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Abstract

In this paper, we consider a non-convex loss-minimization problem of learning
Supervised PageRank models, which can account for features of nodes and edges.
We propose gradient-based and random gradient-free methods to solve this problem.
Our algorithms are based on the concept of an inexact oracle and unlike the state-of-
the-art gradient-based method we manage to provide theoretically the convergence
rate guarantees for both of them. Finally, we compare the performance of the
proposed optimization methods with the state of the art applied to a ranking task.

1 INTRODUCTION

The most acknowledged methods of measuring importance of nodes in graphs are based on random
walk models. Particularly, PageRank [18], HITS [11], and their variants [8, 9, 19] are originally
based on a discrete-time Markov random walk on a link graph. Despite undeniable advantages of
PageRank and its mentioned modifications, these algorithms miss important aspects of the graph
that are not described by its structure. In contrast, a number of approaches allows to account for
different properties of nodes and edges between them by encoding them in restart and transition
probabilities (see [3, 4, 6, 10, 12, 20, 21]). These properties may include, e.g., the statistics about
users’ interactions with the nodes (in web graphs [12] or graphs of social networks [2]), types of
edges (such as URL redirecting in web graphs [20]) or histories of nodes’ and edges’ changes [22].

In the general ranking framework called Supervised PageRank [21], weights of nodes and edges in a
graph are linear combinations of their features with coefficients as the model parameters. The existing
optimization method [21] of learning these parameters and the optimizations methods proposed
in the presented paper have two levels. On the lower level, the following problem is solved: to
estimate the value of the loss function (in the case of zero-order oracle) and its derivatives (in the
case of first-order oracle) for a given parameter vector. On the upper level, the estimations obtained
on the lower level of the optimization methods (which we also call inexact oracle information) are
used for tuning the parameters by an iterative algorithm. Following [6], the authors of Supervised
PageRank consider a non-convex loss-minimization problem for learning the parameters and solve
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it by a two-level gradient-based method. On the lower level of this algorithm, an estimation of the
stationary distribution of the considered Markov random walk is obtained by classical power method
and estimations of derivatives w.r.t. the parameters of the random walk are obtained by power method
introduced in [23, 24]. On the upper level, the obtained gradient of the stationary distribution is
exploited by the gradient descent algorithm. As both power methods give imprecise values of the
stationary distribution and its derivatives, there was no proof of the convergence of the state-of-the-art
gradient-based method to a stationary point.

The considered non-convex loss-minimization problem [21] can not be solved by existing optimization
methods such as [16] and [7] due to presence of constraints for parameter vector and the impossibility
to calculate the exact value of the loss function. Moreover, standard global optimization methods can
not be applied, because they require unbiased estimations of the loss function.

In our paper, we propose two two-level methods to solve the problem [21]. On the lower level of
these methods, we use the linearly convergent method [17] to calculate an approximation to the
stationary distribution of Markov random walk. We show that this method allows to approximate
the value of the loss function at any given accuracy and has the lowest proved complexity bound
among methods proposed in [5]. We develop a gradient method for general constrained non-convex
optimization problems with inexact oracle, estimate its convergence rate to the stationary point of the
problem. We exploit this gradient method on the upper level of the two-level algorithm for learning
Supervised PageRank. Our contribution to the gradient-free methods framework consists in adapting
the approach of [16] to the case of constrained optimization problems when the value of the function
is calculated with some known accuracy. We prove a convergence theorem for this method and
exploit it on the upper level of the second two-level algorithm.

Another contribution consists in investigating both for the gradient and gradient-free methods the
trade-off between the accuracy of the lower-level algorithm, which is controlled by the number of
iterations of method in [17] and its generalization (for derivatives estimation), and the computational
complexity of the two-level algorithm as a whole. Finally, we estimate the complexity of the whole
two-level algorithms for solving the loss-minimization problem with a given accuracy.

In the experiments, we apply our algorithms to learning Supervised PageRank on a real ranking task.
Summing up, both two-level methods, unlike the state-of-the-art [21], have theoretical guarantees
on convergence rate, and outperform it in the ranking quality in experiments. The main advantages
of the first gradient-based algorithm: the guarantees of a convergence do not require the convexity,
this algorithm has less input parameters than gradient-free one. The main advantage of the second
gradient-free algorithm is that it avoids calculating the derivative for each element of a large matrix.

