End-to-End Goal-Driven Web Navigation

Rodrigo Nogueira Kyunghyun Cho
Tandon School of Engineering Courant Institute of Mathematical Sciences
New York University New York University
rodrigonogueira@nyu.edu kyunghyun.cho@nyu.edu
Abstract

We propose a goal-driven web navigation as a benchmark task for evaluating an
agent with abilities to understand natural language and plan on partially observed
environments. In this challenging task, an agent navigates through a website,
which is represented as a graph consisting of web pages as nodes and hyperlinks as
directed edges, to find a web page in which a query appears. The agent is required
to have sophisticated high-level reasoning based on natural languages and efficient
sequential decision-making capability to succeed. We release a software tool,
called WebNav, that automatically transforms a website into this goal-driven web
navigation task, and as an example, we make WikiNav, a dataset constructed from
the English Wikipedia. We extensively evaluate different variants of neural net
based artificial agents on WikiNav and observe that the proposed goal-driven web
navigation well reflects the advances in models, making it a suitable benchmark
for evaluating future progress. Furthermore, we extend the WikiNav with question-
answer pairs from Jeopardy! and test the proposed agent based on recurrent neural
networks against strong inverted index based search engines. The artificial agents
trained on WikiNav outperforms the engined based approaches, demonstrating the
capability of the proposed goal-driven navigation as a good proxy for measuring
the progress in real-world tasks such as focused crawling and question-answering.

1 Introduction

In recent years, there have been many exciting advances in building an artificial agent, which can be
trained with one learning algorithm, to solve many relatively large-scale, complicated tasks (see, e.g.,
[8L 110, 16].) In much of these works, target tasks were computer games such as Atari games [8] and
racing car game [0].

These successes have stimulated researchers to apply a similar learning mechanism to language-based
tasks, such as multi-user dungeon (MUD) games [9, |4]. Instead of visual perception, an agent
perceives the state of the world by its written description. A set of actions allowed to the agent is
either fixed or dependent on the current state. This type of task can efficiently evaluate the agent’s
ability of not only in planning but also language understanding.

We, however, notice that these MUD games do not exhibit the complex nature of natural languages
to the full extent. For instance, the largest game world tested by Narasimhan et al. [9] uses a
vocabulary of only 1340 unique words, and the largest game tested by He et al. [4] uses only 2258
words. Furthermore, the description of a state at each time step is almost always limited to the visual
description of the current scene, lacking any use of higher-level concepts present in natural languages.

In this paper, we propose a goal-driven web navigation as a large-scale alternative to the text-based
games for evaluating artificial agents with natural language understanding and planning capability.
The proposed goal-driven web navigation consists of the whole website as a graph, in which the web
pages are nodes and hyperlinks are directed edges. An agent is given a query, which consists of one

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

or more sentences taken from a randomly selected web page in the graph, and navigates the network,
starting from a predefined starting node, to find a target node in which the query appears. Unlike
the text-based games, this task utilizes the existing text as it is, resulting in a large vocabulary with
a truly natural language description of the state. Furthermore, the task is more challenging as the
action space greatly changes with respect to the state in which the agent is.

We release a software tool, called WebNav, that converts a given website into a goal-driven web
navigation task. As an example of its use, we provide WikiNav, which was built from English
Wikipedia. We design artificial agents based on neural networks (called NeuAgents) trained with
supervised learning, and report their respective performances on the benchmark task as well as the
performance of human volunteers. We observe that the difficulty of a task generated by WebNav is
well controlled by two control parameters; (1) the maximum number of hops from a starting to a
target node Ny, and (2) the length of query N,.

Furthermore, we extend the WikiNav with an additional set of queries that are constructed from
Jeopardy! questions, to which we refer by WikiNav-Jeopardy. We evaluate the proposed NeuAgents
against the three search-based strategies; (1) SimpleSearch, (2) Apache Lucene and (3) Google
Search API. The result in terms of document recall indicates that the NeuAgents outperform those
search-based strategies, implying a potential for the proposed task as a good proxy for practical
applications such as question-answering and focused crawling.

