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Abstract
Random projections constitute a simple, yet effective technique for dimensionality
reduction with applications in learning and search problems. In the present paper,
we consider the problem of estimating cosine similarities when the projected
data undergo scalar quantization to b bits. We here argue that the maximum
likelihood estimator (MLE) is a principled approach to deal with the non-linearity
resulting from quantization, and subsequently study its computational and statistical
properties. A specific focus is on the on the trade-off between bit depth and the
number of projections given a fixed budget of bits for storage or transmission.
Along the way, we also touch upon the existence of a qualitative counterpart to the
Johnson-Lindenstrauss lemma in the presence of quantization.

1 Introduction
The method of random projections (RPs) is an important approach to linear dimensionality reduc-
tion [23]. RPs have established themselves as an alternative to principal components analysis which
is computationally more demanding. Instead of determining an optimal low-dimensional subspace
via a singular value decomposition, the data are projected on a subspace spanned by a set of directions
picked at random (e.g. by sampling from the Gaussian distribution). Despite its simplicity, this
approach comes with a theoretical guarantee: as asserted by the celebrated Johnson-Lindenstrauss
(J-L) lemma [6, 12], k = O(log n/ε2) random directions are enough to preserve the squared distances
between all pairs from a data set of size n up to a relative error of ε, irrespective of the dimension d the
data set resides in originally. Inner products are preserved similarly. As a consequence, procedures
only requiring distances or inner products can be approximated in the lower-dimensional space,
thereby achieving substantial reductions in terms of computation and storage, or mitigating the curse
of dimensionality. The idea of RPs has thus been employed in linear learning [7, 19], fast matrix
factorization [24], similarity search [1, 9], clustering [2, 5], statistical testing [18, 22], etc.

The idea of data compression by RPs has been extended to the case where the projected data are
additionally quantized to b bits so as to achieve further reductions in data storage and transmission.
The extreme case of b = 1 is well-studied in the context of locality sensitive hashing [4]. More
recently, b-bit quantized random projections for b ≥ 1 have been considered from different perspec-
tives. The paper [17] studies Hamming distance-based estimation of cosine similarity and linear
classification when using a coding scheme that maps a real value to a binary vector of length 2b. It
is demonstrated that for similarity estimation, taking b > 1 may yield improvements if the target
similarity is high. The paper [10] is dedicated to J-L-type results for quantized RPs, considerably
improving over an earlier result of the same flavor in [15]. The work [15] also discusses the trade-off
between the number of projections k and number of bits b per projection under a given budget of bits
as it also appears in the literature on quantized compressed sensing [11, 14].

In the present paper, all of these aspects and some more are studied for an approach that can be
substantially more accurate for small b (specifically, we focus on 1 ≤ b ≤ 6) than those in [10, 17, 15].
In [10, 15] the non-linearity of quantization is ignored by treating the quantized data as if they had
been observed directly. Such “linear” approach benefits from its simplicity, but it is geared towards
fine quantization, whereas for small b the bias resulting from quantization dominates. By contrast,
the approach proposed herein makes full use of the knowledge about the quantizer. As in [17] we
suppose that the original data set is contained in the unit sphere of Rd, or at least that the Euclidean

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.



norms of the data points are given. In this case, approximating distances boils down to estimating
inner products (or cosine similarity) which can be done by maximum likelihood (ML) estimation
based on the quantized data. Several questions of interest can be addressed by considering the Fisher
information of the maximum likelihood estimator (MLE). With regard to the aforementioned trade-off
between k and b, it turns out that the choice b = 1 is optimal (in the sense of yielding maximum
Fisher information) as long as the underlying similarity is smaller than 0.2; as the latter increases, the
more effective it becomes to increase b. By considering the rate of growth of the Fisher information
near the maximum similarity of one, we discover a gap between the finite bit and infinite bit case with
rates of Θ((1 − ρ∗)−3/2) and Θ((1 − ρ∗)−2), respectively, where ρ∗ denotes the target similarity.
As an implication, an exact equivalent of the J-L lemma does not exist in the finite bit case.