2 MODEL DESCRIPTION

We concider the following random walk on a directed graph Γ = (V,E) introduced in [21]. Assume
that each node i ∈ V and each edge i→ j ∈ E is represented by a vector of features Vi ∈ Rm1

+ and
a vector of features Eij ∈ Rm2

+ respectively. A surfer starts from a random page v0 of a seed set
U ⊂ V . The restart probability that v0 = i equals

[π0]i =
〈ϕ1,Vi〉∑
l∈U 〈ϕ1,Vl〉

, i ∈ U (2.1)

and [π0]i = 0 for i ∈ V \ U , where ϕ1 ∈ Rm1 is a parameter, which conducts the random walk. We
assume that

∑
l∈U 〈ϕ1,Vl〉 should be non-zero.

At each step, the surfer makes a restart with probability α ∈ (0, 1) (originally [18], α = 0.15) or
traverses an outgoing edge (makes a transition) with probability 1− α. In the former case, the surfer
chooses a vertex according to the distribution π0. In the latter one, the transition probability of
traversing an edge i→ j ∈ E is

[P ]i,j =
〈ϕ2,Eij〉∑
l:i→l〈ϕ2,Eil〉

, (2.2)

where ϕ2 ∈ Rm2 is a parameter and the current position i has non-zero outdegree, and [P (ϕ)]i,j =
[π0(ϕ)]j for all j ∈ V if the outdegree of i is zero (thus the surfer always makes a restart in this case).
We assume that

∑
l:i→l〈ϕ2,Eil〉 is non-zero for all i with non-zero outdegree.
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By Equations 2.1 and 2.2, the total probability of choosing vertex j ∈ V conditioned by the surfer
being at vertex i equals α[π0(ϕ)]j + (1− α)[P (ϕ)]i,j , where ϕ = (ϕ1, ϕ2)T and we use π0(ϕ) and
P (ϕ) to express the dependence of π0, P on the parameters.

The stationary distribution π(ϕ) ∈ Rp of the described Markov process is a solution of the system

π = απ0(ϕ) + (1− α)PT (ϕ)π. (2.3)

In this paper, we learn an algorithm, which ranks nodes i according to scores [π(ϕ)]i.

Let Q be a set of queries and a set of nodes Vq ⊂ V is associated to each query q. For example,
vertices in Vq may represent web pages visited by users after submitting query q. For each q ∈ Q,
some nodes of Vq are manually judged by relevance labels 1, . . . , `. Our goal is to learn the parameter
vector ϕ of a ranking algorithm πq = πq(ϕ) which minimizes the discrepancy of its ranking scores
[πq]i, i ∈ Vq , from the the assigned labels. We consider the square loss function [12, 21, 22]

f(ϕ) =
1

|Q|

|Q|∑
q=1

‖(Aqπq(ϕ))+‖22. (2.4)

Each row of matrix Aq ∈ Rrq×pq corresponds to some pair of pages i1, i2 ∈ Vq such that the label of
i1 is strictly greater than the label of i2 (we denote by rq the number of all such pairs from Vq and
pq := |Vq|). The i1-th element of this row is equal to −1, i2-th element is equal to 1, and all other
elements are equal to 0. Vector x+ has components [x+]i = max{xi, 0}.
To make ranking scores (2.3) query–dependent, we assume that π is defined on a query–dependent
graph Γq = (Vq, Eq) with query-dependent feature vectors Vq

i , i ∈ Vq, E
q
ij , i → j ∈ Eq. For

example, these features may reflect different aspects of query–page relevance. For a given q ∈ Q,
we consider all the objects related to the graph Γq introduced above: Uq := U , π0

q := π0, Pq := P ,
πq := π. In this way, the ranking scores πq depend on query via the query–dependent features, but
the parameters of the model α and ϕ are not query–dependent. In what follows, we use the following
notations throughout the paper: nq := |Uq|, m = m1 + m2, r = maxq∈Q rq, p = maxq∈Q pq,
n = maxq∈Q nq, s = maxq∈Q sq, where sq = maxi∈Vq |{j : i → j ∈ Eq}|. In order to
guarantee that the probabilities in (2.1) and (2.2) are correctly defined, we need to appropriately
choose a set Φ of possible values of parameters ϕ. We choose some ϕ̂ and R > 0 such that
Φ = {ϕ ∈ Rm : ‖ϕ− ϕ̂‖2 ≤ R} lies in the set of vectors with positive components Rm++

