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Abstract

Many popular network models rely on the assumption of (vertex) exchangeability,
in which the distribution of the graph is invariant to relabelings of the vertices.
However, the Aldous-Hoover theorem guarantees that these graphs are dense or
empty with probability one, whereas many real-world graphs are sparse. We
present an alternative notion of exchangeability for random graphs, which we call
edge exchangeability, in which the distribution of a graph sequence is invariant
to the order of the edges. We demonstrate that edge-exchangeable models, unlike
models that are traditionally vertex exchangeable, can exhibit sparsity. To do
so, we outline a general framework for graph generative models; by contrast to
the pioneering work of Caron and Fox [12], models within our framework are
stationary across steps of the graph sequence. In particular, our model grows the
graph by instantiating more latent atoms of a single random measure as the dataset
size increases, rather than adding new atoms to the measure.

1 Introduction

In recent years, network data have appeared in a growing number of applications, such as online
social networks, biological networks, and networks representing communication patterns. As a result,
there is growing interest in developing models for such data and studying their properties. Crucially,
individual network data sets also continue to increase in size; we typically assume that the number of
vertices is unbounded as time progresses. We say a graph sequence is dense if the number of edges
grows quadratically in the number of vertices, and a graph sequence is sparse if the number of edges
grows sub-quadratically as a function of the number of vertices. Sparse graph sequences are more
representative of real-world graph behavior. However, many popular network models (see, e.g., Lloyd
et al. [19] for an extensive list) share the undesirable scaling property that they yield dense sequences
of graphs with probability one. The poor scaling properties of these models can be traced back to a
seemingly innocent assumption: that the vertices in the model are exchangeable, that is, any finite
permutation of the rows and columns of the graph adjacency matrix does not change the distribution
of the graph. Under this assumption, the Aldous-Hoover theorem [1, 16] implies that such models
generate dense or empty graphs with probability one [20].

This fundamental model misspecification motivates the development of new models that can achieve
sparsity. One recent focus has been on models in which an additional parameter is employed to
uniformly decrease the probabilities of edges as the network grows (e.g., Bollobás et al. [3], Borgs
et al. [4, 5], Wolfe and Olhede [24]). While these models allow sparse graph sequences, the sequences
are no longer projective. In projective sequences, vertices and edges are added to a graph as a
graph sequence progresses—whereas in the models above, there is not generally any strict subgraph
relationship between earlier graphs and later graphs in the sequence. Projectivity is natural in
streaming modeling. For instance, we may wish to capture new users joining a social network and
new connections being made among existing users—or new employees joining a company and new
communications between existing employees.
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Caron and Fox [12] have pioneered initial work on sparse, projective graph sequences. Instead of
the vertex exchangeability that yields the Aldous-Hoover theorem, they consider a notion of graph
exchangeability based on the idea of independent increments of subordinators [18], explored in depth
by Veitch and Roy [22]. However, since this Kallenberg-style exchangeability introduces a new
countable infinity of latent vertices at every step in the graph sequence, its generative mechanism
seems particularly suited to the non-stationary domain. By contrast, we are here interested in exploring
stationary models that grow in complexity with the size of the data set. Consider classic Bayesian
nonparametric models as the Chinese restaurant process (CRP) and Indian buffet process (IBP); these
engender growth by using a single infinite latent collection of parameters to generate a finite but
growing set of instantiated parameters. Similarly, we propose a framework that uses a single infinite
latent collection of vertices to generate a finite but growing set of vertices that participate in edges
and thereby in the network. We believe our framework will be a useful component in more complex,
non-stationary graphical models—just as the CRP and IBP are often combined with hidden Markov
models or other explicit non-stationary mechanisms. Additionally, Kallenberg exchangeability is
intimately tied to continuous-valued labels of the vertices, and here we are interested in providing a
characterization of the graph sequence based solely on its topology.

In this work, we introduce a new form of exchangeability, distinct from both vertex exchangeability
and Kallenberg exchangeability. In particular, we say that a graph sequence is edge exchangeable if
the distribution of any graph in the sequence is invariant to the order in which edges arrive—rather
than the order of the vertices. We will demonstrate that edge exchangeability admits a large family of
sparse, projective graph sequences.