The MLE under study does not have a closed form solution. We show that it is possible to approximate
the MLE by a non-iterative scheme only requiring pre-computed look-up tables. Derivation of this
scheme lets us draw connections to alternatives like the Hamming distance-based estimator in [17].

We present experimental results concerning applications of the proposed approach in nearest neighbor
search and linear classification. In nearest neighbor search, we focus on the high similarity regime and
confirm theoretical insights into the trade-off between k and b. For linear classification, we observe
empirically that intermediate values of b can yield better trade-offs than single-bit quantization.

Notation. We let [d] = {1, . . . , d}. I(P ) denotes the indicator function of expression P . For a
function f(ρ), we use ḟ(ρ) and f̈(ρ) for its first resp. second derivative. Pρ and Eρ denote probabil-
ity/expectation w.r.t. a zero mean, unit variance bivariate normal distribution with correlation ρ.

Supplement: Proofs and additional experimental results can be found in the supplement.

2 Quantized random projections, properties of the MLE, and implications
We start by formally introducing the setup, the problem and the approach that is taken before
discussing properties of the MLE in this specific case, along with important implications.

Setup. Let X = {x1, . . . , xn} ⊂ Sd−1, where Sd−1 := {x ∈ Rd : ‖x‖2 = 1} denotes the unit
sphere in Rd, be a set of data points. We think of d being large. As discussed below, the requirement
of having all data points normalized to unit norm is not necessary, but it simplifies our exposition
considerably. Let x, x′ be a generic pair of elements from X and let ρ∗ = 〈x, x′〉 denote their inner
product. Alternatively, we may refer to ρ∗ as (cosine) similarity or correlation. Again for simplicity,
we assume that 0 ≤ ρ∗ < 1; the case of negative ρ∗ is a trivial extension because of symmetry.

We aim at reducing the dimensionality of the given data set by means of a random projection, which
is realized by sampling a random matrix A of dimension k by d whose entries are i.i.d. N(0, 1)
(i.e., zero-mean Gaussian with unit variance). Applying A to X yields Z = {zi}ni=1 ⊂ Rk with
zi = Axi, i ∈ [n]. Subsequently, the projected data points {zi}ni=1 are subject to scalar quantization.
A b-bit scalar quantizer is parameterized by 1) thresholds t = (t1, . . . , tK−1) with 0 = t0 < t1 <
. . . < tK−1 < tK = +∞ inducing a partitioning of the positive real line into K = 2b−1 intervals
{[tr−1, tr), r ∈ [K]} and 2) a codebookM = {µ1, . . . , µK} with code µr representing interval
[tr−1, tr), r ∈ [K]. Given t andM, the scalar quantizer (or quantization map) is defined by

Q : R→M± := −M∪M, z 7→ Q(z) = sign(z)

K∑
r=1

µrI(|z| ∈ [tr−1, tr)) (1)

The projected, b-bit quantized data result as Q = {qi}ni=1 ⊂ (M±)k, qi = (Q(zij) )kj=1, i ∈ [n].

Problem statement. Let z, z′ and q, q′ denote the pairs corresponding to x, x′ in Z respectively
Q. The goal is to estimate ρ∗ = 〈x, x′〉 from q, q′ which automatically yields an estimate of
‖x − x′‖22 = 2(1 − ρ∗). If z, z′ were given, it would be standard to use 1

k 〈z, z
′〉 as an unbiased

estimator of ρ∗. This "linear" approach is commonly adopted when the data undergo uniform
quantization with saturation level T (i.e., tr = T · r/(K − 1), µr = (tr − tr−1)/2, r ∈ [K − 1],
µK = T ), based on the rationale that as b → ∞, 1

k 〈q, q
′〉 → 1

k 〈z, z
′〉 which in turn is sharply

concentrated around its expectation ρ∗.