2 Goal-driven Web Navigation

A task T of goal-driven web navigation is characterized by

T: (Av 537gaqaRaQ)' (1)

The world in which an agent A navigates is represented as a graph G = (AN, £). The graph consists

of a set of nodes A/ = {sz}fg and a set of directed edges £ = {e; ;} connecting those nodes. Each
node represents a page of the website, which, in turn, is represented by the natural language text
D(s;) init. There exists an edge going from a page s; to s; if and only if there is a hyperlink in D(s;)
that points to s;. One of the nodes is designated as a starting node s from which any navigation
begins. A target node is the one whose natural language description contains a query ¢, and there
may be more than one target node.

At each time step, the agent A reads the natural language description D(s;) of the current node in
which the agent has landed. At no point, the whole world, consisting of the nodes and edges, nor its
structure or map (graph structure without any natural language description) is visible to the agent,
thus making this task partially observed.

Once the agent A reads the description D(s;) of the current node s;, it can take one of the actions
available. A set of possible actions is defined as a union of all the outgoing edges e; . and the stop
action, thus making the agent have state-dependent action space.

Each edge e; j, corresponds to the agent jumping to a next node sy, while the stop action corresponds
to the agent declaring that the current node s; is one of the target nodes. Each edge e; j, is represented
by the description of the next node D(sy). In other words, deciding which action to take is equivalent
to taking a peek at each neighboring node and seeing whether that node is likely to lead ultimately to
a target node.

The agent A receives a reward R(s;, q) when it chooses the stop action. This task uses a simple
binary reward, where

1, ifqCD(s)
R(si,q) = { 0, otherwise

Constraints It is clear that there exists an ultimate policy for the agent to succeed at every trial,
which is to traverse the graph breadth-first until the agent finds a node in which the query appears. To
avoid this kind of degenerate policies, the task includes a set of four rules/constraints €2

1. An agent can follow at most IV,, edges at each node.
2. An agent has a finite memory of size smaller than 7.

Table 1: Dataset Statistics of WikiNav-4-*, WikiNav-8-*, WikiNav-16-* and WikiNav-Jeopardy.
WikiNav-4-* WikiNav-8-* WikiNav-16-* WikiNav-Jeopardy

Train 6.0k IM 12M 113k
Valid 1k 20k 20k 10k
Test 1k 20k 20k 10k

3. An agent moves up to N, hops away from sg.
4. A query of size N, comes from at least two hops away from the starting node.

The first constraint alone prevents degenerate policies, such as breadth-first search, forcing the agent
to make good decisions as possible at each node. The second one further constraints ensure that the
agent does not cheat by using earlier trials to reconstruct the whole graph structure (during test time)
or to store the entire world in its memory (during training.) The third constraint, which is optional, is
there for computational consideration. The fourth constraint is included because the agent is allowed
to read the content of a next node.

3 WebNav: Software

As a part of this work, we build and release a software tool which turns a website into a goal-driven
web navigation taskp_-] We call this tool WebNav. Given a starting URL, the WebNav reads the whole
website, constructs a graph with the web pages in the website as nodes. Each node is assigned a
unique identifier s;. The text content of each node D(s;) is a cleaned version of the actual HTML
content of the corresponding web page. The WebNav turns intra-site hyperlinks into a set of edges
€ij-

In addition to transforming a website into a graph G from Eq. (I, the WebNav automatically selects
queries from the nodes’ texts and divides them into training, validation, and test sets. We ensure that
there is no overlap among three sets by making each target node, from which a query is selected,
belongs to only one of them.

Each generated example is defined as a tuple

X =(q,5",p") 2
where ¢ is a query from a web page s*, which was found following a randomly selected path
p* = (ss,...,s"). In other words, the WebNav starts from a starting page sg, random-walks the

graph for a predefined number of steps (N, /2, in our case), reaches a target node s* and selects a
query ¢ from D(s*). A query consists of N, sentences and is selected among the top-5 candidates
in the target node with the highest average TF-IDF, thus discouraging the WebNav from choosing a
trivial query.

