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Abstract

For massive and heterogeneous modern data sets, it is of fundamental interest to
provide guarantees on the accuracy of estimation when computational resources
are limited. In the application of learning to rank, we provide a hierarchy of rank-
breaking mechanisms ordered by the complexity in thus generated sketch of the
data. This allows the number of data points collected to be gracefully traded off
against computational resources available, while guaranteeing the desired level
of accuracy. Theoretical guarantees on the proposed generalized rank-breaking
implicitly provide such trade-offs, which can be explicitly characterized under
certain canonical scenarios on the structure of the data.

1 Introduction

In classical statistical inference, we are typically interested in characterizing how more data points
improve the accuracy, with little restrictions or considerations on computational aspects of solving
the inference problem. However, with massive growths of the amount of data available and also
the complexity and heterogeneity of the collected data, computational resources, such as time and
memory, are major bottlenecks in many modern applications. As a solution, recent advances in
[7, 23, 8, 1, 16] introduce hierarchies of algorithmic solutions, ordered by the respective computational
complexity, for several fundamental machine learning applications. Guided by sharp analyses on the
sample complexity, these approaches provide theoretically sound guidelines that allow the analyst the
flexibility to fall back to simpler algorithms to enjoy the full merit of the improved run-time.

Inspired by these advances, we study the time-data tradeoff in learning to rank. In many applications
such as election, policy making, polling, and recommendation systems, we want to aggregate indi-
vidual preferences to produce a global ranking that best represents the collective social preference.
Learning to rank is a rank aggregation approach, which assumes that the data comes from a parametric
family of choice models, and learns the parameters that determine the global ranking. Traditionally,
each revealed preference is assumed to have one of the following three structures. Pairwise compari-
son, where one item is preferred over another, is common in sports and chess matches. Best-out-of-κ
comparison, where one is chosen among a set of κ alternatives, is common in historical purchase
data. κ-way comparison, where we observe a linear ordering of a set of κ candidates, is used in some
elections and surveys. For such traditional preferences, efficient schemes for learning to rank have
been proposed, e.g. [12, 9]. However, modern data sets are unstructured and heterogeneous. This can
lead to significant increase in the computational complexity, requiring exponential run-time in the
size of the problem in the worst case [15].

To alleviate this computational challenge, we propose a hierarchy of estimators which we call
generalized rank-breaking, ordered in increasing computational complexity and achieving increasing
accuracy. The key idea is to break down the heterogeneous revealed preferences into simpler pieces
of ordinal relations, and apply an estimator tailored for those simple structures treating each piece as
independent. Several aspects of rank-breaking makes this problem interesting and challenging. A
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priori, it is not clear which choices of the simple ordinal relations are rich enough to be statistically
efficient and yet lead to tractable estimators. Even if we identify which ordinal relations to extract,
the ignored correlations among those pieces can lead to an inconsistent estimate, unless we choose
carefully which pieces to include and which to omit in the estimation. We further want sharp analysis
on the sample complexity, which reveals how computational and statistical efficiencies trade off. We
would like to address all these challenges in providing generalized rank-breaking methods.

Problem formulation. We study the problem of aggregating ordinal data based on users’ preferences
that are expressed in the form of partially ordered sets (poset). A poset is a collection of ordinal
relations among items. For example, consider a poset {(i6 ≺ {i5, i4}), (i5 ≺ i3), ({i3, i4} ≺
{i1, i2})} over items {i1, . . . , i6}, where (i6 ≺ {i5, i4}) indicates that item i5 and i4 are both
preferred over item i6. Such a relation is extracted from, for example, the user giving a 2-star rating
to i5 and i4 and a 1-star to i6. Assuming that the revealed preference is consistent, a poset can be
represented as a directed acyclic graph (DAG) Gj as below.
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Figure 1: An example of Gj for user j’s consistent poset, and two rank-breaking hyper edges extracted
from it: e1 = ({i6, i5, i4, i3} ≺ {i2, i1}) and e2 = ({i6} ≺ {i5, i4, i3}).