There are two major concerns about this approach. First, for finite b the estimator 1
k 〈q, q

′〉 has a
bias resulting from the non-linearity of Q that does not vanish as k →∞. For small b, the effect of
this bias is particularly pronounced. Lloyd-Max quantization (see Proposition 1 below) in place of
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Figure 1: (L, M): Partitioning into cells for b = 2 and cell probabilities. (R): Empirical MSE
k(ρ̂MLE − ρ∗)2 for b = 3 (averaged over 104 i.i.d. data sets with k = 100) compared to the inverse
information. The disagreement for ρ ≤ 0.2 results from positive truncation of the MLE at zero.

uniform quantization provides some remedy, but the issue of non-vanishing bias remains. Second,
even for infinite b, the approach is statistically not efficient. In order to see this, note that

{(zj , z′j)}kj=1
i.i.d.∼ (Z,Z ′), where (Z,Z ′) ∼ N2

(
0,

(
1 ρ∗
ρ∗ 1

))
. (2)

It is shown in [16] that the MLE of ρ∗ under the above bivariate normal model has a variance of
(1 − ρ2∗)2/{k (1 + ρ2∗)}, while Var(〈z, z′〉 /k) = (1 + ρ2∗)/k which is a substantial difference for
large ρ∗. The higher variance results from not using the information that the components of z and z′
have unit variance [16]. In conclusion, the linear approach as outlined above suffers from noticeable
bias/and or high variance if the similarity ρ∗ is high, and it thus makes sense to study alternatives.

Maximum likelihood estimation of ρ∗. We here propose the MLE in place of the linear approach.
The advantage of the MLE is that it can have substantially better statistical performance as the
quantization map is explicitly taken into account. The MLE is based on bivariate normality according
to (2). The effect of quantization is identical to that of what is known as interval censoring in statistics,
i.e., in place of observing a specific value, one only observes that the datum is contained in an interval.
The concept is easiest to understand in the case of one-bit quantization. For any j ∈ [k], each of
the four possible outcomes of (qj , q

′
j) corresponds to one of the four orthants of R2. By symmetry,

the probability of (qj , q
′
j) falling into the positive or into the negative orthant are identical; both

correspond to a “collision”, i.e., to the event {qj = q′j}. Likewise, the probability of (qj , q
′
j) falling

into one of the remaining two orthants are identical, corresponding to a disagreement {qj 6= q′j}.
Accordingly, the likelihood function in ρ is given by

k∏
j=1

{π(ρ)I(qj=q
′
j)(1− π(ρ))I(qj 6=q

′
j)}, π(ρ) := Pρ(sign(Z) = sign(Z ′)),

where π(ρ) denotes the probability of a collision after quantization for (Z,Z ′) as in (2) with ρ∗
replaced by ρ. It is straightforward to show that the MLE is given by ρ̂MLE = cos(π(1− π̂)), where
π is the circle constant and π̂ = k−1

∑k
j=1 I(qj = q′j) is the empirical counterpart to π(ρ). We note

that the expression for ρ̂MLE follows the same rationale as used for the simhash in [4].

With these preparations, it is not hard to see how the MLE generalizes to cases with more than one
bit. For b = 2, there is a single non-trivial threshold t1 that yields a partitioning of the real axis into
four bins and accordingly a component (qj , q

′
j) of a quantized pair can fall into 16 possible cells

(rectangles), cf. Figure 1. By orthant symmetry and symmetries within each orthant, one ends up
with six distinct probabilities p1, . . . , p6 for (qj , q

′
j) falling into one of those cells depending on ρ.

Weighting those probabilities according to the number of their occurrences in the left part of Figure 1,
we end up with probabilities π1 = π1(ρ), . . . , π6 = π6(ρ) that sum up to one. The corresponding
relative cell frequencies π̂1, . . . , π̂6 resulting from (qj , q

′
j)
k
j=1 form a sufficient statistic for ρ. For

general b, we have 22bcells and L = K(K + 1) (recall that K = 2b−1) distinct probabilities, so
that L = 20, 72, 272, 1056 for b = 3, . . . , 6. This yields the following compact expressions for the
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Figure 2: b · I−1b (ρ)/I−11 (ρ) vs. ρ for different choices of t: Lloyd-Max and uniform quantization
with saturation levels T0.9, T0.95, T0.99, cf. §4.1 for a definition. The latter are better suited for high
similarity. The differences become smaller as b increases. Note that for b = 6, ρ > 0.7 is required for
either quantization scheme to achieve a better trade-off than the one-bit MLE.