For the evaluation purpose alone, it is enough to use only a query q itself as an example. However,
we include both one target node (among potentially many other target nodes) and one path from the
starting node to this target node (again, among many possible connecting paths) so that they can be
exploited when training an agent. They are not to be used when evaluating a trained agent.

4 WikiNav: A Benchmark Task

With the WebNav, we built a benchmark goal-driven navigation task using Wikipedia as a target
website. We used the dump file of the English Wikipedia from September 2015, which consists of
more than five million web pages. We built a set of separate tasks with different levels of difficulty by
varying the maximum number of allowed hops N}, € {4, 8,16} and the size of query N, € {1,2,4}.
We refer to each task by WikiNav-Np,-N,.

For each task, we generate training, validation and test examples from the pages half as many hops
away from a starting page as the maximum number of hops allowedE] We use “Category:Main topic
classifications” as a starting node sg.

! The source code and datasets are publicly available at github.com/nyu-dl/WebNav.
2 This limit is an artificial limit we chose for computational reasons.

https://github.com/nyu-dl/WebNav

Table 3: Sample query-answer pairs from WikiNav-Jeopardy.

Query Answer
For the last 8 years of his life, Galileo was under .
. . , Copernicus

house arrest for espousing this man’s theory.
In the winter of 1971-72, a record 1,122 inches of snow fell .

L . Lo Washington
at Rainier Paradise Ranger Station in this state.
This company’s Accutron watch, introduced in 1960,

Bulova

had a guarantee of accuracy to within one minute a month.

As a minimal cleanup procedure, we excluded meta articles whose titles start with “Wikipedia”.
Any hyperlink that leads to a web page outside Wikipedia is removed in advance together with the
following sections: “References”, “External Links”, “Bibliography” and “Partial Bibliography”.

In Table [2| we present basic per-article statistics of the

English Wikipedia. It is evident from these statistics that H Hyperlinks ‘ Words
the world of WikiNav-N};-N, is large and complicated, Ave 720 2605
even after the cleanup procedure. \/— . ’
Var 13.85 990.2
We ended up with a fairly small dataset for WikiNav-4-*, Max 300 132881
but large for WikiNav-8-* and WikiNav-16-*. See Table/[I] Min 0 1

for details.
Table 2: Per-page statistics of English

4.1 Related Work: Wikispeedia Wikipedia.
This work is indeed not the first to notice the possibility of a website, or possibly the whole web, as a
world in which intelligent agents explore to achieve a certain goal. One most relevant recent work to
ours is perhaps Wikispeedia from [14} 12} [13].

West et al. [14} 112} 113]] proposed the following game, called Wikispeedia. The game’s world is nearly
identical to the goal-driven navigation task proposed in this work. More specifically, they converted
“Wikipedia for Schools”, which contains approximately 4,000 articles as of 2008, into a graph whose
nodes are articles and directed edges are hyperlinks. From this graph, a pair of nodes is randomly
selected and provided to an agent.

The agent’s goal is to start from the first node, navigate the graph and reach the second node. Similarly
to the WikiNav, the agent has access to the text content of the current nodes and all the immediate
neighboring nodes. One major difference is that the target is given as a whole article, meaning that
there is a single target node in the Wikispeedia while there may be multiple target nodes in the
proposed WikiNav.

From this description, we see that the goal-driven web navigation is a generalization and re-framing
of the Wikispeedia. First, we constrain a query to contain less information, making it much more
difficult for an agent to navigate to a target node. Furthermore, a major research question by West and
Leskovec [[13] was to “understand how humans navigate and find the information they are looking
for” whereas in this work we are fully focused on proposing an automatic tool to build a challenging
goal-driven tasks for designing and evaluating artificial intelligent agents.