In the remainder of the paper, we start by defining dense and sparse graph sequences rigorously.
We review vertex exchangeability before introducing our new notion of edge exchangeability in
Section 2, which we also contrast with Kallenberg exchangeability in more detail in Section 4. We
define a family of models, which we call graph frequency models, based on random measures in
Section 3. We use these models to show that edge-exchangeable models can yield sparse, projective
graph sequences via theoretical analysis in Section 5 and via simulations in Section 6. Along the way,
we highlight other benefits of the edge exchangeability and graph frequency model frameworks.

2 Exchangeability in graphs: old and new

Let (Gn)n := G1, G2, . . . be a sequence of graphs, where each graph Gn = (Vn, En) consists of a
(finite) set of vertices Vn and a (finite) multiset of edges En. Each edge e ∈ En is a set of two vertices
in Vn. We assume the sequence is projective—or growing—so that Vn ⊆ Vn+1 and En ⊆ En+1.
Consider, e.g., a social network with more users joining the network and making new connections
with existing users. We say that a graph sequence is dense if |En| = Ω(|Vn|2), i.e., the number of
edges is asymptotically lower bounded by c · |Vn|2 for some constant c. Conversely, a sequence is
sparse if |En| = o(|Vn|2), i.e., the number of edges is asymptotically upper bounded by c · |Vn|2
for all constants c. In what follows, we consider random graph sequences, and we focus on the case
where |Vn| → ∞ almost surely.

2.1 Vertex-exchangeable graph sequences

If the number of vertices in the graph sequence grows to infinity, the graphs in the sequence can
be thought of as subgraphs of an “infinite” graph with infinitely many vertices and a correspond-
ingly infinite adjacency matrix. Traditionally, exchangeability in random graphs is defined as the
invariance of the distribution of any finite submatrix of this adjacency matrix—corresponding to any
finite collection of vertices—under finite permutation. Equivalently, we can express this form of
exchangeability, which we henceforth call vertex exchangeability, by considering a random sequence
of graphs (Gn)n with Vn = [n], where [n] := {1, . . . , n}. In this case, only the edge sequence is
random. Let π be any permutation of the integers [n]. If e = {v, w}, let π(e) := {π(v), π(w)}. If
En = {e1, . . . , em}, let π(En) := {π(e1), . . . , π(em)}.

Definition 2.1. Consider the random graph sequence (Gn)n, where Gn has vertices Vn = [n] and
edges En. (Gn)n is (infinitely) vertex exchangeable if for every n ∈ N and for every permutation π
of the vertices [n], Gn

d
= G̃n, where G̃n has vertices [n] and edges π(En).
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Figure 1: Upper, left four: Step-augmented graph sequence from Ex. 2.2. At each step n, the step
value is always at least the maximum vertex index. Upper, right two: Two graphs with the same
probability under vertex exchangeability. Lower, left four: Step-augmented graph sequence from
Ex. 2.3. Lower, right two: Two graphs with the same probability under edge exchangeability.

A great many popular models for graphs are vertex exchangeable; see Appendix B and Lloyd
et al. [19] for a list. However, it follows from the Aldous-Hoover theorem [1, 16] that any vertex-
exchangeable graph is a mixture of sampling procedures from graphons. Further, any graph sampled
from a graphon is almost surely dense or empty [20]. Thus, vertex-exchangeable random graph
models are misspecified models for sparse network datasets, as they generate dense graphs.

2.2 Edge-exchangeable graph sequences

Vertex-exchangeable sequences have distributions invariant to the order of vertex arrival. We introduce
edge-exchangeable graph sequences, which will instead be invariant to the order of edge arrival.
As before, we let Gn = (Vn, En) be the nth graph in the sequence. Here, though, we consider
only active vertices—that is, vertices that are connected via some edge. That lets us define Vn as a
function of En; namely, Vn is the union of the vertices in En. Note that a graph that has sub-quadratic
growth in the number of edges as a function of the number of active vertices will necessarily have
sub-quadratic growth in the number of edges as a function of the number of all vertices, so we obtain
strictly stronger results by considering active vertices. In this case, the graph Gn is completely
defined by its edge set En.