negative log-likelihood l(ρ) and the Fisher information I(ρ) = Eρ[l̈(ρ)] (up to a factor of k)

l(ρ) =

L∑
`=1

π̂` log(π`(ρ)), I(ρ) =

L∑
`=1

(π̇`(ρ))2

π`(ρ)
. (3)

The information I(ρ) is of particular interest. By classical statistical theory [21], {E[ρ̂MLE]− ρ∗}2 =
O(1/k2), Var(ρ̂MLE) = I−1(ρ)/k, E[(ρ̂MLE − ρ∗)2] = I−1(ρ)/k + O(1/k2) as k → ∞. While
this is an asymptotic result, it agrees to a good extent with what one observes for finite, but not too
small samples, cf. Figure 1. We therefore treat the inverse information as a proxy for the accuracy of
ρ̂MLE in subsequent analysis.

Remark. We here briefly address the case of known, but possibly non-unit norms, i.e., ‖x‖2 = σx,
‖x′‖2 = σx′ . This can be handled by re-scaling the thresholds of the quantizer (1) by σx resp. σx′ ,
estimating ρ∗ based on q, q′ as in the unit norm case, and subsequently re-scaling the estimate by
σxσx′ to obtain an estimate of 〈x, x′〉. The assumption that the norms are known is not hard to satisfy
in practice as they can be computed by one linear scan during data collection. With a limited bit
budget, the norms additionally need to be quantized. It is unclear how to accurately estimate them
from quantized data (for b = 1, it is definitely impossible).

Choice of the quantizer. Equipped with the Fisher information (3), one of the questions that can
be addressed is quantizer design. Note that as opposed to the linear approach, the specific choice
of the {µr}Kr=1 in (1) is not important as ML estimation only depends on cell frequencies but not
on the values associated with the intervals {(tr−1, tr]}Kr=1. The thresholds t, however, turn out to
have a considerable impact, at least for small b. An optimal set of thresholds can be determined by
minimizing the inverse information I−1(ρ; t) w.r.t. t for fixed ρ. As the underlying similarity is not
known, this may not seem practical. On the other hand, prior knowledge about the range of ρ may be
available, or the closed form one-bit estimator can be used as pilot estimator. For ρ = 0, the optimal
set of thresholds coincide with those of Lloyd-Max quantization [20].
Proposition 1. Let g ∼ N(0, 1) and consider Lloyd-Max quantization given by

(t∗, {µ∗r}Kr=1) = argmin
t,{µr}Kr=1

E[{g −Q(g; t, {µr}Kr=1)}2]. We also have t∗ = argmin
t

I−1(0; t).

The Lloyd-Max problem can be solved numerically by means of an alternating scheme which can
be shown to converge to a global optimum [13]. For ρ > 0, an optimal set of thresholds can be
determined by general procedures for nonlinear optimization. Evaluation of I−1(ρ; t) requires
computation of the probabilities {π`(ρ; t)}L`=1 and their derivatives {π̇`(ρ; t)}L`=1. The latter are
available in closed form (cf. supplement), while for the former specialized numerical integration
procedures [8] can be used. In order to avoid multi-dimensional optimization, it makes sense to
confine oneself to thresholds of the form tr = T · r/(K − 1), r ∈ [K − 1], so that only T needs to
be optimized. Even though the Lloyd-Max scheme performs reasonably also for large values of ρ,
the one-parameter scheme may still yield significant improvements in that case, cf. Figure 2. Once
b ≥ 5, the differences between the two schemes become marginal.

Trade-off between k and b. Suppose we are given a fixed budget of bits B = k · b for transmission
or storage, and we are in free choosing b. The optimal choice of b can be determined by comparing
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Figure 3: Trade-off between k and b. (L): b · I−1b (ρ) vs. ρ for 1 ≤ b ≤ 6 with t chosen by Lloyd-Max.
(M): Zoom into the range 0.9 ≤ ρ ≤ 1. (R): choice of b minimizing b · I−1b (ρ) vs. ρ.