We assume that each user j is presented with a subset of items Sj , and independently provides her
ordinal preference in the form of a poset, where the ordering is drawn from the Plackett-Luce (PL)
model. The PL model is a popular choice model from operations research and psychology, used to
model how people make choices under uncertainty. It is a special case of random utility models, where
each item i is parametrized by a latent true utility θi ∈ R. When offered with Sj , the user samples
the perceived utility Ui for each item independently according to Ui = θi + Zi, where Zi’s are i.i.d.
noise. In particular, the PL model assumes Zi’s follow the standard Gumbel distribution. Although
statistical and computational tradeoff has been studied under Mallows models [6] or stochastically
transitive models [22], the techniques we develop are different and have a potential to generalize to
analyze more general class of random utility models. The observed poset is a partial observation of
the ordering according to this perceived utilities.

The particular choice of the Gumbel distribution has several merits, largely stemming from the fact
that the Gumbel distribution has a log-concave pdf and is inherently memoryless. In our analyses, we
use the log-concavity to show that our proposed algorithm is a concave maximization (Remark 2.1)
and the memoryless property forms the basis of our rank-breaking idea. Precisely, the PL model is
statistically equivalent to the following procedure. Consider a ranking as a mapping from a rank to an
item, i.e. σj : [|Sj |] → Sj . It can be shown that the PL model is generated by first independently
assigning each item i ∈ Sj an unobserved value Yi, exponentially distributed with mean e−θi , and
the resulting ranking σj is inversely ordered in Yi’s so that Yσj(1) ≤ Yσj(2) ≤ · · · ≤ Yσj(|Sj |).
This inherits the memoryless property of exponential variables, such that P(Y1 < Y2 < Y3) =
P(Y1 < {Y2, Y3})P(Y2 < Y3), leading to a simple interpretation of the PL model as sequential
choices: P(i3 ≺ i2 ≺ i1) = P({i3, i2} ≺ i1)P(i3 ≺ i2) = (eθi1 /(eθi1 +eθi2 +eθi3 ))×(eθi2/(eθi2 +

eθi3 )). In general, we have P[σj ] =
∏|Sj |−1
i=1 (e

θ∗σj(i))/(
∑|Sj |
i′=i e

θ∗
σj(i′)). We assume that the true utility

θ∗ ∈ Ωb where Ωb = {θ ∈ Rd|∑i∈[d] θi = 0, |θi| ≤ b for all i ∈ [d]}. Notice that centering of θ
ensures its uniqueness as PL model is invariant under shifting of θ. The bound b on θi is written
explicitly to capture the dependence in our main results.

We denote a set of n users by [n] = {1, . . . , n} and the set of d items by [d]. Let Gj denote the DAG
representation of the poset provided by the user j over Sj ⊆ [d] according to the PL model with
weights θ∗. The maximum likelihood estimate (MLE) maximizes the sum of all possible rankings
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that are consistent with the observed Gj for each j:

θ̂ ∈ arg max
θ∈Ωb

{ n∑

j=1

log

( ∑

σ∈Gj
Pθ[σ]

)}
, (1)

where we slightly abuse the notation Gj to denote the set of all rankings σ that are consistent with
the observation. When Gj has a traditional structure as explained earlier in this section, then the
optimization is a simple multinomial logit regression, that can be solved efficiently with off-the-shelf
convex optimization tools [12]. For general posets, it can be shown that the above optimization is
a concave maximization, using similar techniques as Remark 2.1. However, the summation over
rankings in Gj can involve number of terms super exponential in the size |Sj |, in the worst case. This
renders MLE intractable and impractical.

Pairwise rank-breaking. A common remedy to this computational blow-up is to use rank-breaking.
Rank-breaking traditionally refers to pairwise rank-breaking, where a bag of all the pairwise com-
parisons is extracted from observations {Gj}j∈[n] and is applied to estimators that are tailored for
pairwise comparisons, treating each paired outcome as independent. This is one of the motivations
behind the algorithmic advances in learning from pairwise comparisons [19, 21, 17].