As above, we suppose that En ⊆ En+1. We can emphasize this projectivity property by augmenting
each edge with the step on which it is added to the sequence. Let E′n be a collection of tuples, in
which the first element is the edge and the second element is the step (i.e., index) on which the edge
is added: E′n = {(e1, s1), . . . , (em, sm)}. We can then define a step-augmented graph sequence
(E′n)n = (E′1, E

′
2, . . .) as a sequence of step-augmented edge sets. Note that there is a bijection

between the step-augmented graph sequence and the original graph sequence.
Example 2.2. In the setup for vertex exchangeability, we assumed Vn = [n] and every edge is
introduced as soon as both of its vertices are introduced. In this case, the step of any edge in the
step-augmented graph is the maximum vertex value. For example, in Figure 1, we have

E′1 = ∅, E′2 = E′3 = {({1, 2}, 2)}, E′4 = {({1, 2}, 2), ({1, 4}, 4), ({2, 4}, 4), ({3, 4}, 4)}.

In general step-augmented graphs, though, the step need not equal the max vertex, as we see next. �
Example 2.3. Suppose we have a graph given by the edge sequence (see Figure 1):

E1 = E2 = {{2, 5}, {5, 5}}, E3 = E2 ∪ {{2, 5}}, E4 = E3 ∪ {{1, 6}}.

The step-augmented graph E′4 is {({2, 5}, 1), ({5, 5}, 1), ({2, 5}, 3), ({1, 6}, 4)}. �

Roughly, a random graph sequence is edge exchangeable if its distribution is invariant to finite
permutations of the steps. Let π be a permutation of the integers [n]. For a step-augmented edge set
E′n = {(e1, s1), . . . , (em, sm)}, let π(E′n) = {(e1, π(s1)), . . . , (em, π(sm))}.
Definition 2.4. Consider the random graph sequence (Gn)n, where Gn has step-augmented edges
E′n and Vn are the active vertices of En. (Gn)n is (infinitely) edge exchangeable if for every n ∈ N
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and for every permutation π of the steps [n], Gn
d
= G̃n, where G̃n has step-augmented edges π(E′n)

and associated active vertices.

See Figure 1 for visualizations of both vertex exchangeability and edge exchangeability. It remains
to show that there are non-trivial models that are edge exchangeable (Section 3) and that edge-
exchangeable models admit sparse graphs (Section 5).

3 Graph frequency models

We next demonstrate that a wide class of models, which we call graph frequency models, exhibit edge
exchangeability. Consider a latent infinity of vertices indexed by the positive integers N = {1, 2, . . .},
along with an infinity of edge labels (θ{i,j}), each in a set Θ, and positive edge rates (or frequencies)
(w{i,j}) in R+. We allow both the (θ{i,j}) and (w{i,j}) to be random, though this is not mandatory.
For instance, we might choose θ{i,j} = (i, j) for i ≤ j, and Θ = R2. Alternatively, the θ{i,j}
could be drawn iid from a continuous distribution such as Unif[0, 1]. For any choice of (θ{i,j}) and
(w{i,j}),

W :=
∑

{i,j}:i,j∈N

w{i,j}δθ{i,j} (1)

is a measure on Θ. Moreover, it is a discrete measure since it is always atomic. If either (θ{i,j}) or
(w{i,j}) (or both) are random, W is a discrete random measure on Θ since it is a random, discrete-
measure-valued element. Given the edge rates (or frequencies) (w{i,j}) in W , we next show some
natural ways to construct edge-exchangeable graphs.

Single edge per step. If the rates (w{i,j}) are normalized such that
∑
{i,j}:i,j∈N w{i,j} = 1, then

(w{i,j}) is a distribution over all possible vertex pairs. In other words,W is a probability measure. We
can form an edge-exchangeable graph sequence by first drawing values for (w{i,j}) and (θ{i,j})—and
setting E0 = ∅. We recursively set En+1 = En ∪ {e}, where e is an edge {i, j} chosen from the
distribution (w{i,j}). This construction introduces a single edge in the graph each step, although it
may be a duplicate of an edge that already exists. Therefore, this technique generates multigraphs
one edge at a time. Since the edge every step is drawn conditionally iid given W , we have an
edge-exchangeable graph.