the inverse Fisher information I−1b (ρ) for changing b with t chosen according to either of the two
schemes above. Since the mean squared error of ρ̂MLE decays with 1/k for any b, for b′ with b′ > b
to be more efficient than b at the bit scale it, is required that Ib′(ρ)/Ib(ρ) > b′/b as with the smaller
choice b one would be allowed to increase k by a factor of b′/b. Again, this comparison is dependent
on a specific ρ. From Figure 3, however, one can draw general conclusions: for ρ < 0.2, it does not
pay off to increase b beyond one; as ρ increases, higher values of b achieve a better trade-off with
even b = 6 being the optimal choice for ρ > 0.98. The intuition is that two points of high similarity
agree on their first significant bit for most coordinates, in which case increasing the number of bits
becomes beneficial. This finding is particularly relevant to (near-)duplicate detection/nearest neighbor
search where high similarities prevail, an application investigated in §4.

Rate of growth of the Fisher information near ρ = 1. Interestingly, we do not observe a “saturation”
even for b = 6 in the sense that for ρ close enough to 1, one can still achieve an improvement
at the bit scale compared to 1 ≤ b ≤ 5. This raises the question about the rate of growth of
the Fisher information near one relative to the full precision case (b → ∞). As shown in [16]
I∞(ρ) = (1 + ρ2)/(1− ρ2)2 = Θ((1− ρ)−2) as ρ→ 1. As stated below, in the finite bit case, the
exponent is only 3/2 for all b. This is a noticeable gap.
Theorem 1. For 1 ≤ b <∞, we have I(ρ) = Θ((1− ρ)−3/2) as ρ→ 1.

The theorem has an interesting implication with regard to the existence of a Johnson-Lindenstrauss
(J-L)-type result for quantized random projections. In a nutshell, the J-L lemma states that as long as
k = Ω(log n/ε2), with high probability we have that

(1− ε)‖xi − xj‖22 ≤ ‖zi − zj‖22/k ≤ (1 + ε)‖xi − xj‖22 for all pairs (i, j),

i.e., the distances of the data in X are preserved in Z up to a relative error of ε. In our setting, one
would hope for an equivalent of the form

(1− ε)2(1− ρij) ≤ 2(1− ρ̂ijMLE) ≤ (1 + ε)2(1− ρij) ∀(i, j) as long as k = Ω(log n/ε2), (4)

where ρij = 〈xi, xj〉, i, j ∈ [n], and ρ̂ijMLE denotes the MLE for ρij given quantized RPs. The
standard proof of the J-L lemma [6] combines norm preservation for each individual pair of the form

P((1− ε)‖xi − xj‖22 ≤ ‖zi − zj‖22/k ≤ (1 + ε)‖xi − xj‖22) ≤ 2 exp(−kΘ(ε2))

with a union bound. Such a concentration result does not appear to be attainable for ρ̂MLE − ρ∗, not
even asymptotically as k →∞ in which case ρ̂MLE − ρ∗ is asymptotically normal with mean zero
and variance I−1(ρ∗)/k. This yields an asymptotic tail bound of the form

P(|ρ̂MLE − ρ∗| > δ) ≤ 2 exp(−δ2k/{2I−1(ρ∗)}). (5)
For a result of the form (4), which is about relative distance preservation, one would need to choose δ
proportional to ε(1− ρ∗). In virtue of Theorem 1, I−1(ρ∗) = Θ((1− ρ∗)3/2) as ρ∗ → 1 so that with
δ chosen in that way the exponent in (5) would vanish as ρ∗ → 1. By constrast, the required rate of
decay of I−1(ρ∗) is achieved in the full precision case. Given the asymptotic optimality of the MLE
according to the Cramer-Rao lower bound suggests that a qualitative counterpart to the J-L lemma (4)
is out of reach. Weaker versions in which the required lower bound on k would depend inversely on
the minimum distance of points in X are still possible. Similarly, a weaker result of the form

2(1− ρij)− ε ≤ 2(1− ρ̂ijMLE) ≤ 2(1− ρij) + ε ∀(i, j) as long as k = Ω(log n/ε2),
is known to hold already in the one-bit case and follows immediately from the closed form expression
of the MLE, Hoeffdings’s inequality, and the union bound; cf. e.g. [10].
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3 A general class of estimators and approximate MLE computation
A natural concern about the MLE relative to the linear approach is that it requires optimization via an
iterative scheme. The optimization problem is smooth, one-dimensional and over the unit interval,
hence not challenging for modern solvers. However, in applications it is typically required to compute
the MLE many times, hence avoiding an iterative scheme for optimization is worthwhile. In this
section, we introduce an approximation to the MLE that only requires at most two table look-ups.