It is computationally efficient to apply maximum likelihood estimator assuming independent pairwise
comparisons, which takes O(d2) operations to evaluate. However, this computational gain comes at
the cost of statistical efficiency. It is known from [4] that if we include all paired comparisons, then
the resulting estimate can be statistically inconsistent due to the ignored correlations among the paired
orderings, even with infinite samples. In the example from Figure 1, there are 12 paired relations:
(i6 ≺ i5), (i6 ≺ i4), (i6 ≺ i3), . . . , (i3 ≺ i1), (i4 ≺ i1). In order to get a consistent estimate, [4]
provides a rule for choosing which pairs to include, and [15] provides an estimator that optimizes
how to weigh each of those chosen pairs to get the best finite sample complexity bound. However,
such a consistent pairwise rank-breaking results in throwing away many of the ordered relations,
resulting in significant loss in accuracy. For example, none of the pairwise orderings can be used
from Gj in the example, without making the estimator inconsistent [3]. Whether we include all paired
comparisons or only a subset of consistent ones, there is a significant loss in accuracy as illustrated in
Figure 2. For the precise condition for consistent rank-breaking we refer to [3, 4, 15].

The state-of-the-art approaches operate on either one of the two extreme points on the computational
and statistical trade-off. The MLE in (1) requires O(

∑
j∈[n] |Sj |!) summations to just evaluate the

objective function, in the worst case. On the other hand, the pairwise rank-breaking requires only
O(d2) summations, but suffers from significant loss in the sample complexity. Ideally, we would
like to give the analyst the flexibility to choose a target computational complexity she is willing to
tolerate, and provide an algorithm that achieves the optimal trade-off at any operating point.

Contribution. We introduce a novel generalized rank-breaking that bridges the gap between MLE
and pairwise rank-breaking. Our approach allows the user the freedom to choose the level of
computational resources to be used, and provides an estimator tailored for the desired complexity.
We prove that the proposed estimator is tractable and consistent, and provide an upper bound on the
error rate in the finite sample regime. The analysis explicitly characterizes the dependence on the
topology of the data. This in turn provides a guideline for designing surveys and experiments in
practice, in order to maximize the sample efficiency. We provide numerical experiments confirming
the theoretical guarantees.

2 Generalized rank-breaking

Given Gj’s representing the users’ preferences, generalized rank-breaking extracts a set of ordered
relations and applies an estimator treating each ordered relation as independent. Concretely, for
each Gj , we first extract a maximal ordered partition Pj of Sj that is consistent with Gj . An ordered
partition is a partition with a linear ordering among the subsets, e.g. Pj = ({i6} ≺ {i5, i4, i3} ≺
{i2, i1}) for Gj from Figure 1. This is maximal, since we cannot further partition any of the subsets
without creating artificial ordered relations that are not present in the original Gj .
The extracted ordered partition is represented by a directed hypergraph Gj(Sj , Ej), which we
call a rank-breaking graph. Each edge e = (B(e), T (e)) ∈ Ej is a directed hyper edge from a
subset of nodes B(e) ⊆ Sj to another subset T (e) ⊆ Sj . The number of edges in Ej is |Pj | − 1
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where |Pj | is the number of subsets in the partition. For each subset in Pj except for the least
preferred subset, there is a corresponding edge whose top-set T (e) is the subset, and the bottom-set
B(e) is the set of all items less preferred than T (e). In Figure 1, for Ej = {e1, e2} we show
e1 = (B(e1), T (e1)) = ({i6, i5, i4, i3}, {i2, i1}) and e2 = (B(e2), T (e2) = ({i6}, {i5, i4, i3})
extracted from Gj . Denote the probability that T (e) is preferred over B(e) when T (e) ∪ B(e) is
offered as