Multiple edges per step. Alternatively, the rates (w{i,j}) may not be normalized. Then W may
not be a probability measure. Let f(m|w) be a distribution over non-negative integers m given some
rate w ∈ R+. We again initialize our sequence by drawing (w{i,j}) and (θ{i,j}) and setting E0 = ∅.
In this case, recursively, on the nth step, start by setting F = ∅. For every possible edge e = {i, j},
we draw the multiplicity of the edge e in this step as me

ind∼ f(·|we) and add me copies of edge e to
F . Finally, En+1 = En ∪ F . This technique potentially introduces multiple edges in each step, in
which edges themselves may have multiplicity greater than one and may be duplicates of edges that
already exist in the graph. Therefore, this technique generates multigraphs, multiple edges at a time.
If we restrict f and W such that finitely many edges are added on every step almost surely, we have
an edge-exchangeable graph, as the edges in each step are drawn conditionally iid given W .

Given a sequence of edge sets E0, E1, . . . constructed via either of the above methods, we can
form a binary graph sequence Ē0, Ē1, . . . by setting Ēi to have the same edges as Ei except with
multiplicity 1. Although this binary graph is not itself edge exchangeable, it inherits many of the
properties (such as sparsity, as shown in Section 5) of the underlying edge-exchangeable multigraph.

The choice of the distribution on the measure W has a strong influence on the properties of the
resulting edge-exchangeable graph sampled via one of the above methods. For example, one choice is
to set w{i,j} = wiwj , where the (wi)i are a countable infinity of random values generated according
to a Poisson point process (PPP). We say that (wi)i is distributed according to a Poisson point process
parameterized by rate measure ν, (wi)i ∼ PPP(ν), if (a) #{i : wi ∈ A} ∼ Poisson(ν(A)) for any
set A with finite measure ν(A) and (b) #{i : wi ∈ Aj} are independent random variables across any
finite collection of disjoint sets (Aj)

J
j=1. In Section 5 we examine a particular example of this graph

frequency model, and demonstrate that sparsity is possible in edge-exchangeable graphs.
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(a) Graph frequency model (fixed y, n steps) (b) Caron–Fox, PPP on [0, y]× [0, y] (1 step, y grows)

Figure 2: A comparison of a graph frequency model (Section 3 and Equation (2)) and the generative
model of Caron and Fox [12]. Any interval [0, y] contains a countably infinite number of atoms with
a nonzero weight in the random measure; a draw from the random measure is plotted at the top (and
repeated on the right side). Each atom corresponds to a latent vertex. Each point (θi, θj) corresponds
to a latent edge. Darker point colors on the left occur for greater edge multiplicities. On the left, more
latent edges are instantiated as more steps n are taken. On the right, the edges within [0, y]2 are fixed,
but more edges are instantiated as y grows.

4 Related work and connection to nonparametric Bayes

Given a unique label θi for each vertex i ∈ N, and denoting gij = gji to be the number of undirected
edges between vertices i and j, the graph itself can be represented as the discrete random measure
G =

∑
i,j gijδ(θi,θj) on R2

+. A different notion of exchangeability for graphs than the ones in
Section 2 can be phrased for such atomic random measures: a point process G on R2

+ is (jointly)
exchangeable if, for all finite permutations π of N and all h > 0,

G(Ai ×Aj)
d
= G(Aπ(i) ×Aπ(j)), for (i, j) ∈ N2, where Ai := [h · (i− 1), h · i].

This form of exchangeability, which we refer to as Kallenberg exchangeability, can intuitively be
viewed as invariance of the graph distribution to relabeling of the vertices, which are now embedded in
R2

+. As such it is analogous to vertex exchangeability, but for discrete random measures [12, Sec. 4.1].
Exchangeability for random measures was introduced by Aldous [2], and a representation theorem
was given by Kallenberg [17, 18, Ch. 9]. The use of Kallenberg exchangeability for modeling graphs
was first proposed by Caron and Fox [12], and then characterized in greater generality by Veitch and
Roy [22] and Borgs et al. [6]. Edge exchangeability is distinct from Kallenberg exchangeability, as
shown by the following example.