1. In this
paper, we solve the following loss-minimization problem:

min
ϕ∈Φ

f(ϕ),Φ = {ϕ ∈ Rm : ‖ϕ− ϕ̂‖2 ≤ R}. (2.5)

3 NUMERICAL CALCULATION OF f(ϕ) AND ∇f(ϕ)

Our goal is to provide methods for solving Problem 2.5 with guarantees on rate of convergence and
complexity bounds. The calculation of the values of f(ϕ) and its gradient ∇f(ϕ) is problematic,
since it requires to calculate those for |Q| vectors πq(ϕ) defined by Equation 2.3. While the exact
values are impossible to derive in general, existing methods provide estimations of πq(ϕ) and its
derivatives dπq(ϕ)

dϕT in an iterative way with a trade-off between time and accuracy. To be able to
guarantee convergence of our optimization algorithm in this inexact oracle setting, we consider
numerical methods that calculate approximation for πq(ϕ) and its derivatives with any required
accuracy. We have analysed state-of-the-art methods summarized in the review [5] and power method
used in [18, 2, 21] and have found that the method [17] is the most suitable.

It constructs a sequence πk and outputs π̃q(ϕ,N) by the following rule (integerN > 0 is a parameter):

π0 = π0
q (ϕ), πk+1 = PTq (ϕ)πk, π̃q(ϕ,N) =

α

1− (1− α)N+1

N∑
k=0

(1− α)kπk. (3.1)

1As probablities [π0
q(ϕ)]i, i ∈ Vq , [Pq(ϕ)]̃i,i, ĩ→ i ∈ Eq , are scale-invariant (π0

q(λϕ) = π0
q(ϕ), Pq(λϕ) =

Pq(ϕ)), in our experiments, we consider the set Φ = {ϕ ∈ Rm : ‖ϕ− em‖2 ≤ 0.99} , where em ∈ Rm is the
vector of all ones, that has large intersection with the simplex {ϕ ∈ Rm

++ : ‖ϕ‖1 = 1}
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Lemma 1. Assume that, for some δ1 > 0, Method 3.1 with N =
⌈

1
α ln 8r

δ1

⌉
− 1 is used to calculate

the vector π̃q(ϕ,N) for every q ∈ Q. Then f̃(ϕ, δ1) = 1
|Q|
∑|Q|
q=1 ‖(Aqπ̃q(ϕ,N))+‖22 satisfies

|f̃(ϕ, δ1)− f(ϕ)| ≤ δ1. Moreover, the calculation of f̃(ϕ, δ1) requires not more than |Q|(3mps+
3psN + 6r) a.o.

The proof of Lemma 1 is in Supplementary Materials.

Let pi(ϕ) be the i-th column of the matrix PTq (ϕ). Our generalization of the method [17] for

calculation of dπq(ϕ)
dϕT for any q ∈ Q is the following. Choose some non-negative integer N1 and

calculate π̃q(ϕ,N1) using (3.1). Choose some N2 ≥ 0, calculate Πk, k = 0, ..., N2 and Π̃q(ϕ,N2)

Π0 = α
dπ0

q (ϕ)

dϕT
+ (1− α)

pq∑
i=1

dpi(ϕ)

dϕT
[π̃q(ϕ,N1)]i, Πk+1 = PTq (ϕ)Πk, (3.2)

Π̃q(ϕ,N2) =
1

1− (1− α)N2+1

N2∑
k=0

(1− α)kΠk. (3.3)

In what follows, we use the following norm on the space of matrices A ∈ Rn1×n2 : ‖A‖1 =
maxj=1,...,n2

∑n1

i=1 |aij |.
Lemma 2. Let β1 be some explicitly computable constant (see Supplementary Materials). Assume
that Method 3.1 with N1 =

⌈
1
α ln 24β1r

αδ2

⌉
− 1 is used for every q ∈ Q to calculate the vector

π̃q(ϕ,N1) and Method 3.2, 3.3 with N2 =
⌈

1
α ln 8β1r

αδ2

⌉
− 1 is used for every q ∈ Q to calculate the

matrix Π̃q(ϕ,N2) (3.3). Then the vector g̃(ϕ, δ2) = 2
|Q|
∑|Q|
q=1

(
Π̃q(ϕ,N2)

)T
ATq (Aqπ̃q(ϕ,N1))+

satisfies ‖g̃(ϕ, δ2)−∇f(ϕ)‖∞ ≤ δ2. Moreover, the calculation of g̃(ϕ, δ2) requires not more than
|Q|(10mps+ 3psN1 + 3mpsN2 + 7r) a.o.