Pθ(e) = Pθ
(
B(e) ≺ T (e)

)
=

∑

σ∈ΛT (e)

exp
(∑|T (e)|

c=1 θσ(c)

)

∏|T (e)|
u=1

(∑|T (e)|
c′=u exp

(
θσ(c′)

)
+
∑
i∈B(e) exp (θi)

) (2)

which follows from the definition of the PL model, where ΛT (e) is the set of all rankings over
T (e). The computational complexity of evaluating this probability is dominated by the size of the
top-set |T (e)|, as it involves (|T (e)|!) summations. We let the analyst choose the order M ∈ Z+

depending on how much computational resource is available, and only include those edges with
|T (e)| ≤M in the following step. We apply the MLE for comparisons over paired subsets, assuming
all rank-breaking graphs are independently drawn. Precisely, we propose order-M rank-breaking
estimate, which is the solution that maximizes the log-likelihood under the independent assumption:

θ̂ ∈ arg max
θ∈Ωb

LRB(θ) , where LRB(θ) =
∑

j∈[n]

∑

e∈Ej :|T (e)|≤M
logPθ(e) . (3)

In a special case when M = 1, this can be transformed into the traditional pairwise rank-breaking,
where (i) this is a concave maximization; (ii) the estimate is (asymptotically) unbiased and consistent
[3, 4]; and (iii) and the finite sample complexity have been analyzed [15]. Although, this order-1
rank-breaking provides a significant gain in computational efficiency, the information contained in
higher-order edges are unused, resulting in a significant loss in sample efficiency.

We provide the analyst the freedom to choose the computational complexity he/she is willing to
tolerate. However, for general M , it has not been known if the optimization in (3) is tractable
and/or if the solution is consistent. Since Pθ(B(e) ≺ T (e)) as explicitly written in (2) is a sum of
log-concave functions, it is not clear if the sum is also log-concave. Due to the ignored dependency
in the formulation (3), it is not clear if the resulting estimate is consistent. We first establish that
it is a concave maximization in Remark 2.1, then prove consistency in Remark 2.2, and provide a
sharp analysis of the performance in the finite sample regime, characterizing the trade-off between
computation and sample size in Section 4. We use the Random Utility Model (RUM) interpretation of
the PL model to prove concavity. We refer to Appendix A in the supplementary material for a proof.
Remark 2.1. LRB(θ) is concave in θ ∈ Rd.

For consistency, we consider a simple but canonical scenario for sampling ordered relations. However,
we study a general sampling scenario, when we analyze the order-M estimator in the finite sample
regime in Section 4. Following is the canonical sampling scenario. There is a set of ˜̀ integers
(m̃1, . . . , m̃˜̀) whose sum is strictly less than d. A new arriving user is presented with all d items
and is asked to provide her top m̃1 items as an unordered set, and then the next m̃2 items, and so on.
This is sampling from the PL model and observing an ordered partition with (˜̀+ 1) subsets of sizes
m̃a’s, and the last subset includes all remaining items. We apply the generalized rank-breaking to get
rank-breaking graphs {Gj} with ˜̀edges each, and order-M estimate is computed. We show that this
is consistent, i.e. asymptotically unbiased in the limit of the number of users n. A proof is provided
in the supplementary material.
Remark 2.2. Under the PL model and the above sampling scenario, the order-M rank-breaking
estimate θ̂ in (3) is consistent for all choices of M ≥ mina∈˜̀m̃a.