Example 4.1 (Edge exchangeable but not Kallenberg exchangeable). Consider the graph frequency
model developed in Section 3, with w{i,j} = (ij)−2 and θ{i,j} = {i, j}. Since the edges at each
step are drawn iid given W , the graph sequence is edge exchangeable. However, the corresponding
graph measure G =

∑
i,j nijδ(i,j) (where nij = nji ∼ Binom(N, (ij)−2)) is not Kallenberg

exchangeable, since the probability of generating edge {i, j} is directly related to the positions (i, j)
and (j, i) in R2

+ of the corresponding atoms in G (in particular, the probability is decreasing in ij). �

Our graph frequency model is reminiscent of the Caron and Fox [12] generative model, but has a
number of key differences. At a high level, this earlier model generates a weight measure W =∑
i,j wijδ(θi,θj) (Caron and Fox [12] used, in particular, the outer product of a completely random

measure), and the graph measure G is constructed by sampling gij once given wij for each pair
i, j. To create a finite graph, the graph measure G is restricted to the subset [0, y]× [0, y] ⊂ R2

+ for
0 < y <∞; to create a projective growing graph sequence, the value of y is increased. By contrast,
in the analogous graph frequency model of the present work, y is fixed, and we grow the network
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by repeatedly sampling the number of edges gij between vertices i and j and summing the result.
Thus, in the Caron and Fox [12] model, a latent infinity of vertices (only finitely many of which
are active) are added to the network each time y increases. In our graph frequency model, there is
a single collection of latent vertices, which are all gradually activated by increasing the number of
samples that generate edges between the vertices. See Figure 2 for an illustration.

Increasing n in the graph frequency model has the interpretation of both (a) time passing and (b) new
individuals joining a network because they have formed a connection that was not previously there. In
particular, only latent individuals that will eventually join the network are considered. This behavior
is analogous to the well-known behavior of other nonparametric Bayesian models such as, e.g., a
Chinese restaurant process (CRP). In this analogy, the Dirichlet process (DP) corresponds to our
graph frequency model, and the clusters instantiated by the CRP correspond to the vertices that are
active after n steps. In the DP, only latent clusters that will eventually appear in the data are modeled.
Since the graph frequency setting is stationary like the DP/CRP, it may be more straightforward to
develop approximate Bayesian inference algorithms, e.g., via truncation [11].

Edge exchangeability first appeared in work by Crane and Dempsey [13, 14], Williamson [23], and
Broderick and Cai [7, 8], Cai and Broderick [10]. Broderick and Cai [7, 8] established the notion of
edge exchangeability used here and provided characterizations via exchangeable partitions and feature
allocations, as in Appendix C. Broderick and Cai [7], Cai and Broderick [10] developed a frequency
model based on weights (wi)i generated from a Poisson process and studied several types of power
laws in the model. Crane and Dempsey [13] established a similar notion of edge exchangeability
in the context of a larger statistical modeling framework. Crane and Dempsey [13, 14] provided
sparsity and power law results for the case where the weights (wi)i are generated from a Pitman-Yor
process and power law degree distribution simulations. Williamson [23] described a similar notion
of edge exchangeability and developed an edge-exchangeable model where the weights (wi)i are
generated from a Dirichlet process, a mixture model extension, and an efficient Bayesian inference
procedure. In work concurrent to the present paper, Crane and Dempsey [15] re-examined edge
exchangeability, provided a representation theorem, and studied sparsity and power laws for the same
model based on Pitman-Yor weights. By contrast, we here obtain sparsity results across all Poisson
point process-based graph frequency models of the form in Equation (2) below, and use a specific
three-parameter beta process rate measure only for simulations in Section 6.

5 Sparsity in Poisson process graph frequency models

We now demonstrate that, unlike vertex exchangeability, edge exchangeability allows for sparsity in
random graph sequences. We develop a class of sparse, edge-exchangeable multigraph sequences via
the Poisson point process construction introduced in Section 3, along with their binary restrictions.