A general class of estimators. Let π(ρ) = (π1(ρ), . . . , πL(ρ))>,
∑L
`=1 π`(ρ) = 1, be the normal-

ized cell frequencies depending on ρ as defined in §2, let further w ∈ RL be a fixed vector of weights,
and consider the map ρ 7→ θ(ρ;w) := 〈π(ρ), w〉. If 〈π̇(ρ), w〉 > 0 uniformly in ρ (such w always
exist), θ(·;w) is increasing and has an inverse θ−1(· ;w). We can then consider the estimator

ρ̂w = θ−1(〈π̂, w〉 ;w), (6)

where we recall that π̂ = (π̂, . . . , π̂L)> are the empirical cell frequencies given quantized data q, q′.
It is easy to see that ρ̂w is a consistent estimator of ρ∗: we have π̂ → π(ρ∗) in probability by the
law of large numbers, and θ−1(〈π̂, w〉 ;w) → θ−1(〈π(ρ∗), w〉 ;w) = θ−1(θ(ρ∗;w);w) = ρ∗ by
two-fold application of the continuous mapping theorem. By choosing w such that w` = 1 for `
corresponding to cells contained in the positive/negative orthant and w` = −1 otherwise, ρ̂w becomes
the one-bit MLE. By choosing w` = 1 for diagonal cells (cf. Figure 1) corresponding to a collision
event {qj = q′j} and w` = 0 otherwise, we obtain the Hamming distance-based estimator in [17].
Alternatively, we may choose w such that the asymptotic variance of ρ̂w is minimized.
Theorem 2. For any w s.t. π̇(ρ∗)

>w 6= 0, we have Var(ρ̂w) = V (w; ρ∗)/k +O(1/k2) as k →∞,

V (w; ρ∗) = (w>Σ(ρ∗)w)/{π̇(ρ∗)
>w}2, Σ(ρ∗) := Π(ρ∗)− π(ρ∗)π(ρ∗)

>,

and Π(ρ∗) := diag( (π`(ρ∗))
L
`=1 ). Moreover, let w∗ = Π−1(ρ∗)π̇(ρ∗). Then:

argminw V (w; ρ∗) = {α(w∗ + c1), α 6= 0, c ∈ R}, V (w∗; ρ∗) = I−1(ρ∗),

and E[(ρ̂w∗ − ρ∗)2] = E[(ρ̂MLE − ρ∗)2] +O(1/k2).

Theorem 2 yields an expression for the optimal weights w∗ = Π−1(ρ∗)π̇(ρ∗). This optimal choice is
unique up to translation by a multiple of the constant vector 1 and scaling. The estimator ρ̂w∗ based
on the choice w = w∗ achieves asymptotically the same statistical performance as the MLE.

Approximate computation. The estimator ρ̂w∗ is not operational as the optimal choice of the
weights depends on the estimand itself. This issue can be dealt with by using a pilot estimator ρ̂0 like
the one-bit MLE, the Hamming distance-based estimator in [17] or ρ̂0 = ρ̂w, where w =

∫ 1

0
w(ρ) dρ

averages the expression w(ρ) = Π−1(ρ)π̇(ρ) for the optimal weights over ρ. Given the pilot
estimator, we may then replace w∗ by w(ρ̂0) and use ρ̂w(ρ̂0) as a proxy for ρ̂w∗ which achieves the
same statistical performance asymptotically.

A second issue is that computation of ρ̂w (6) entails inversion of the function θ(·;w). The inverse
may not be defined in general, but for the choices of w that we have in mind, this is not a concern
(cf. supplement). Inversion of θ(·;w) can be carried out with tolerance ε by tabulating the function
values on a uniform grid of cardinality d1/εe and performing a table lookup for each query. When
computing ρ̂w(ρ̂0), the weights depends on the data via the pilot estimator. We thus need to tabulate
w(ρ) on a grid, too. Accordingly, a whole set of look-up tables is required for function inversion, one
for each set of weights. Given parameters ε, δ > 0, a formal description of our scheme is as follows.