Figure 2 (left) illustrates the trade-off between run-time and sample size necessary to achieve a fixed
accuracy: MSE≤ 0.3d2 × 10−6. In the middle panel, we show the accuracy-sample tradeoff for
increasing computation M on the same data. We fix d = 256, ˜̀= 5, m̃a = a for a ∈ {1, 2, 3, 4, 5},
and sample posets from the canonical scenario, except that each user is presented κ = 32 random
items. The PL weights are chosen i.i.d. U [−2, 2]. On the right panel, we let m̃a = 3 for all a ∈ [˜̀]

and vary ˜̀. We compare GRB with M = 3 to PRB, and an oracle estimator who knows the exact
ordering among those top three items and runs MLE.
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Figure 2: The time-data trade-off for fixed accuracy (left) and accuracy improvement for increased
computation M (middle). Generalized Rank-Breaking (GRB) achieves the oracle lower bound and
significantly improves upon Pairwise Rank-Breaking (PRB) (right).

Notations. Given rank-breaking graphs {Gj(Sj , Ej)}j∈[n] extracted from the posets {Gj}, we first
define the order M rank-breaking graphs {G(M)

j (Sj , E
(M)
j )}, where E(M)

j is a subset of Ej that
includes only those edges ej ∈ Ej with |T (ej)| ≤M . This represents those edges that are included
in the estimation for a choice of M . For finite sample analysis, the following quantities capture
how the error depends on the topology of the data collected. Let κj ≡ |Sj | and `j ≡ |E(M)

j |. We

index each edge ej in E(M)
j by a ∈ [`j ] and define mj,a ≡ |T (ej,a)| for the a-th edge of the j-th

rank-breaking graph and rj,a ≡ |T (ej,a)|+ |B(ej,a)|. Note that, we use tilde in subscript with mj,a

and `j when M is equal to Sj . That is ˜̀
j is the number of edges in Ej and m̃j,a is the size of the

top-sets in those edges. We let pj ≡
∑
a∈[`j ]

mj,a denote the effective sample size for the observation

G
(M)
j , such that the total effective sample size is

∑
j∈[n] pj . Notice that although we do not explicitly

write the dependence on M , all of the above quantities implicitly depend on the choice of M .

3 Comparison graph

The analysis of the optimization in (3) shows that, with high probability, LRB(θ) is strictly concave
with λ2(H(θ)) ≤ −Cbγ1γ2γ3λ2(L) < 0 for all θ ∈ Ωb (Lemma C.3), and the gradient is also
bounded with ‖∇LRB(θ∗)‖ ≤ C ′bγ

−1/2
2 (

∑
j pj log d)1/2 (Lemma C.2). the quantities γ1, γ2, γ3,

and λ2(L), to be defined shortly, represent the topology of the data. This leads to Theorem 4.1:

‖θ̂ − θ∗‖2 ≤
2‖∇LRB(θ∗)‖
−λ2(H(θ))

≤ C ′′b

√∑
j pj log d

γ1γ
3/2
2 γ3λ2(L)

, (4)

where Cb, C ′b, and C ′′b are constants that only depend on b, and λ2(H(θ)) is the second largest
eigenvalue of a negative semidefinite Hessian matrix H(θ) of LRB(θ). Recall that θ>1 = 0 since
we restrict our search in Ωb. Hence, the error depends on λ2(H(θ)) instead of λ1(H(θ)) whose
corresponding eigen vector is the all-ones vector. We define a comparison graph H([d], E) as a
weighted undirected graph with weights Aii′ =

∑
j∈[n]:i,i′∈Sj pj/(κj(κj − 1)). The corresponding

graph Laplacian is defined as:

L ≡
n∑

j=1

pj
κj(κj − 1)

∑

i<i′∈Sj
(ei − ei′)(ei − ei′)> . (5)

It is immediate that λ1(L) = 0 with 1 as the eigenvector. There are remaining d− 1 eigenvalues that
sum to Tr(L) =

∑
j pj . The rescaled λ2(L) and λd(L) capture the dependency on the topology:

α ≡ λ2(L)(d− 1)

Tr(L)
, β ≡ Tr(L)

λd(L)(d− 1)
. (6)