The proof of Lemma 2 can be found in Supplementary Materials.

4 RANDOM GRADIENT-FREE OPTIMIZATION METHODS

In this section, we first describe general framework of random gradient-free methods with inexact
oracle and then apply it for Problem 2.5. Lemma 1 allows to control the accuracy of the inexact
zero-order oracle and hence apply random gradient-free methods with inexact oracle.

4.1 GENERAL FRAMEWORK

Below we extend the framework of random gradient-free methods [1, 16, 7] for the situation of
presence of uniformly bounded error of unknown nature in the value of an objective function in
general optimization problem. Unlike [16], we consider a constrained optimization problem and a
randomization on a Euclidean sphere which seems to give better large deviations bounds and doesn’t
need the assumption that the objective function can be calculated at any point of Rm.

Let E be a m-dimensional vector space and E∗ be its dual. In this subsection, we consider a general
function f(·) : E → R and denote its argument by x or y to avoid confusion with other sections. We
denote the value of linear function g ∈ E∗ at x ∈ E by 〈g, x〉. We choose some norm ‖ · ‖ in E and
say that f ∈ C1,1

L (‖ ·‖) iff |f(x)−f(y)−〈∇f(y), x−y〉| ≤ L
2 ‖x−y‖

2, ∀x, y ∈ E . The problem
of our interest is to find minx∈X f(x), where f ∈ C1,1

L (‖ · ‖), X is a closed convex set and there
exists a number D ∈ (0,+∞) such that diamX := maxx,y∈X ‖x− y‖ ≤ D. Also we assume that
the inexact zero-order oracle for f(x) returns a value f̃(x, δ) = f(x) + δ̃(x), where δ̃(x) is the error
satisfying for some δ > 0 (which is known) |δ̃(x)| ≤ δ for all x ∈ X . Let x∗ ∈ arg minx∈X f(x).
Denote f∗ = minx∈X f(x).

Unlike [16], we define the biased gradient-free oracle gτ (x, δ) = m
τ (f̃(x+ τξ, δ)− f̃(x, δ))ξ, where

ξ is a random vector uniformly distributed over the unit sphere S = {t ∈ Rm : ‖t‖2 = 1}, τ is a
smoothing parameter.
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Algorithm 1 Gradient-type method
Input: Point x0 ∈ X , stepsize h > 0, number of steps M .
Set k = 0.
repeat

Generate ξk and calculate corresponding gτ (xk, δ).
Calculate xk+1 = ΠX(xk − hgτ (xk, δ)) (ΠX(·) – Euclidean projection onto the set X).
Set k = k + 1.

until k > M
Output: The point yM = arg minx{f(x) : x ∈ {x0, . . . , xM}}.

Theorem 1. Let f ∈ C1,1
L (‖ · ‖2) and convex. Assume that x∗ ∈ intX , and the sequence xk is

generated by Algorithm 1 with h = 1
8mL . Then for any M ≥ 0, we have EΞM−1

f(yM ) − f∗ ≤
8mLD2

M+1 + τ2L(m+8)
8 + δmD

4τ + δ2m
Lτ2 . Here Ξk = (ξ0, . . . , ξk) is the history of realizations of the

vector ξ.

The full proof of the theorem is in Supplementary Materials.

4.2 SOLVING THE LEARNING PROBLEM

Now, we apply the results of Subsection 4.1 to solve Problem 2.5. Note that presence of constraints
and oracle inexactness do not allow to directly apply the results of [16]. We assume that there is a
local minimum ϕ∗, and Φ is a small vicinity of ϕ∗, in which f(ϕ) (2.4) is convex (generally speaking,
it is nonconvex). We choose the desired accuracy ε for f∗ (the optimal value) approximation in the
sense that EΞM−1

f(yM ) − f∗ ≤ ε. In accordance with Theorem 1, ε gives the number of steps
M of Algorithm 1, the value of τ , the value of the required accuracy δ of the inexact zero-order
oracle. The value δ, by Lemma 1, gives the number of steps N of Method 3.1 required to calculate
a δ-approximation f̃(ϕ, δ) for f(ϕ). Then the inexact zero-order oracle f̃(ϕ, δ) is used to make
Algorithm 1 step. Theorem 1 and the choice of the feasible set Φ to be a Euclidean ball make it
natural to choose ‖ · ‖2-norm in the space Rm of parameter ϕ. It is easy to see that in this norm
diamΦ ≤ 2R. Algorithm 2 in Supplementary Materials is a formal record of these ideas.