5 WikiNav-Jeopardy: Jeopardy! on WikiNav

One of the potential practical applications utilizing the goal-drive navigation is question-answering
based on world knowledge. In this Q&A task, a query is a question, and an agent navigates a given
information network, e.g., website, to retrieve an answer. In this section, we propose and describe
an extension of the WikiNav, in which query-target pairs are constructed from actual Jeopardy!
question-answer pairs. We refer to this extension of WikiNav by WikiNav-Jeopardy.

We first extract all the question-answer pairs from J! ArchiveE], which has more than 300k such
pairs. We keep only those pairs whose answers are titles of Wikipedia articles, leaving us with 133k
pairs. We divide those pairs into 113k training, 10k validation, and 10k test examples while carefully

3 www.j-archive.com

http://www.j-archive.com

ensuring that no article appears in more than one partition. Additionally, we do not shuffle the original
pairs to ensure that the train and test examples are from different episodes.

For each training pair, we find one path from the starting node “Main Topic Classification” to the
target node and include it for supervised learning. For reference, the average number of hops to
the target node is 5.8, the standard deviation is 1.2, and the maximum and minimum are 2 and 10,
respectively. See Table [3|for sample query-answer pairs.

6 NeuAgent: Neural Network based Agent

6.1 Model Description

Core Function The core of the NeuAgent is a parametric function f.,. that takes as input the
content of the current node ¢.(s;) and a query ¢,(q), and that returns the hidden state of the agent.
This parametric function f.q can be implemented either as a feedforward neural network fg:

h; = fff(¢c(si)7 ¢q(Q))

which does not take into account the previous hidden state of the agent or as a recurrent neural
network fiec:

hy = frec(hy—1, Pc(s4), ¢q(Q))

We refer to these two types of agents by NeuAgent-FF and NeuAgent-Rec, respectively. For the
NeuAgent-FF, we use a single tanh layer, while we use long short-term memory (LSTM) units [5]],
which have recently become de facto standard, for the NeuAgent-Rec.

Based on the new hidden state h;, the NeuAgent computes
the probability distribution over all the outgoing edges e;.
The probability of each outgoing edge is proportional to
the similarity between the hidden state h; such that

ple;;|B) oc exp (de(s;) Thy) . 3)

Note that the NeuAgent peeks at the content of the next

53 node s; by considering its vector representation ¢.(s;).

i In addition to all the outgoing edges, we also allow the
s agent to stop with the probability

vy

e ~ T
Figure 1: Graphical illustration of a p(0Ip) o< exp (v@ ht) ’ @)

single step performed by the baseline where the stop action vector vy is a trainable parameter.
model, NeuAgent. In the case of NeuAgent-Rec, all these (unnormalized)
probabilities are conditioned on the history p which is
a sequence of actions (nodes) selected by the agent so
far. We apply a softmax normalization on the unnormalized probabilities to obtain the probability
distribution over all the possible actions at the current node s;.

The NeuAgent then selects its next action based on this action probability distribution (Egs. (3)) and
[@)). If the stop action is chosen, the NeuAgent returns the current node as an answer and receives a
reward R(s;, q), which is one if correct and zero otherwise. If the agent selects one of the outgoing
edges, it moves to the selected node and repeats this process of reading and acting.

See Fig.[T]for a single step of the described NeuAgent.
Content Representation The NeuAgent represents the content of a node s; as a vector ¢.(s;) € R4,
In this work, we use a continuous bag-of-words vector for each document:

|D(s:

1 |
Ol =] 2

Each word vector e, is from a pretrained continuous bag-of-words model [7]. These word vectors
are fixed throughout training.

Query Representation In the case of a query, we consider two types of representation. The first
one is a continuous bag-of-words (BoW) vector, just as used for representing the content of a node.
The other one is a dynamic representation based on the attention mechanism [2].