In an ideal case where the graph is well connected, then the spectral gap of the Laplacian is large.
This ensures all eigenvalues are of the same order and α = β = Θ(1), resulting in a smaller error
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rate. The concavity of LRB(θ) also depends on the following quantities. We discuss the role of the
topology in Section 4. Note that the quantities defined in this section implicitly depend on the choice
of M , which controls the necessary computational power, via the definition of the rank-breaking
{Gj,a}. We define the following quantities that control our upper bound. γ1 incorporates asymmetry
in probabilities of items being ranked at different positions depending upon their weight θ∗i . It is 1
for b = 0 that is when all the items have same weight, and decreases exponentially with increase in b.
γ2 controls the range of the size of the top-set with respect to the size of the bottom-set for which the
error decays with the rate of 1/(size of the top-set). The dependence in γ3 and ν are due to weakness
in the analysis, and ensures that the Hessian matrix is strictly negative definite.

γ1 ≡ min
j,a

{(
rj,a −mj,a

κj

)2e2b−2}
, γ2 ≡ min

j,a

{(
rj,a −mj,a

rj,a

)2}
, and (7)

γ3 ≡ 1−max
j,a

{
4e16b

γ1

m2
j,ar

2
j,aκ

2
j

(rj,a −mj,a)5

}
, ν ≡ max

j,a

{
mj,aκ

2
j

(rj,a −mj,a)2

}
. (8)

4 Main Results

We present main theoretical analyses and numerical simulations confirming the theoretical predictions.

4.1 Upper bound on the achievable error

We provide an upper bound on the error for the order-M rank-breaking approach, showing the
explicit dependence on the topology of the data. We assume each user provides a partial ranking
according to his/her ordered partitions. Precisely, we assume that the set of offerings Sj , the number
of subsets (˜̀

j + 1), and their respective sizes (m̃j,1, . . . , m̃j,˜̀j
) are predetermined. Each user

randomly draws a ranking of items from the PL model, and provides the partial ranking of the
form ({i6} ≺ {i5, i4, i3} ≺ {i2, i1}) in the example in Figure 1. For a choice of M , the order-M
rank-breaking graph is extracted from this data. The following theorem provides an upper bound on
the achieved error, and a proof is provided in the supplementary material.
Theorem 4.1. Suppose there are n users, d items parametrized by θ∗ ∈ Ωb, and each user j ∈ [n] is
presented with a set of offerings Sj ⊆ [d] and provides a partial ordering under the PL model. For a
choice of M ∈ Z+, if γ3 > 0 and the effective sample size

∑n
j=1 pj is large enough such that

n∑

j=1

pj ≥
214e20bν2

(αγ1γ2γ3)2β

pmax

κmin
d log d , (9)

where b ≡ maxi |θ∗i | is the dynamic range, pmax = maxj∈[n] pj , κmin = minj∈[n] κj , α is the
(rescaled) spectral gap, β is the (rescaled) spectral radius in (6), and γ1, γ2, γ3, and ν are defined in
(7) and (8), then the generalized rank-breaking estimator in (3) achieves

1√
d
‖θ̂ − θ∗‖ ≤ 40e7b

αγ1γ
3/2
2 γ3

√
d log d

∑n
j=1

∑`j
a=1mj,a

, (10)

with probability at least 1− 3e3d−3. Moreover, for M ≤ 3 the above bound holds with γ3 replaced
by one, giving a tighter result.

Note that the dependence on the choice of M is not explicit in the bound, but rather is implicit in the
construction of the comparison graph and the number of effective samples N =

∑
j

∑
a∈[`j ]

mj,a.