The most computationally hard on each iteration of the main cycle of this method are calculations
of f̃(ϕk + τξk, δ), f̃(ϕk, δ). Using Lemma 1, we obtain the complexity of each iteration and the
following result, which gives the complexity of Algorithm 2.
Theorem 2. Assume that the set Φ in (2.5) is chosen in a way such that f(ϕ) is convex on Φ and some
ϕ∗ ∈ arg minϕ∈Φ f(ϕ) belongs also to intΦ. Then the mean total number of arithmetic operations
of the Algorithm 2 for the accuracy ε (i.e. for the inequality EΞM−1

f(ϕ̂M )− f(ϕ∗) ≤ ε to hold) is
not more than

768mps|Q|LR
2

ε

(
m+

1

α
ln

128mrR
√
L(m+ 8)

ε3/2
√

2
+ 6r

)
.

5 GRADIENT-BASED OPTIMIZATION METHODS

In this section, we first develop a general framework of gradient methods with inexact oracle for
non-convex problems from rather general class and then apply it for the particular Problem 2.5.
Lemma 1 and Lemma 2 allow to control the accuracy of the inexact first-order oracle and hence apply
proposed framework.

5.1 GENERAL FRAMEWORK

In this subsection, we generalize the approach in [7] for constrained non-convex optimization
problems. Our main contribution consists in developing this framework for an inexact first-order
oracle and unknown "Lipschitz constant" of this oracle.

We consider a composite optimization problem of the form minx∈X{ψ(x) := f(x) + h(x)}, where
X ⊂ E is a closed convex set, h(x) is a simple convex function, e.g. ‖x‖1. We assume that f(x) is
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a general function endowed with an inexact first-order oracle in the following sense. There exists
a number L ∈ (0,+∞) such that for any δ ≥ 0 and any x ∈ X one can calculate f̃(x, δ) ∈ R and
g̃(x, δ) ∈ E∗ satisfying

|f(y)− (f̃(x, δ)− 〈g̃(x, δ), y − x〉)| ≤ L

2
‖x− y‖2 + δ. (5.1)

for all y ∈ X . The constant L can be considered as "Lipschitz constant" because for the exact first-
order oracle for a function f ∈ C1,1

L (‖ · ‖) Inequality 5.1 holds with δ = 0. This is a generalization
of the concept of (δ, L)-oracle considered in [25] for convex problems.

We choose a prox-function d(x) which is continuously differentiable and 1-strongly convex on X
with respect to ‖ · ‖. This means that for any x, y ∈ X d(y)− d(x)− 〈∇d(x), y − x〉 ≥ 1

2‖y − x‖
2.

We define also the corresponding Bregman distance V (x, z) = d(x)− d(z)− 〈∇d(z), x− z〉.

Algorithm 2 Adaptive projected gradient algorithm
Input: Point x0 ∈ X , number L0 > 0.
Set k = 0, z = +∞.
repeat

Set Mk = Lk, flag = 0.
repeat

Set δ = ε
16Mk

. Calculate f̃(xk, δ) and g̃(xk, δ).
Find wk = arg minx∈Q {〈g̃(xk, δ), x〉+MkV (x, xk) + h(x)} and calculate f̃(wk, δ).
If the inequality f̃(wk, δ) ≤ f̃(xk, δ) + 〈g̃(xk, δ), wk − xk〉+ Mk

2 ‖wk − xk‖
2 + ε

8Mk
holds,

set flag = 1. Otherwise set Mk = 2Mk.
until flag = 1
Set xk+1 = wk, Lk+1 = Mk

2 .
If ‖Mk(xk − xk+1)‖ < z, set z = ‖Mk(xk − xk+1)‖, K = k.
Set k = k + 1.

until z ≤ ε
Output: The point xK+1.

Theorem 3. Assume that f(x) is endowed with the inexact first-order oracle in a sense (5.1) and
that there exists a number ψ∗ > −∞ such that ψ(x) ≥ ψ∗ for all x ∈ X . Then after M iterations of
Algorithm 2 it holds that ‖MK(xK − xK+1)‖2 ≤ 4L(ψ(x0)−ψ∗)

M+1 + ε
2 . Moreover, the total number of

inexact oracle calls is not more than 2M + 2 log2
2L
L0

.