In the attention-based query representation, the query is first projected into a set of context vectors.
The context vector of the k-th query word is

k4u/2

ck = E Wiep,
k'=k—u/2

where W}, € R?*? and e}, are respectively a trainable weight matrix and a pretrained word vector.

u is the window size. Each context vector is scored at each time step ¢ by B,i = fau(h¢—1,cp) WLt

the previous hidden state of the NeuAgent, and all the scores are normalized to be positive and sum
exp(B)

> 12, exp(8))

the weighted-sum of query words to result in a query representation at time ¢:

to one, i.e., af, = . These normalized scores are used as the coefficients in computing

q]

1 t
bq(q) = ﬂ Z QpCr.
=
Later, we empirically compare these two query representations.

6.2 Inference: Beam Search

Once the NeuAgent is trained, there are a number of approaches to using it for solving the proposed
task. The most naive approach is simply to let the agent make a greedy decision at each time step, i.e.,
following the outgoing edge with the highest probability arg max;, logp(e; x| . ..). A better approach
is to exploit the fact that the agent is allowed to explore up to [V,, outgoing edges per node. We use a
simple, forward-only beam search with the beam width capped at /V,,. The beam search simply keeps
the IV,, most likely traces, in terms of log p(e; k| - . .), at each time step.

6.3 Training: Supervised Learning

In this paper, we investigate supervised learning, where we train the agent to follow an example trace
p* = (ss,...,s*) included in the training set at each step (see Eq. (Z)). In this case, the cost per
training example is
Ip”|
Cap = —logp(Blp*, q) = Y _ log p(pj|pZy.). (5)
k=1
This per-example training cost is fully differentiable with respect to all the parameters of the neural
network, and we use stochastic gradient descent (SGD) algorithm to minimize this cost over the
whole training set, where the gradients can be computed by backpropagation [11]. This allows the
entire model to be trained in an end-to-end fashion, in which the query-to-target performance is
optimized directly.

7 Human Evaluation

One unique aspect of the proposed task is that it is very difficult for an average person who was not
trained specifically for finding information by navigating through an information network. There are
a number of reasons behind this difficulty. First, the person must be familiar with, via training, the
graph structure of the network, and this often requires many months, if not years, of training. Second,
the person must have in-depth knowledge of a broad range of topics in order to make a connection
via different concepts between the themes and topics of a query to a target node. Third, each trial
requires the person carefully to read the whole content of the nodes as she navigates, which is a
time-consuming and exhausting job.

We asked five volunteers to try up to 20 four-sentence-long queriesﬂ randomly selected from the test
sets of WikiNav-{4, 8, 16}-4 datasets. They were given up to two hours, and they were allowed to

* In a preliminary study with other volunteers, we found that, when the queries were shorter than 4, they
were not able to solve enough trials for us to have meaningful statistics.

Table 4: The average reward by the NeuAgents and humans on the test sets of WikiNav-Nj,-N,.
N,=1 2 4

feore Layersx Units Pq Np, =4 8 16 4 8 16 4 8 16

@ fi 1 x 512 BoW 21.5 4.7 1.2 | 400 9.2 19 | 451 129 29
) frec 1 x 512 BoW 22.0 5.1 1.7 | 41.1 9.2 2.1 | 448 133 3.6
©) frec 8 x 2048 BoW 17.7 109 80 | 358 199 139 | 395 28.1 219
(d) free 8 x2048 Att 229 15.8 125 | 41.7 245 17.8 | 468 342 28.2
(e) Humans - - - - - - 145 8.8 5.0

choose up to the same maximum number of explored edges per node N,, as the NeuAgents (that
is, N, = 4), and also were given the option to give up. The average reward was computed as the
fraction of correct trials over all the queries presented.

8 Results and Analysis

8.1 WikiNav

We report in Table [] the performance of the NeuAgent-FF and NeuAgent-Rec models on the test
set of all nine WikiNav-{4, 8, 16}-{1, 2,4} datasets. In addition to the proposed NeuAgents, we also
report the results of the human evaluation.