1. Set R = d1/εe, ρr = r/R, r ∈ [R], and B = d1/δe, ρb = b/B, b ∈ [B].
2. Tabulate w(ρb), b ∈ [B], and function values θ(ρr;w(ρb)) = 〈w(ρb), π(ρr)〉, r ∈ [R], b ∈ [B].

Steps 1. and 2. constitute a one-time pre-processing. Given data q, q′, we proceed as follows.
3. Obtain π̂ and the pilot estimator ρ̂0 = θ−1(〈π̂, w〉 ;w), withw defined in the previous paragraph.
4. Return ρ̂ = θ−1(〈π̂, w(ρ̃0)〉 ;w(ρ̃0)), where ρ̃0 is the value closest to ρ̂0 among the {ρb}.

Step 2. requires about C = d1/εe · d1/δe · L computations/storage. From experimental results we
find that ε = 10−4 and δ = .02 appear sufficient for practical purposes, which is still manageable
even for b = 6 with L = 1056 cells in which case C ≈ 5 × 108. Again, this cost is occurred
only once independent of the data. The function inversions in steps 3. and 4. are replaced by table
lookups. By organizing computations efficiently, the frequencies π̂ can be obtained from one pass
over (qj · q′j), j ∈ [k]. Equipped with the look-up tables, estimating the similarity of two points
requires O(k + L+ log(1/ε)) flops which is only slightly more than a linear scheme with O(k).
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Figure 4: Average fraction of K = 10 nearest neighbors retrieved vs. total # of bits (log2 scale) for
1 ≤ b ≤ 6. b =∞ (dashed) represents the MLE based on unquantized data, with k as for b = 6. The
oracle curve (dotted) corresponds to b =∞ with maximum k (i.e., as for b = 1).

4 Experiments

We here illustrate the approach outlined above in nearest neighbor search and linear classification.
The focus is on the trade-off between b and k, in particular in the presence of high similarity.

4.1 Nearest Neighbor Search

Finding the most similar data points for a given query is a standard task in information retrieval.
Another application is nearest neighbor classification. We here investigate how the performance of
our approach is affected by the choice of k, b and the quantization scheme. Moreover, we compare
to two baseline competitors, the Hamming distance-based approach in [17] and the linear approach
in which the quantized data are treated like the original unquantized data. For the approach in [17],
similarity of the quantized data is measured in terms of their Hamming distance

∑k
j=1 I(qj 6= q′j).

Synthetic data. We generate k i.i.d. samples of Gaussian data, where each sample X =
(X0, X1, . . . , X96) is generated as X0 ∼ N(0, 1), Xj = ρjX0 + (1− ρ2j )1/2Zj , 1 ≤ j ≤ 96, where
the {Zj}96j=1 are i.i.d. N(0, 1) and independent of X0. We have E[(X0 −Xj)

2] = 2(1− ρj), where
ρj = min{0.8+(j−1)0.002, 0.99}, 1 ≤ j ≤ 96. The thus generated data subsequently undergo b-bit
quantization, for 1 ≤ b ≤ 6. Regarding the number of samples, we let k ∈ {26/b, 27/b, . . . , 213/b}
which yields bit budgets between 26 and 213 for all b. The goal is to recover the K nearest neighbors
of X0 according to the {ρj}, i.e., X96 is the nearest neighbor etc. The purpose of this specific setting
is to mimic the use of quantized random projections in the situation of a query x0 and data points
X = {x1, . . . , x96} having cosine similarities {ρj}96j=1 with the query.

Real data. We consider the Farm Ads data set (n = 4, 143, d = 54, 877) from the UCI repository and
the RCV1 data set (n = 20, 242, d = 47, 236) from the LIBSVM webpage [3]. For both data sets,
each instance is normalized to unit norm. As queries we select all data points whose first neighbor
has (cosine) similarity less than 0.999, whose tenth neighbor has similarity at least 0.8 and whose
hundredth neighbor has similarity less than 0.5. These restrictions allow for a more clear presentation
of our results. Prior to nearest neighbor search, b-bit quantized random projections are applied to the
data, where the ranges for b and for the number of projections k is as for the synthetic data.