The full proof of the theorem is in Supplementary Materials.

5.2 SOLVING THE LEARNING PROBLEM

In this subsection, we return to Problem 2.5 and apply the results of the previous subsection. Note
that we can not directly apply the results of [7] due to the inexactness of the oracle. For this problem,
h(·) ≡ 0. It is easy to show that in 1-norm diamΦ ≤ 2R

√
m. For any δ > 0, Lemma 1 with δ1 = δ

2

allows us to obtain f̃(ϕ, δ1) such that inequality |f̃(ϕ, δ1)− f(ϕ)| ≤ δ1 holds and Lemma 2 with
δ2 = δ

4R
√
m

allows us to obtain g̃(ϕ, δ2) such that inequality ‖g̃(ϕ, δ2) − ∇f(ϕ)‖∞ ≤ δ2 holds.

Similar to [25], since f ∈ C1,1
L (‖ · ‖2), these two inequalities lead to Inequality 5.1 for f̃(ϕ, δ1) in

the role of f̃(x, δ), g̃(ϕ, δ2) in the role of g̃(x, δ) and ‖ · ‖2 in the role of ‖ · ‖.
We choose the desired accuracy ε for approximating the stationary point of Problem 2.5. This
accuracy gives the required accuracy δ of the inexact first-order oracle for f(ϕ) on each step of the
inner cycle of the Algorithm 2. Knowing the value δ1 = δ

2 and using Lemma 1, we choose the number
of steps N of Method 3.1 and thus approximate f(ϕ) with the required accuracy δ1 by f̃(ϕ, δ1).
Knowing the value δ2 = δ

4R
√
m

and using Lemma 2, we choose the number of stepsN1 of Method 3.1
and the number of steps N2 of Method 3.2, 3.3 and obtain the approximation g̃(ϕ, δ2) of∇f(ϕ) with
the required accuracy δ2. Then we use the inexact first-order oracle (f̃(ϕ, δ1), g̃(ϕ, δ2)) to perform
a step of Algorithm 2. Since Φ is the Euclidean ball, it is natural to set E = Rm and ‖ · ‖ = ‖ · ‖2,
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choose the prox-function d(ϕ) = 1
2‖ϕ‖

2
2. Then the Bregman distance is V (ϕ, ω) = 1

2‖ϕ − ω‖
2
2.

Algorithm 4 in Supplementary Materials is a formal record of the above ideas.

The most computationally consuming operations of the inner cycle of Algorithm 4 are calculations of
f̃(ϕk, δ1), f̃(ωk, δ1) and g̃(ϕk, δ2). Using Lemma 1 and Lemma 2, we obtain the complexity of each
iteration. From Theorem 3 we obtain the following result, which gives the complexity of Algorithm
4.
Theorem 4. The total number of arithmetic operations in Algorithm 4 for the accuracy ε (i.e. for the
inequality ‖MK(ϕK − ϕK+1)‖22 ≤ ε to hold) is not more than(

8L(f(ϕ0)− f∗)
ε

+ log2

2L

L0

)
·
(

7r|Q|+ 6mps|Q|
α

ln
1024β1rRL

√
m

αε

)
.

6 EXPERIMENTAL RESULTS

In this section, we compare our gradient-free and gradient-based methods with the state-of-the-art
gradient-based method [21] on the web page ranking problem. In the next section, we describe the
dataset. In Section 6.2, we report the results of the experiments.

6.1 DATA

We consider the user web browsing graph Γq = (Vq, Eq), q ∈ Q, introduced in [12]. Unlike a link
graph, a user browsing graph is query–dependent. The set of vertices Vq consists of all different
pages visited by users during their sessions started from q. The set of directed edges Eq represents all
the ordered pairs of neighboring elements (̃i, i) from such sessions. We add a page i in the seed set
Uq if and only if there is a session where i is the first page visited after submitting query q.

All experiments are performed with data of a popular commercial search engine Yandex2. We chose
a random set of 600 queries Q and collected user sessions started with them. There are ≈ 11.7K
vertices and ≈ 7.5K edges in graphs Γq , q ∈ Q, in total. For each query, a set of pages was labelled
by professional assessors with standard 5 relevance grades (≈ 1.7K labeled query–document pairs
in total). We divide our data into two parts. On the first part Q1 (50% of the set of queries Q) we
train the parameters and on the second part Q2 we test the algorithms. For each q ∈ Q and i ∈ Vq,
vector Vq

i of size m1 = 26 encodes features for query–document pair (q, i). Vector Eq
ĩi

of m2 = 52

features for an edge ĩ→ i ∈ Eq is obtained as the concatenation of Vq

ĩ
and Vq

i .