In an ideal case, b = O(1) and mj,a = O(r
1/2
j,a ) for all (j, a) such that γ1, γ2 are finite. further, if

the spectral gap is large such that α > 0 and β > 0, then Equation (10) implies that we need the
effective sample size to scale as O(d log d), which is only a logarithmic factor larger than the number
of parameters. In this ideal case, there exist universal constants C1, C2 such that if mj,a < C1

√
rj,a

and rj,a > C2κj for all {j, a}, then the condition γ3 > 0 is met. Further, when rj,a = O(κj,a),
maxκj,a/κj′,a′ = O(1), and max pj,a/pj′,a′ = O(1), then condition on the effective sample size
is met with

∑
j pj = O(d log d). We believe that dependence in γ3 is weakness of our analysis and

there is no dependence as long as mj,a < rj,a.
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4.2 Lower bound on computationally unbounded estimators

Recall that ˜̀
j ≡ |Ej |, m̃j,a = |T (ea)| and r̃j,a = |T (ea) ∪ B(ea)| when M = Sj . We prove a

fundamental lower bound on the achievable error rate that holds for any unbiased estimator even with
no restrictions on the computational complexity. For each (j, a), define ηj,a as

ηj,a =

m̃j,a−1∑

u=0

( 1

r̃j,a − u
+

u(m̃j,a − u)

m̃j,a(r̃j,a − u)2

)
+

∑

u<u′∈[m̃j,a−1]

2u

m̃j,a(r̃j,a − u)

m̃j,a − u′
r̃j,a − u′

(11)

= m̃2
j,a/(3r̃j,a) +O(m̃3

j,a/r̃
2
j,a) . (12)

Theorem 4.2. Let U denote the set of all unbiased estimators of θ∗ that are centered such that
θ̂1 = 0, and let µ = maxj∈[n],a∈[˜̀j ]

{m̃j,a − ηj,a}. For all b > 0,

inf
θ̂∈U

sup
θ∗∈Ωb

E[‖θ̂ − θ∗‖2] ≥ max





(d− 1)2

∑n
j=1

∑˜̀
j

a=1(m̃j,a − ηj,a)
,

1

µ

d∑

i=2

1

λi(L)



 . (13)

The proof relies on the Cramer-Rao bound and is provided in the supplementary material. Since
ηj,a’s are non-negative, the mean squared error is lower bounded by (d − 1)2/N , where N =∑
j

∑
a∈˜̀

j
m̃j,a is the effective sample size. Comparing it to the upper bound in (10), this is tight

up to a logarithmic factor when (a) the topology of the data is well-behaved such that all respective
quantities are finite; and (b) there is no limit on the computational power and M can be made as large
as we need. The bound in Eq. (13) further gives a tighter lower bound, capturing the dependency
in ηj,a’s and λi(L)’s. Considering the first term, ηj,a is larger when m̃j,a is close to r̃j,a, giving a
tighter bound. The second term in (13) implies we get a tighter bound when λ2(L) is smaller.
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Figure 3: Accuracy degrades as (κ−m) gets small and as the dynamic range b gets large.

In Figure 3 left and middle panel, we compare performance of our algorithm with pairwise breaking,
Cramer Rao lower bound and oracle MLE lower bound. We fix d = 512, n = 105, θ∗ chosen i.i.d.
uniformly over [−2, 2]. Oracle MLE knows relative ordering of items in all the top-sets T (e) and
hence is strictly better than the GRB. We fix ˜̀ = ` = 1 that is r = κ, and vary m . In the left
panel, we fix κ = 32 and in the middle panel, we fix κ = 16. Perhaps surprisingly, GRB matches
with the oracle MLE which means relative ordering of top-m items among themselves is statistically
insignificant when m is sufficiently small in comparison to κ. For κ = 16, as m gets large, the
error starts to increase as predicted by our analysis. The reason is that the quantities γ1 and γ2

gets smaller as m increases, and the upper bound increases consequently. In the right panel, we fix
m = 4. When κ is small, γ2 is small, and hence error is large; when b is large γ1 is exponentially
small, and hence error is significantly large. This is different from learning Mallows models, where
peaked distributions are easier to learn [2], and is related to the fact that we are not only interested in
recovering the (ordinal) ranking but also the (cardinal) weight.