Model. LetW be a Poisson process on [0, 1] with a nonatomic, σ-finite rate measure ν satisfying
ν([0, 1]) = ∞ and

∫ 1

0
wν(dw) < ∞. These two conditions on ν guarantee thatW is a countably

infinite collection of rates in [0, 1] and that
∑
w∈W w <∞ almost surely. We can useW to construct

the set of rates: w{i,j} = wiwj if i 6= j, and w{i,i} = 0. The edge labels θ{i,j} are unimportant in
characterizing sparsity, and so can be ignored.

To use the multiple-edges-per-step graph frequency model from Section 3, we let f(·|w) be Bernoulli
with probability w. Since edge {i, j} is added in each step with probability wiwj , its multiplicity
M{i,j} after n steps has a binomial distribution with parameters n,wiwj . Note that self-loops are
avoided by setting w{i,i} = 0. Therefore, the graph after n steps is described by:

W ∼ PPP(ν) M{i,j}
ind∼ Binom(n,wiwj) for i < j ∈ N. (2)

As mentioned earlier, this generative model yields an edge-exchangeable graph, with edge multiset
En containing {i, j} with multiplicity M{i,j}, and active vertices Vn = {i :

∑
jM{i,j} > 0}.

Although this model generates multigraphs, it can be modified to sample a binary graph (V̄n, Ēn) by
setting V̄n = Vn and Ēn to the set of edges {i, j} such that {i, j} has multiplicity ≥ 1 in En. We
can express the number of vertices and edges, in the multi- and binary graphs respectively, as

|V̄n|= |Vn|=
∑
i

1

∑
j 6=i

M{i,j} > 0

 , |En| =
1

2

∑
i6=j

M{i,j}, |Ēn| =
1

2

∑
i6=j

1
(
M{i,j} > 0

)
.
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Moments. Recall that a sequence of graphs is considered sparse if |En| = o(|Vn|2). Thus, sparsity
in the present setting is an asymptotic property of a random graph sequence. Rather than consider the
asymptotics of the (dependent) random sequences |En| and |Vn| in concert, Lemma 5.1 allows us to
consider the asymptotics of their first moments, which are deterministic sequences and can be analyzed
separately. We use ∼ to denote asymptotic equivalence, i.e., an ∼ bn ⇐⇒ limn→∞

an
bn

= 1. For
details on our asymptotic notation and proofs for this section, see Appendix D.
Lemma 5.1. The number of vertices and edges for both the multi- and binary graphs satisfy

|V̄n| = |Vn|
a.s.∼ E (|Vn|) , |En|

a.s.∼ E (|En|) , |Ēn|
a.s.∼ E

(
|Ēn|

)
, n→∞.

Thus, we can examine the asymptotic behavior of the random numbers of edges and vertices by
examining the asymptotic behavior of their expectations, which are provided by Lemma 5.2.
Lemma 5.2. The expected numbers of vertices and edges for the multi- and binary graphs are

E
(
|V̄n|

)
= E (|Vn|) =

∫ [
1− exp

(
−
∫

(1− (1− wv)n)ν(dv)

)]
ν(dw),

E (|En|) =
n

2

∫∫
wv ν(dw)ν(dv), E

(
|Ēn|

)
=

1

2

∫∫
(1− (1− wv)n) ν(dw)ν(dv).

Sparsity. We are now equipped to characterize the sparsity of this random graph sequence:
Theorem 5.3. Suppose ν has a regularly varying tail, i.e., there exist α ∈ (0, 1) and ` : R+ → R+

s.t. ∫ 1

x

ν(dw) ∼ x−α`(x−1), x→ 0 and ∀c > 0, lim
x→∞

`(cx)

`(x)
= 1.

Then as n→∞,

|Vn|
a.s.
= Θ(nα`(n)), |En|

a.s.
= Θ(n), |Ēn|

a.s.
= O

(
`(n1/2) min

(
n

1+α
2 , `(n)n

3α
2

))
.