We clearly observe that the level of difficulty is indeed negatively correlated with the query length
N, but is positively correlated with the maximum number of allowed hops N},. The latter may be
considered trivial, as the size of the search space grows exponentially with respect to Ny, but the
former is not. The former negative correlation confirms that it is indeed easier to solve the task with
more information in a query. We conjecture that the agent requires more in-depth understanding of
natural languages and planning to overcome the lack of information in the query to find a path toward
a target node.

The NeuAgent-FF and NeuAgent-Rec shares similar performance when the maximum number of
allowed hops is small (/V;, = 4), but NeuAgent-Rec ((a) vs. (b)) performs consistently better for
higher N}, which indicates that having access to history helps in long-term planning tasks. We also
observe that the larger and deeper NeuAgent-Rec ((b) vs (c)) significantly outperforms the smaller
one, when a target node is further away from the starting node sg.

The best performing model in (d) used the attention-based query representation, especially as the
difficulty of the task increased (IV, | and N}, 1), which supports our claim that the proposed task
of goal-driven web navigation is a challenging benchmark for evaluating future progress. In Fig. 2}
we present an example of how the attention weights over the query words dynamically evolve as the
model navigates toward a target node.

The human participants generally performed worse than the NeuAgents. We attribute this to a number
of reasons. First, the NeuAgents are trained specifically on the target domain (Wikipedia), while the
human participants have not been. Second, we observed that the volunteers were rapidly exhausted
from reading multiple articles in sequence. In other words, we find the proposed benchmark, WebNav,
as a good benchmark for machine intelligence but not for comparing it against human intelligence.

1918 Kentuchy Derby

Category: Kentuchy Derby Races

Category: Kentuchy Derby

Category: Sports events in Louisville, Kentuchy
Category: Sports Events by City

Category: Sports Events

Category: Sports

Category: Main Topic Classifications

of
$

@
2
=

Kentuchy
Derby
was

the
running
Kentuchy
Derby
The
race
took
place
May
1918
Full
Results
Payout
The
winner
received
purse
15,000

Figure 2: Visualization of the attention weights over a test query. The horizontal axis corresponds to
the query words, and the vertical axis to the articles titles visited.

8.2 WikiNav-Jeopardy

Settings We test the best model from the previous experiment (NeuAgent-Rec with 8 layers of 2048
LSTM units and the attention-based query representation) on the WikiNav-Jeopardy. We evaluate
two training strategies. The first strategy is straightforward supervise learning, in which we train a
NeuAgent-Rec on WikiNav-Jeopardy from scratch. In the other strategy, we pretrain a NeuAgent-Rec
first on the WikiNav-16-4 and finetune it on WikiNav-Jeopardy.

We compare the proposed NeuAgent against three search strategies. The first one, SimpleSearch, is
a simple inverted index based strategy. SimpleSearch scores each Wikipedia article by the TF-IDF
weighted sum of words that co-occur in the articles and a query and returns top-K articles. Second,
we use Lucene, a popular open source information retrieval library, in its default configuration on
the whole Wikipedia dump. Lastly, we use Google Search APIE], while restricting the domain to
wikipedia.org.

Each system is evaluated by document recall at K (Recall@K'). We vary K to be 1, 4 or 40. In
the case of the NeuAgent, we run beam search with width set to K and returns all the K final
nodes to compute the document recall. Since there is only one correct document/answer per query,
Precision@K = Recall@K / K and therefore we do not show this measure in the results.

Table 5: Recall on WikiNav-Jeopardy. (x) Pretrained on WikiNav-16-4.

Model Pre* || Recall@l | Recall@4 | Recall@40
NeuAgent 13.9 20.2 332
NeuAgent v 18.9 23.6 38.3
SimpleSearch 5.4 12.6 28.4
Lucene 6.3 14.7 36.3
Google 14.0 22.1 259

Result and Analysis In Table [5] we report the results on WikiNav-Jeopardy. The proposed
NeuAgent clearly outperforms all the three search-based strategies, when it was pretrained on the
WikiNav-16-4. The superiority of the pretrained NeuAgent is more apparent when the number of
candidate documents is constrained to be small, implying that the NeuAgent is able to accurately
rank a correct target article. Although the NeuAgent performs comparably to the other search-based
strategy even without pretraining, the benefit of pretraining on the much larger WikiNav is clear.

