The following theorem says that under Assumption 1 and 2, Split LBI will automatically evolve in
an “oracle” subspace (unknown to us) restricted within the support set of (5*,~*) before leaving it,

and if the signal parameters is strong enough, sign consistency will be reached. Moreover, {5 error
bounds on ~y;, and [, are given.

Theorem 2 (Consistency of Split LBI). Under Assumption 1 and 2, suppose & is large enough to
satisfy

4 1 A 2 (14 vA% + A2
pxd(ie Lo Ax ) (g 2O AR AT
n Ap  MAp AV

20’ AX AX /\H)\%—FA_QX))
(@a+A * Z (22D X)) 212
(( + D) ”ﬂ H2 + )\H ()\D )\% + )\1)\% ( )

and ka||H||2 < 2. Let
N AD n T ,
=1 . AD 7,;{;:[*} = Ag (1 — kol H|2/2) > 0.
v Vi =L X o= A1 = vl Hllo/2)
Then with probability not less than 1 — 6/m — 3exp(—4n/5), we have all the following properties.
1. No-false-positive: The solution has no false-positive, i.e. supp(yx) C S, for0 < ka < 7.
2. Sign consistency of v, Once the signal is strong enough such that

160 AxAp logm
* .—(DgB*) . > . 21 1 Ap))/
Ymin ( sB )mm_n)‘}I (1—50[/77') )‘QD ( 0gs+5+ Og(8 D)) n
(2.13)

then vy, has sign consistency at K, i.e. sign (v ) = sign (Df*).

3. {5 consistency of 7y

420 Ax [slogm
-Dpgrl, < — X .
e By < Ny (1—a/7) Ap n

4. {5 consistency of S

42 MAx (14 A% /sl 20 [r']
18 — B*Il, < — o _ A x(1+ 2D)+ X [slogm 20 Jrilogm
nAy (1 —a/T) A1 n A1 n

AMAx + A%
MG

+v-20

Despite that the sign consistency of 7 can be established here, usually one can not expect Dy
recovers the sparsity pattern of 4* due to the variable splitting. As shown in the last term of /5 error
bound of S, increasing v will sacrifice its accuracy. However, one can remedy this by projecting
Bk on to a subspace using the support set of v, and obtain a good estimator §; with both sign
consistency and ¢/ consistency at the minimax optimal rates.



Theorem 3 (Consistency of revised version of Split LBI). Under Assumption 1 and 2, suppose k is
large enough to satisfy (2.12), and ka||H||2 < 2. 7, K, Ny are defined the same as in Theorem 2.
Define

Sy 1= supp(k), Ps, := =1I- DgzDsg, By, := Ps, Br.

Pker (Dsg )

If S; = O, define Ps, = I. Then we have the following properties.

1. Sign consistency of Bk If the v}, condition (2.13)~holds, then with probability not less
than 1 — 8/m — 3 exp(—4n/5), there holds sign(Dfk ) = sign(D3*).

2. (5 consistency of S With probability not less than 1 — 8 /m — 2r' /m? — 3exp(—4n/5),
we have that for 0 < ka < 7,

<<10\/§ 20 AxAp slogm)
, S

Nygka Ny A n

20 (Ax  NyA\2 + A% r'logm + N
+E ()\2D+ )\1)\2D " +2HDS,§D’92086

Consequently, if additionally Sk = S, then the last term on the right hand side drops for
k = K, and it reaches

< 800 Ax (Ap +23) [slogm
2~ Ny (1—a/7) A% n
_|_2i A7X_|_ Ny + A% ' logm
v, \2 T B

Remark 6. Note that v’ < min(n, p—r). In many real applications, 7’ is very small. So the dominant
{5 error rate is O(4/slog m/n), which is minimax optimal [LST13; LYY 13].

HBk — B

) .

HBK - B

3 Experiments

3.1 Parameter Setting

Parameter « should be large enough according to (2.12). Moreover, step size « should be small
enough to ensure the stability of Split LBI. When v, s are determined, « can actually be determined
by a = v/(k(1 + vA% + A%)) (see (C.6) in Supplementary Information).

3.2 Application: Image Denoising

Consider the image denoising problem in [TT11]. The original image is resized to 50 x 50, and reset
with only four colors, as in the top left image in Figure 2. Some noise is added by randomly changing
some pixels to be white, as in the bottom left. Let G = (V, E) is the 4-nearest-neighbor grid graph on
pixels, then 3 = (Bg, Ba, ) € RV since there are 3 color channels (RGB channels). X = I3y
and D = diag(Dg, Dg, Dg), where Dgé € RIZIXIV1 is the gradient operator on graph G defined
by (D¢gx)(eij) = x; — xj, e;; € E. Set v = 180, x = 100. The regularization path of Split LBI is
shown in Figure 2, where as ¢ evolves, images on the path gradually select visually salient features
before picking up the random noise. Now compare the AUC (Area Under Curve) of genlasso and
Split LBI algorithm with different v. For simplicity we show the AUC corresponding to the red
color channel. Here v € {1, 20, 40, 60, ...,300}. As shown in the right panel of Figure 2, with the
increase of v, Split LBI beats genlasso with higher AUC values.

3.3 Application: Partial Order Ranking for Basketball Teams

Here we consider a new application on the ranking of p = 12 FIBA basketball teams into partial
orders. The teams are listed in Figure 3. We collected n = 134 pairwise comparison game results
mainly from various important championship such as Olympic Games, FIBA World Championship
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Figure 2: Left is image denoising results by Split LBI. Right shows the AUC of Split LBI (blue solid
line) increases and exceeds that of genlasso (dashed red line) as v increases.
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Figure 3: Partial order ranking for basketball teams. Top left: {8} (¢ = 1/A) by genlasso and
Bk (t = ka) by Split LBI. Top right: grouping result just passing ¢5. Bottom: FIBA ranking.

and FIBA Basketball Championship in 5 continents from 2006-2014 (8 years is not too long for teams
to keep relatively stable levels while not too short to have enough samples). For each sample indexed
by k and corresponding team pair (4, j), yx = s; — s; is the score difference between team 4 and j.
We assume a model y, = B/, — B}, +€x where % € RP measures the strength of these teams. So the
design matrix X € R™*? is defined by its k-th row: x4, = 1, zx j, = —1, xx; = 0 (I # ix, ji).
In sports, teams of similar strength often meet than those in different levels. Thus we hope to find a
coarse grained partial order ranking by adding a structural sparsity on D/3* where D = ¢X (c scales
the smallest nonzero singular value of D to be 1).

The top left panel of Figure 3 shows {3, } by genlasso and () by Split LBI with » = 1 and x = 100.
Both paths give the same partial order at early stages, though the Split LBI path looks qualitatively
better. For example, the top right panel shows the same partial order after the change point ¢5. It is
interesting to compare it against the FIBA ranking in September, 2014, shown in the bottom. Note
that the average basketball level in Europe is higher than that of in Asia and Africa, hence China can
get more FIBA points than Germany based on the dominant position in Asia, so is Angola in Africa.
But their true levels might be lower than Germany, as indicated in our results. Moreover, America
(FIBA points 1040.0) itself forms a group, agreeing with the common sense that it is much better
than any other country. Spain, having much higher FIBA ranking points (705.0) than the 3rd team
Argentina (455.0), also forms a group alone. It is the only team that can challenge America in recent
years, and it enters both finals against America in 2008 and 2012.
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