To study a dependency between the efficiency of the algorithms and the sizes of the graphs, we sort
the sets Q1, Q2 in ascending order of sizes of the respective graphs. Sets Q1

j , Q2
j , Q3

j contain first (in
terms of these order) 100, 200, 300 elements respectively for j ∈ {1, 2}.

6.2 PERFORMANCES OF THE OPTIMIZATION ALGORITHMS

We optimized the parameters ϕ by three methods: our gradient-free method GFN (Algorithm 2), the
gradient-based method GBN (Algorithm 4), and the state-of-the-art gradient-method GBP. The values
of hyperparameters are the following: the Lipschitz constant L = 10−4 in GFN (and L0 = 10−4

in GBN), the accuracy ε = 10−6 (in both GBN and GFN), the radius R = 0.99 (in both GBN
and GFN). On all sets of queries, we compare final values of the loss function for GBN when
L0 ∈ {10−4, 10−3, 10−2, 10−1, 1}. The differences are less than 10−7. We choose L in GFN to be
equal to L0 (we show how the choice of L influences the output of the gradient-free algorithm, see
supplementary materials, Figure 2). Moreover, we evaluate both our gradient-based and gradient-free
algorithms for different values of the accuracies. The outputs of the algorithms differ insufficiently
on all test sets Qi2, i ∈ {1, 2, 3}, when ε ≤ 10−6. On the lower level of the state-of-the-art gradient-
based algorithm, the stochastic matrix and its derivative are raised to the power 100. We evaluate
GBP for different values of the step size (50, 100, 200, 500). We stop the GBP algorithms when the
differences between the values of the loss function on the next step and the current step are less than
−10−5 on the test sets.

2yandex.com
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In Table 1, we present the performances of the optimization algorithms in terms of the loss function
f (2.4). We also compare the algorithms with the untuned Supervised PageRank (ϕ = ϕ0 = em).
On Figure 1, we give the outputs of the optimization algorithms on each iteration of the upper levels
of the learning processes on the test set Q3

2, similar results were obtained for the sets Q1
2, Q

2
2.

Q1
2 Q2

2 Q3
2

Meth. loss steps loss steps loss steps
PR .00357 0 .00354 0 .0033 0

GBN .00279 12 .00305 12 .00295 12

GFN .00274 106 .00297 106 .00292 106

GBP 50s. .00282 16 .00307 31 .00295 40

GBP 100s. .00282 8 .00307 16 .00295 20

GBP 200s. .00283 4 .00308 7 .00295 9

GBP 500s. .00283 2 .00308 2 .00295 3

Table 1: Comparison of the algorithms on the test sets.

Figure 1: Values of the loss function on each iteration of the optimization algorithms on the test set Q3
2.

GFN significantly outperforms the state-of-the-art algorithms on all test sets. GBN significantly
outperforms the state-of-the-art algorithm on Q1

2 (we obtain the p-values of the paired t-tests for all
the above differences on the test sets of queries, all these values are less than 0.005). However, GBN
requires less iterations of the upper level (until it stops) than GBP for step sizes 50 and 100 onQ2

2, Q
3
2.

Finally, we show that Nesterov–Nemirovski method converges to the stationary distribution faster
than the power method (in supplementary materials, on Figure 2, we demonstrate the dependencies of
the value of the loss function onQ1

1 for both methods of computing the untuned Supervised PageRank
ϕ = ϕ0 = em).

7 CONCLUSION

We propose a gradient-free optimization method for general convex problems with inexact zero-order
oracle and an adaptive gradient method for possibly nonconvex general composite optimization
problems with inexact first-order oracle. For both methods, we provide convergence rate analysis.
We also apply our new methods for known problem of learning a web-page ranking algorithm.
Our new algorithms not only outperform existing algorithms, but also are guaranteed to solve this
learning problem. In practice, this means that these algorithms can increase the reliability and speed
of a search engine. Also, to the best of our knowledge, this is the first time when the ideas of
random gradient-free and gradient optimization methods are combined with some efficient method
for huge-scale optimization using the concept of an inexact oracle.
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