We emphasize that these search-based strategies have access to all the nodes for each input query.
The NeuAgent, on the other hand, only observes the nodes as it visits during navigation. This success
clearly demonstrates a potential in using the proposed NeuAgent pretrained with a dataset compiled
by the proposed WebNav for the task of focused crawling [3,[1]], which is an interesting problem on
its own, as much of the content available on the Internet is either hidden or dynamically generated [1]].

9 Conclusion

In this work, we describe a large-scale goal-driven web navigation task and argue that it serves as a
useful test bed for evaluating the capabilities of artificial agents on natural language understanding and
planning. We release a software tool, called WebNav, that compiles a given website into a goal-driven
web navigation task. As an example, we construct WikiNav from Wikipedia using WebNav. We
extend WikiNav with Jeopardy! questions, thus creating WikiNav-Jeopardy. We evaluate various
neural net based agents on WikiNav and WikiNav-Jeopardy. Our results show that more sophisticated
agents have better performance, thus supporting our claim that this task is well suited to evaluate
future progress in natural language understanding and planning. Furthermore, we show that our
agent pretrained on WikiNav outperforms two strong inverted-index based search engines on the
WikiNav-Jeopardy. These empirical results support our claim on the usefulness of the proposed task
and agents in challenging applications such as focused crawling and question-answering.

> https://cse.google.com/cse

https://cse.google.com/cse/

References

[1] Manuel Alvarez, Juan Raposo, Alberto Pan, Fidel Cacheda, Fernando Bellas, and Victor
Carneiro. Deepbot: a focused crawler for accessing hidden web content. In Proceedings of
the 3rd international workshop on Data enginering issues in E-commerce and services: In
conjunction with ACM Conference on Electronic Commerce (EC’07), pages 18-25. ACM, 2007.

[2] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. In /CLR 2015, 2014.

[3] Soumen Chakrabarti, Martin Van den Berg, and Byron Dom. Focused crawling: a new approach
to topic-specific web resource discovery. Computer Networks, 31(11):1623-1640, 1999.

[4] Ji He, Jianshu Chen, Xiaodong He, Jianfeng Gao, Lihong Li, Li Deng, and Mari Ostendorf.
Deep reinforcement learning with an unbounded action space. arXiv preprint arXiv:1511.04636,
2015.

[5] Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735-1780, 1997.

[6] Jan Koutnik, Jiirgen Schmidhuber, and Faustino Gomez. Evolving deep unsupervised convolu-
tional networks for vision-based reinforcement learning. In Proceedings of the 2014 conference
on Genetic and evolutionary computation, pages 541-548. ACM, 2014.

[7] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word
representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[8] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. Nature, 518(7540):529-533, 2015.

[9] Karthik Narasimhan, Tejas Kulkarni, and Regina Barzilay. Language understanding for text-
based games using deep reinforcement learning. arXiv preprint arXiv:1506.08941, 2015.

[10] Sebastian Risi and Julian Togelius. Neuroevolution in games: State of the art and open
challenges. arXiv preprint arXiv:1410.7326, 2014.

[11] David Rumelhart, Geoffrey Hinton, and Ronald Williams. Learning representations by back-
propagating errors. Nature, pages 323-533, 1986.

[12] Robert West and Jure Leskovec. Automatic versus human navigation in information networks.
In ICWSM, 2012.

[13] Robert West and Jure Leskovec. Human wayfinding in information networks. In 215t Interna-
tional World Wide Web Conference, pages 619-628. ACM, 2012.

[14] Robert West, Joelle Pineau, and Doina Precup. Wikispeedia: An online game for inferring
semantic distances between concepts. In IJCAI, pages 1598-1603, 2009.