Quantization. Four different quantization schemes are considered: Lloyd-Max quantization and
thresholds tr = Tρ · r/(K − 1), r ∈ [K − 1], where Tρ is chosen to minimize I−1(ρ); we consider
ρ ∈ {0.9, 0.95, 0.99}. For the linear approach, we choose µr = E[g|g ∈ (tr−1, tr)], r ∈ [K], where
g ∼ N(0, 1). For our approach and that in [17] the specific choice of the {µr} is not important.

Evaluation. We perform 100 respectively 20 independent replications for synthetic respectively
real data. We then inspect the top K neighbors for K ∈ {3, 5, 10} returned by the methods under
consideration, and for each K we report the average fraction of true K neighbors that have been
retrieved over 100 respectively 20 replications, where for the real data, we also average over the
chosen queries (366 for farm and 160 for RCV1).

The results of our experiments point to several conclusions that can be summarized as follows.
One-bit quantization is consistently outperformed by higher-bit quantization. The optimal choice of b
depends on the underlying similarities, and interacts with the choice of t. It is an encouraging result
that the performance based on full precision data (with k as for b = 6) can essentially be matched
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Figure 5: Average fraction of K = 10 nearest neighbors retrieved vs. total # of bits (log2 scale) of our
approach (MLE) relative to that based on the Hamming distance and the linear approach for b = 2, 4.

when quantized data is used. For b = 2, the performance of the MLE is only marginally better than
the approach based on the Hamming distance. The superiority of the former becomes apparent once
b ≥ 4 which is expected since for increasing b the Hamming distance is statistically inefficient as it
only uses the information whether a pair of quantized data agrees/disagrees. Some of these findings
are reflected in Figures 4 and 5. We refer to the supplement for additional figures.

4.2 Linear Classification

We here outline an application to linear classification given features generated by (quantized) random
projections. We aim at reconstructing the original Gram matrix G = (〈xi, x′i〉)1≤i,i′≤n from Ĝ =
(ĝii′), where for i 6= i′, ĝii′ = ρ̂MLE(qi, qi′) equals the MLE of 〈xi, x′i〉 given a quantized data pair
qi, q

′
i, and ĝii′ = 1 else (assuming normalized data). The matrix Ĝ is subsequently fed into LIBSVM.

For testing, the inner products between test and training pairs are approximated accordingly.

Setup. We work with the farm data set using the first 3,000 samples for training, and the Arcene
data set from the UCI repository with 100 training and 100 test samples in dimension d = 104. The
choice of k and b is as in §4.1; for arcene, the total bit budget is lowered by a factor of 2. We perform
20 independent replications for each combination of k and b. For SVM classification, we consider
logarithmically spaced grids between 10−3 and 103 for the parameter C (cf. LIBSVM manual).
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Figure 6: (L, M): accuracy vs. bits, optimized over the SVM parameter C. (R) accuracy vs. C for a
fixed # bits. b =∞ indicates the performance based on unquantized data with k as for b = 6. The
oracle curve (dotted) corresponds to b =∞ with maximum k (i.e., as for b = 1).

Figure 6 (L, M) displays the average accuracy on the test data (after optimizing over C) in dependence
of the bit budget. For the farm Ads data set, b = 2 achieves the best trade-off, followed by b = 1 and
b = 3. For the Arcene data set, b = 3, 4 is optimal. In both cases, it does not pay off to go for b ≥ 5.

5 Conclusion
In this paper, we bridge the gap between random projections with full precision and random pro-
jections quantized to a single bit. While Theorem 1 indicates that an exact counterpart to the J-L
lemma is not attainable, other theoretical and empirical results herein point to the usefulness of the
intermediate cases which give rise to an interesting trade-off that deserves further study in contexts
where random projections can naturally be applied e.g. linear learning, nearest neighbor classification
or clustering. The optimal choice of b eventually depends on the application: increasing b puts an
emphasis on local rather than global similarity preservation.
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