4.3 Computational and statistical tradeoff

For estimators with limited computational power, however, the above lower bound fails to capture the
dependency on the allowed computational power. Understanding such fundamental trade-offs is a
challenging problem, which has been studied only in a few special cases, e.g. planted clique problem
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[10, 18]. This is outside the scope of this paper, and we instead investigate the trade-off achieved
by the proposed rank-breaking approach. When we are limited on computational power, Theorem
4.1 implicitly captures this dependence when order-M rank-breaking is used. The dependence is
captured indirectly via the resulting rank-breaking {Gj,a}j∈[n],a∈[`j ] and the topology of it. We
make this trade-off explicit by considering a simple but canonical example. Suppose θ∗ ∈ Ωb with
b = O(1). Each user gives an i.i.d. partial ranking, where all items are offered and the partial ranking
is based on an ordered partition with ˜̀

j = b
√

2cd1/4c subsets. The top subset has size m̃j,1 = 1, and
the a-th subset has size m̃j,a = a, up to a < ˜̀

j , in order to ensure that they sum at most to c
√
d for

sufficiently small positive constant c and the condition on γ3 > 0 is satisfied. The last subset includes
all the remaining items in the bottom, ensuring m̃j,˜̀j

≥ d/2 and γ1, γ2 and ν are all finite.

Computation. For a choice of M such that M ≤ `j − 1, we consider the computational complexity
in evaluating the gradient of LRB, which scales as TM =

∑
j∈[n]

∑
a∈[M ](mj,a!)rj,a = O(M !×dn).

Note that we find the MLE by solving a convex optimization problem using first order methods, and
detailed analysis of the convergence rate and the complexity of solving general convex optimizations
is outside the scope of this paper.

Sample. Under the canonical setting, forM ≤ `j−1, we haveL = M(M+1)/(2d(d−1))
(
I−11>

)
.

This complete graph has the largest possible spectral gap, and hence α > 0 and β > 0. Since the
effective samples size is

∑
j,a m̃j,aI{m̃j,a ≤ M} = nM(M + 1)/2, it follows from Theorem 4.1

that the (rescaled) root mean squared error is O(
√

(d log d)/(nM2)). In order to achieve a target
error rate of ε, we need to choose M = Ω((1/ε)

√
(d log d)/n). The resulting trade-off between

run-time and sample to achieve root mean squared error ε is T (n) ∝ (d(1/ε)
√

(d log d)/ne)!dn.
We show numerical experiment under this canonical setting in Figure 2 (left) with d = 256 and
M ∈ {1, 2, 3, 4, 5}, illustrating the trade-off in practice.

4.4 Real-world data sets

On sushi preferences [14] and jester dataset [11], we improve over pairwise breaking and achieves
same performance as the oracle MLE. Full rankings over κ = 10 types of sushi are randomly chosen
from d = 100 types of sushi are provided by n = 5000 individuals. As the ground truth θ∗, we use the
ML estimate of PL weights over the entire data. In Figure 4, left panel, for each m ∈ {3, 4, 5, 6, 7},
we remove the known ordering among the top-m and bottom-(10 −m) sushi in each set, and run
our estimator with one breaking edge between top-m and bottom-(10−m) items. We compare our
algorithm with inconsistent pairwise breaking (using optimal choice of parameters from [15]) and
the oracle MLE. For m ≤ 6, the proposed rank-breaking performs as well as an oracle who knows
the hidden ranking among the top m items. Jester dataset consists of continuous ratings between
−10 to +10 of 100 jokes on sets of size κ, 36 ≤ κ ≤ 100, by 24, 983 users. We convert ratings into
full rankings. The ground truth θ∗ is computed similarly. For m ∈ {2, 3, 4, 5}, we convert each full
ranking into a poset that has ` = bκ/mc partitions of size m, by removing known relative ordering
from each partition. Figure 4 compares the three algorithms using all samples (middle panel), and by
varying the sample size (right panel) for fixed m = 4. All figures are averaged over 50 instances.
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Figure 4: Generalized rank-breaking improves over pairwise RB and is close to oracle MLE.
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