Theorem 5.3 implies that the multigraph is sparse when α ∈ (1/2, 1), and that the restriction to the
binary graph is sparse for any α ∈ (0, 1). See Remark D.7 for a discussion. Thus, edge-exchangeable
random graph sequences allow for a wide range of sparse and dense behavior.

6 Simulations

In this section, we explore the behavior of graphs generated by the model from Section 5 via
simulation, with the primary goal of empirically demonstrating that the model produces sparse graphs.
We consider the case when the Poisson process generating the weights in Equation (2) has the rate
measure of a three-parameter beta process (3-BP) on (0, 1) [9, 21]:

ν(dw) = γ
Γ(1 + β)

Γ(1− α)Γ(α+ β)
w−1−α(1− w)α+β−1 dw, (3)

with mass γ > 0, concentration β > 0, and discount α ∈ (0, 1). In order for the 3-BP to have
finite total mass

∑
j wj <∞, we require that β > −α. We draw realizations of the weights from a

3-BP(γ, β, α) according to the stick-breaking representation given by Broderick, Jordan, and Pitman
[9]. That is, the wi are the atom weights of the measure W for

W =

∞∑
i=1

Ci∑
j=1

V
(i)
i,j

i−1∏
l=1

(1− V (`)
i,j )δψi,j , Ci

iid∼ Pois(γ),

V
(`)
i,j

ind∼ Beta(1− α, β + `α), ψi,j
iid∼ B0

and any continuous (i.e., non-atomic) choice of distribution B0.

Since simulating an infinite number of atoms is not possible, we truncate the outer summation in i to
2000 rounds, resulting in

∑2000
i=1 Ci weights. The parameters of the beta process were fixed to γ = 3

and θ = 1, as they do not influence the sparsity of the resulting graph frequency model, and we varied
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(a) Multigraph edges vs. active vertices

(b) Binary graph edges vs. active vertices

Figure 3: Data simulated from a graph frequency model with weights generated according to a 3-BP.
Colors represent different random draws. The dashed line has a slope of 2.

the discount parameter α. Given a single draw W (at some specific discount α), we then simulated
the edges of the graph, where the number of Bernoulli draws N varied between 50 and 2000.

Figure 3a shows how the number of edges varies versus the total number of active vertices for
the multigraph, with different colors representing different random seeds. To check whether the
generated graph was sparse, we determined the exponent by examining the slope of the data points
(on a log-scale). In all plots, the black dashed line is a line with slope 2. In the multigraph, we found
that for the discount parameter settings α = 0.6, 0.7, the slopes were below 2; for α = 0, 0.3, the
slopes were greater than 2. This corresponds to our theoretical results; for α < 0.5 the multigraph
is dense with slope greater than 2, and for α > 0.5 the multigraph is sparse with slope less than 2.
Furthermore, the sparse graphs exhibit power law relationships between the number of edges and
vertices, i.e., |EN |

a.s.∼ c |VN |b, N →∞, where b ∈ (1, 2), as suggested by the linear relationship in
the plots between the quantities on a log-scale. Note that there are necessarily fewer edges in the
binary graph than in the multigraph, and thus this plot implies that the binary graph frequency model
can also capture sparsity. Figure 3b confirms this observation; it shows how the number of edges
varies with the number of active vertices for the binary graph. In this case, across α ∈ (0, 1), we
observe slopes that are less than 2. This agrees with our theory from Section 5, which states that the
binary graph is sparse for any α ∈ (0, 1).

7 Conclusions

We have proposed an alternative form of exchangeability for random graphs, which we call edge
exchangeability, in which the distribution of a graph sequence is invariant to the order of the edges. We
have demonstrated that edge-exchangeable graph sequences, unlike traditional vertex-exchangeable
sequences, can be sparse by developing a class of edge-exchangeable graph frequency models that
provably exhibit sparsity. Simulations using edge frequencies drawn according to a three-parameter
beta process confirm our theoretical results regarding sparsity. Our results suggest that a variety of
future directions would be fruitful—including theoretically characterizing different types of power
laws within graph frequency models, characterizing the use of truncation within graph frequency
models as a means for approximate Bayesian inference in graphs, and understanding the full range of
distributions over sparse, edge-exchangeable graph sequences.
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